2164 S. Y.

ACKNOWLEDGMENT

The author wishes to thank Professor R. G. Parr
for suggesting the problem and his continuing interest
in this work.

APPENDIX

The following expressions (Al) through (A6) were
obtained from Eq. (12) by direct differentiations with
respect to \’s:

M EGO_ B <1R 2Ky, (A1)
MAy:  EMO 4 FOO _ Fa00) . FOO = R, R, Ky (A2)
M EGW_ FOW = 1R, 3K 1+ Ri. Ky, (A3)

M2 E®O FOO_ paioy_ g = 1R R, 2 K122,
(A4)

Mg:  EGOL FO0)__ U0 po0) =1R, 2Ry Kiya,
(AS)

Adghg:  EMD | FU00) | F010) 4 F001) _ F7(000)

— EU0 — FOID . FUOD = Ry Ry, R3.K123. (A6)
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Some examples of evaluation of the energies are

B0 — (g0 | —T(Ry,)+iy | ¥0), (A7)
Fe00) — (‘I’(“"’) | — T(Rlc) _HjA_E(IOO) | \11(000)>, (Ag)
E800 = (00 | — T (Rye) 04— EWO | Ty (A9)
EUO = (§O0) [ — T(Ry,)+vy | T )

+ (O | —T(Ry.)+ig | ¥OW),  (A10)

where the normalization is chosen such that
(\I;(OOO) | \I/(lOO)): <\Il(000) | \p(om)): (\1/(000) I q,(001)>=()_
(Al11)
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The angular velocity correlation function is computed using a frequency dependent version of Stokes’
Law. The drag torque on a sphere rotating nonuniformly about one of its diagonals is used to compute
the relaxation of the angular velocity. It is shown that the asymptotic time dependence of this function
goes as 782, Consequences of this persistence in the orientational relaxation of molecules is discussed.

INTRODUCTION

In recent publications, Ailawadi and Berne! have
shown that the angular momentum autocorrelation
function should have an asymptotic time dependence,
t7%2, These studies were based on generalized hydro-
dynamic equations®* which include the total angular
momentum as a conserved quantity. The long time
tail is a direct consequence of the coupling of the
molecular angular momentum to the transverse ve-
locity fluctuations (shear modes) in the liquid and is
the direct analogue of the long time tail of the linear
momentum autocorrelation function.?

In an interesting application of hydrodynamics,
Zwanzig and Bixon? calculated the linear momentum
autocorrelation function by generalizing Stokes’ law
to a sphere in nonuniform motion in a viscoelastic
compressible continuum fluid. The boundary condi-
tions used by them are quite general in that their
formula applies to the case intermediate between slip
and stick boundary conditions, including these two
extremes as special cases. The correlation function
that they obtain by a judicious choice of parameters
is in striking agreement with computer experiments
on liquid argon. Moreover, their correlation function
goes asymptotically as £7%/2 thus giving the observed
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long time tail. This treatment, when specialized to an
incompressible fluid and stick boundary conditions,
gives the linear momentum autocorrelation function
for a macroscopic sphere (Brownian particle). It shows
that the ordinary Brownian motion theory is inap-
plicable since it neglects inertial terms. Classical
Brownian motion theory is based on the Langevin
equation with a drag force calculated on the basis
of a uniformly moving sphere, thereby leading to an
exponentially decaying autocorrelation function. Zwan-
zig and Bixon’s treatment is essentially based on a
drag force computed for a sphere moving with a time
dependent velocity. This is more realistic since a
Brownian sphere does suffer velocity changes due to
collisions. It can be concluded that the linear mo-
mentum autocorrelation function for a macroscopic
sphere has a =32 long time tail.?

Encouraged by the success of the Zwanzig—Bixon
calculation in accounting for. the full time dependence
of the linear velocity autocorrelation function, in-
cluding the long time tail, %2, we have undertaken
a similar calculation of the angular velocity correla-
tion function (AVCF). This we do for several reasons:
(a) to confirm our previous prediction of a 5?2 tail
on AVCF, (b) to study how the long time persistence
effects emerge from the short time relaxation of the
AVCEF, (c) to study how the orientational correlation
functions (usually computed on the basis of the
Debye theory of rotational relaxation) are affected
by the long time persistence of the angular velocity,
and (d) to see if the rotational diffusion coefficient is
modified from its Einstein form (KT/8mna?).

