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A hydrodynamic solution for the decay of the angular momentum of an initially moving volume element
in an otherwise stationary, compressible, viscous fluid predicts a long time decay of the angular momentum
autocorrelation function which behaves as [[nsf/Mp]@9/2 where 7, is the shear viscosity, Mp is the mass
density, and & is the dimension of the system. This slow decay, which would not lead to the divergence of
the rotational diffusion coefficient, or of the spin-rotation relaxation time, is caused by a vortex field which
results from the interaction between a structured particle and host fluid. This result is analogous to the
long time tail in the linear momentum autocorrelation function recently reported by Alder and Wainwright.

Previous studies of hard sphere fluids! show that the
linear momentum autocorrelation function has a long
positive tail indicating a surprising persistence of
velocities. This effect was shown to be very dependent
on the dimensionality of the sample; so much so in fact
that the self-diffusion coefficient (which is the time
integral of the correlation function) will diverge in two
dimensions but not in three dimensions. This remark-
able persistence of linear momentum can be attributed
to a cooperative phenomenon in which a moving par-
ticle creates a vortex field in its neighborhood with
which it continues to interact. It is well known from
hydrodynamics that a vortex field will relax with a
time constant which is inversely proportional to the
kinematic viscosity. This time constant is much longer
than the mean collision time in the fluid—hence the
long time tail in the correlation function. Alder and
Wainwright! have considered a hydrodynamic model
in which a fluid is imagined to be at rest except that a
small volume element of molecular size is given an
initial velocity. The subsequent motion of the fluid is
then calculated by direct numerical integration. This
model gives nearly quantitative agreement with the
results of molecular dynamics, and predicts a long time
dependence of the momentum autocorrelation function
which goes as (vt)~%2, where v is the kinematic viscosity
(ns divided by the mass density, Mp), and d is the
dimensionality of the sample (d=2, 3 in two and three
dimensions). This result has also been predicted by
Zwanzig and Bixon? on the basis of a generalization of
Stokes’ law for the frictional force on a sphere moving
in a viscous fluid. This theory has the advantage of
predicting a short time negative region as well as the
long time tail in the linear momentum autocorrelation
function.

The question arises as to whether there exists corre-
sponding persistence effects in other molecular prop-
erties. For example, in a liquid or a gas consisting of
polyatomic molecules (structured molecules), an angu-
lar momentum can be associated with each molecule.
This angular momentum can be decomposed into two
parts: an orbital part 1 representing the angular mo-
mentum due to the motion of the molecular center of
mass (c.m.) about some origin, and an intrinsic part, s,

representing the angular momentum of the molecule
about its own center of mass. It is this latter angular
momentum which plays an important role in many
physical processes. For example, in magnetic resonance
experiments the spin-rotation relaxation time® is pro-
portional to the Fourier component of the autocorrela-
tion function of s at the Larmour frequency. In addi-
tion, from the Debye theory of rotational diffusion it
can be shown? that the rotational diffusion coefficient is
just the time integral of the autocorrelation function
of s. Consequently, if there is a long time persistence of
intrinsic angular momentum, these physical quantities
may show dramatic effects.

In this paper we show that there is reason to expect
a long time persistence of intrinsic angular momentum
which depends on time as (»f) =92 where v is again
the kinematic viscosity and d is the dimensionality of
the system. Thus in two and three dimensions the long
time tail behaves like (vf)~2 and ()52 and the time
integral of this tail behaves like (vf)~' and (wt)—2.
Thus both in two and three dimensions the spin—
rotation relaxation time and the rotational diffusion
coefficient converge. This is in marked contrast with
the translational self-diffusion coefficient which is
expected to diverge in two dimensions and converge
in three dimensions.

A previous study®® of gases and liquids containing
structured molecules shows that if a molecule is given
an initial intrinsic angular momentum, this angular
momentum will on the average decay. Since the total
angular momentum (orbital plus intrinsic) is conserved
it follows that if the intrinsic angular momentum
decays, the orbital angular momentum of the neighbor-
ing molecules must grow. This orbital angular momen-
tum is simply a vortex field. Put more precisely, the
intrinsic angular velocity of a molecule rapidly comes to
equilibrium with a vortex field which it creates. The
vortex field then decays (diffuses away) with a relaxa-
tion time again proportional to »—%. It is no wonder then
that the intrinsic angular momentum persists for a long
time. This occurs because the rate determining step in
the long time relaxation of s is the dissipation of the
vortex field which occurs on a hydrodynamic time
scale.
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THEORY
The calculation proceeds in two steps:

(1) The Navier-Stokes equation (transverse part)
for a fluid containing structured molecules is solved for
a fluid imagined to be at rest except that a small fluid
element is given an initial linear and angular velocity.
The initially moving volume element is made equal in
size to the average volume per molecule. The subse-
quent decay of the linear and angular momentum fields
is determined for times sufficiently long that

doy(r, 1) /dt—0

but shorter than times for which dvi(r, £)/di—0.7

(2) The time corrclation functions of the transverse
velocity ¢ui(r, t) = (vi(0,0)-ve(r,#)), and the trans-
verse angular velocily Cui(r, )= {(®.(0,0)-w.(r, 1))
at the point r and time ¢ are computed. Our problem is
to determine that part of the transverse angular velocity
correlation function which corresponds to the original
molecule (fluid element). We now assume that even
though the times are sufficiently long that

doui(r, ) /dt—0,

the fluid element has not moved significantly from its
initial position (r=0). It follows then that the angular
momentum autocorrelation function of the molecule
for long times such that hydrodynamics is valid is just
the integral of Cu(r, £) over the volume of the original
fluid element. This kind of procedure is necessary, for
example, to obtain Zwanzig and Bixon’s? result that
Yu(r, t) 42 is a consequence of ordinary hydrody-
namics [ we follow this up in Eq. (6)7]. From Ref. 6, the
relevant equations are

(8/00yvi(r, 1) = (v+u,) V2vi(r 1)+ 20,V x01(1, 1),
(8/80)wi(r, ) =2(M/Dv[V xvi(r,)—20.(r,1)].
(1)

Here vi(r,t) and w.(r,!) are the transverse velocity
and the transverse intrinsic angular velocity fields. The
constants », »,, M, and I are, respectively, the kine-
matic shear viscosity (n.,/Mp), the kinematic rotational
viscosity (n./Mp), thec mass and the moment of inertia
(3TrI) of a molecule.

In order to provide some insight into the behavior of
the fluid we focus our attention on some simple prop-
erties of these equations. Let us assume for a moment
that there are two separated times: a short time during
which [de.(r, ) /di]—0 and a long time during which
[dvi(r,t)/df]—0. Thus for times sufficiently long, the
second equation becomes

ou(r, ) =3[Vxvi(r, 0] (2)

This time interval is one in which the intrinsic angular
momentum of the molecule decays thereby producing
vortex motion (V xv). When Eq. (2) is substituted
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into Eq. (1) we also find that the transverse velocity
obeys the equation

(8/at)yvo(r, ) =vV2va(r, 1). (3)

This equation is identical to that of ordinary hydro-
dynamics where the angular momentum of the con-
stituent molecules is totally ignored.

In order to solve Eq. (3) we must first determine an
initial condition vi(r, 0) corresponding to our physical
problem. Since we are trving to describe the velocity
field at the space-time point (r, ) caused by an initial
situation in which the fluid is stationary except for a
little volume element centered at the point r=0, we
take the initial condition as vi(r, 0) =vi8(r), where v
is the velocity of this volume element. Thus as far as
Eq. (3) is concerned it should be solved subject to the
boundary condition

vi(r, 0)=vid(r), (4)

where vi is the initial transverse velocity of the fluid
element. The solution of Eq. (4) subject to this initial
value is the well known solution of the diffusion equa-
tion in a system with a point source,

va(r, 1) =v.[ 4wt 32 exp(—r2/dut). (3
The time correlation function of the transverse velocity
at the point r and at time f is yu(r,7) = (v2(0,0) -
vi(r, £) ). In order to determine the transverse velocity
correlation function for the original molecule (fluid
element), we make the assumption involved in the
second step of the calculation, namely, that the fluid
element has not moved significantly from its initial
position (r=0). If this assumption is made, then it
follows that the velocity correlation function of the
molecule for long times such that hydrodynamics is
valid is simply the integral of y.(r, ¢) over the volume
of the original fluid element; thus,

(v(0)-v(1) ) =3 (& )[4mut ]2 (6)

Were we to repeat this calculation for hydrodynamics in
two dimensions Eq. (5) would be a two dimensional
Gaussian and thus Eq. (6) would behave as ()7L
This is the result observed by Alder and Wainwright.!