THE ANGULAR VELOCITY AUTOCORRELATION
FUNCTIONS

A sphere rotating with the time dependent angular
velocity

Q(t) = (2m) /+°° dey exp(— i)
experiences a drag torque®

N =) [ d, exp(—ia),
where the frequency components N, and €, are re-

lated by
Nw=—g.(w)9w; (1)

where {(w) is a frequency dependent friction constant.
It is necessary to relate the AVCF to {(w). This

is simply done as follows. The equation of motion for

the angular velocity in an external torque n(f) is

—iwlQ,=N,+n,,

where the left hand side is the Fourier transform of
the total torque, (I2), and the right hand side is the
sum of the Fourier transforms of the drag torque
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NJ[=—t(w)2,] and the applied torque #,. Solving
this equation for @, gives

Qo=[—twl+{(w) Tn,.

From linear response theory” it can be shown that
the Laplace transform of the AVCF, x(w), is simply
the functional derivative of Q, with respect to #,
evaluated at n,=0:

(@) = f " dt exp i) (t) = (i—“—)%

(]

It follows directly from the last two equations that

x(w) =B [—iwl+§(w) I (2)

To find the AVCF, all that is required is to determine
¢(w) and to Laplace invert x(w).

HYDRODYNAMIC DETERMINATION OF THE
FRICTION CONSTANTS

In standard references on hydrodynamics,® the rota-
tional friction constant, {, is evaluated in the follow-
ing way. The Navier-Stokes equation for a viscous
imcompressible fluid is solved subject to stick bound-
ary conditions for a uniformly rotating sphere (sphere
with constant angular velocity). The resulting velocity
field for the fluid is then used to compute the torque
exerted by the fluid on the sphere. This torque is
linear in the angular velocity and the constant of
proportionality is the friction constant,

)

where 7 is the viscosity of the fluid and @ is the radius
of the sphere. When this is substituted in Eq. (2),
it is found that

x(w) =7 (—iwl+L0) ™, (4a)
é(t) = (BI)~" exp— (I"Xot). (4b)

Moreover, it is found by integrating ¢(f) over time
that the rotational diffusion constant is

De=KT/¢o=KT/8mnd®,
Dr=x(0).

This is the Einstein relation.

This whole theory is based on the assumption that
the drag torque computed for a uniformly rotating
sphere can be applied to a sphere which, by virtue
of molecular collisions, has an angular velocity which
varies in time.

It is a fairly straightforward exercise to compute
the drag torque on a sphere executing nonuniform
rotational motion around one of its diagonals in an
incompressible viscous fluid. In fact, Landau and
Lifshitz present this as a problem in their book on

$o= 87"70'3’

()
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fluid mechanics.® The result is
¢ (w) =8mna?
X (A3 {L(1—9)N2—iNw]/ (142 2+ 202w) } ), (6)

where
A= (a%p/2n) "

We note that {(w) reduces at zero frequency to {,
the friction constant in the case of uniform rotations.
Substitution of {(w) into Eq. (2) leads to a com-
plicated form for x(w) which is very difficult to
Laplace invert analytically. Nevertheless, we can make
some statements about the asymptotic time depend-
ence of the AVCF. We note from Eq. (2) that, for
small frequencies, x(w) has the limiting form
x (@) —— D[ 14+-V2N%i (iw)*2],

w0

(7)

which on inversion gives the assymptotic form for
AVCF
¢ (1) ——— (9/8w) V2 DpNt 572, (8)
-

This result confirms our previous studies of long
time presistence effects in angular momentum relaxa-
tion.! It is a direct consequence of hydrodynamics.
It can be connected with the penetration depth of
the transverse velocity field due to nonuniform rota-
tions of the sphere.

ORIENTATIONAL RELAXATION

The most commonly used model of orientational
relaxation is the Debye model. Implicit in this model
is the assumption that the angular momentum of the
rotor relaxes on a time scale which is very fast com-
pared to the orientational relaxation time. In this
event, the molecule suffers frequent angular momen-
tum changes and its orientation changes by a series
of very small steps. If u(f) is a unit vector along
a given radius of the sphere, then according to the
Debye theory the orientational correlation functions

Dy(t) = (Pi[u(0)-u(r)])
are exponentially decaying functions of the time,
Dy (t) = exp[ —1(141) Drt],

with P;(x) the /th order Legendre polynomial, and
Dr the rotational diffusion coefficient, x(0). The
Laplace transform of D;(¢) is, by definition,

xi(w)= [ dt exp(+iat) D), (9)
0
which in the Debye model is
x1(w) =[—iw+I(I+1) D] (10)

The Debye model is based on the assumption of
very rapid angular momentum decay. Because of the
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existence of a long time tail, this assumption is thrown
into question. It is of interest to explore the implica-
tions of the long time tail with regard to the orienta-
tional correlations.

The Debye theory can be generalized by using the
frequency dependent rotational diffusion coefficient.