In a completely analogous manner the transverse
angular velocity correlation function

Ci(r, ) = {ws(0,0)-ws(r, 1))
= 1V xvi(0,0)]-[Vxva(r,)])

can be determined. We merely substitute Eq. (5) into
Eq. (2) and the resulting equations into C(r, #). Then

Cu(r, 1) =3[4mu 132
X {[vaxV6(r)]-[vex V exp(—r¥/4t) ]).
From the well-known properties of the delta function
Ca(r, ) =—[(4mpt)~%2/4]
X (8(r)[va x VI exp(—r*/4pl) ).
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ANGULAR MOMENTUM CORRELATION FUNCTION

The vector identity
[(Vix V]E=0.2V2— (V.- V)2
when substituted into the preceding equation yields
Co(r, t) =3n%2(4ot)~512 (0125 (r) exp(—rt/4st) ).

When this is integrated over the initial volume element,
it is found that the intrinsic angular momentum auto-
correlation function has a long time tail

(s(0) -s(8) yo< (vi)=>2. (M

If the same computation was performed for a two-
dimensional system it would yield ()32

This calculation can be carried through without
making the assumptions that lead to Eqgs. (2) and (3).
The results are essentially the same.

CONCLUSIONS

The angular momentum autocorrelation function is
thus expected to have a long time tail proportional to
(v)~@+Di2 This persistence of intrinsic angular mo-
mentum is predicted on the basis of a hydrodynamic
model in which a rotating molecule couples to the host
fluid in such a way that it produces a vortex field. The
subsequent decay of the angular momentum is then
rate limited by the decay (diffusion) of this vortex
field. This occurs very slowly thus accounting for the
long time tail.

On the basis of this calculation we expect that the
time integral of the angular momentum autocorrelation
function (and thereby the spin—rotation relaxation time
and the rotational diffusion coefficient) will have a
pronounced dependence on the kinematic viscosity.
The smaller the kinematic viscosity the larger will be
the contribution of the tail to this integral. Since in
gases the kinematic viscosity has a minimum at a cer-
tain density (pressure), we expect that this integral
will have a maximum for those densities. Thus, the
persistence of the angular momentum might show up as
a maximum in the pressure dependence of either the
spin-rotation relaxation rate or in the rotational diffu-
sion coefficient. This would be the analogue of similar
effects in the translational self diffusion coefficient of
gases.®

Leontovich? has developed a phenomenological theory
for rotational reorientation. If this model is studied
from the same vantage point of the angular momentum,
it can be shown that the orientation of a molecule
relaxes on two time scales: a short time scale during
which the orientation comes to equilibrium with local
velocity gradients, and a much longer time scale during
which these velocity gradients decay. We can show
that the relaxation of the time correlation function
(P{u(0)-u(t)]) (where u is the orientation of the
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principal axis in a symmetric top molecule) has a long
time tail which behaves like (»£)71/? in three dimensions.

Our conclusions are based on a hydrodynamic model.
It is well known that this model is not valid for distances
and times of a molecular order. Our argument therefore
is of a purely dimensional nature. It is consistent with
the computer experiments of Alder and Wainwright on
the long time behavior of hard sphere fluids.! For molec-
ular fluids, our results are of interest since they predict
long time persistence effects in the orientational motion
of molecules, and should stimulate new experimental
studies. Note that this procedure vields no information
about short time behavior. A microscopic theory for
the angular momentum autocorrelation function is
desirable. Zwanzig and Bixon’s treatment of linear
momentum? provides a possible framework for such a
theory.

It should be noted that even in our dimensional
argument, it is implicitly assumed that the molecule
remains very close to its initial position. We expect this
assumption to be valid for times long compared to the
rapid initial decay (typically ~10~ sec) of the angular
momentum of a single molecule but short compared to
the time it takes a molecule to diffuse a few molecular
diameters (typically ~107 sec). Thus, our theory
predicts the @972 {ail for the angular momentum
correlation for these intermediate times.

We reiterate, this paper is to be regarded as con-
jectural.l0
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Y Note added in proof: After this paper was submitted, an
elegant formulation of the problem of asymptotic time behavior
of the correlation function appeared in the literature: M. H.
Ernst, E. H. Hauge, and J. M. J. van Leeuwan, Phys. Rev.
Letters 25, 1254 (1970); J. R. Dorfman and E. G. D. Cohen,
Phys. Rev. Letters 25, 1257 (1970). Both of these papers were
submitted about the same time as ours and both deal with similar
hydrodynamic analysis of the single particle velocity autocorrela-
tion function. We have recalculated our results using this new
formulation. We arrive at essentially the same conclusions as
before. In particular, the intrinsic angular momentum auto-
correlation function has a long time tail given by Eq. (7). This
modified version of the present paper will appear in the Pro-
ceedings of the I.U.P.A.P. Conference on Statistical Mechanics,
March 29-April 2, 1971,
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