De(w) = [~ dt exp(+io) () =x(),  (11)

which reduces to KT/ in the limit w—0. The natural
generalization of the Debye theory is then

xi(w) =[—do+i(I+1)x(w) I (12)

Substitution of x(w) from Egs. (2) and (6), followed
by an asymptotic expansion of the same kind that
yielded Eq. (8), leads to the following asymptotic
time dependence for the orientation correlation func-
tions:

Dy (1) —3(2/x) 2 [1(14+1) Dr T 1 DeN3t 512,

t» o

(13)

We predict, therefore, a %72 tail on the orientational
correlation functions.

A note of caution is required. The generalization
of the Debye theory proposed here has not been
rigorously derived. Several years ago Harp and Berne®
noted from their molecular dynamics studies of di-
atomic liquids that this generalization should work
well if noncentral forces between molecules are strong
and collisions are frequent (high density). Zwanzig
and Nee® have used this generalization in the theory
of dielectric relaxation with considerable success. We
believe that it gives an adequate approximation to
the long time behavior of the orientational correlation
functions.

NUMERICAL RESULTS

To conclude this discussion, we make numerical
comparisons of results obtained from the hydro-
dynamic theory and results obtained from the classical
Langevin theory. In Fig. 1 we plot the normalized
power spectrum of the AVCF, x'(w)/x'(0), where
x'(w) is the real part of the susceptibility x(w), in
reduced units

x=Nw, A2=gq?p/ 2,

for the conditions: temperature T is 273°K, density
is 1 g/cc, shear viscosity is 0.01 p, sphere radius is
10~* cm, sphere moment of inertia is 4.20X 1072 g-cm?

We note from the figure that for these parameters
there is a real difference between the hydrodynamic
and the classical theories. This difference becomes
more important the smaller the quantity,

T=1/N6e24(0/0),

which only depends on the ratio of the sphere’s den-
sity, ps, to the solvent density, p. In this case I=

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ANGULAR VELOCITY AUTOCORRELATION FUNCTION

F1e. 1. The normalized spectrum of
the angular velocity versus the dimen-
sionless frequency z=MNw for 7=0.333.
The hydrodynamic theory is the solid
line (—) and the Langevin theory is the

NORMALIZED POWER SPECTRUM, X'(w) —
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0.333. To demonstrate this assertion, we present in
Fig. 2 the normalized power spectrum for identical
conditions except for a less dense sphere with I=
(4w)~. This dependence on the ratio (p,/p) is proba-
bly due to the fact that a more massive sphere would
be less affected by the vortex fields it produces than
a less massive sphere. This is a kind of fly wheel
effect.

Thus we see that the inertial terms in the drag
torque on a nonuniformly rotating sphere can have
dramatic effects on the AVCF. Let us now investigate
whether these dramatic effects would influence the
orientational correlation functions and their associated
transform, xi(w),

xi(w) =B —iw+HI(I+1)x () T

Because
141 x(w) <I(i+1) D,

the major frequency dependence of xi(w) comes from
the region

w~I1(l+1) Dg.
1 1.0 -
~
- N,
= sk N
s \,
Z
F1e. 2. The normalized spectrum of K
the angular velocity versus the dimen- w 6|~
sionless frequency x=MNw for J=1/4x. ©
The hydrodynamic theory is the solid &
line (—) and the Langevin theoryis the = 4|
dashed line (---). e -
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=
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DIMENSIONLESS FREQUENCY

X —e

Now if this characteristic frequency is substituted
into x(w), it is found that x(w) hardly changes from
its zero frequency value of Dg, so that

xi{w)~=8 [ —iwt+I(l+ 1) D1

This is simply the Debye result. Only for frequencies
very much larger than /(/4-1) D are there any effects
to be associated with the hydrodynamic theory. But
for such large frequencies, x:(w)—0, and the effects
will not be seen. The reason for this is that orienta-
tions relax on a time scale 7o=D"'x which is much
slower than the time scale 7o=I/{, on which the
angular velocity decays:

ro/ra={H/IKT=80m’a/p,KT.

For the calculations already presented, this ratio is
of order 107. It follows that the characteristic fre-
quencies of xi(w) and x(w) are sufficiently different,
in the ratio 107, that the Debye theory of orienta-
tional relaxation is quite adequate. In order to ob-
serve deviations from the Debye theory of orienta-

HYDRODYNAMIC THEORY

— ——— LANGEVIN THEORY
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tion it would be necessary to go out into the wings
of xi(w). This is not experimentally feasible. We see
that the ratio {*/IKT is most critically dependent
on the radius a. The question immediately arises:
Is there any possibility of studying spheres sufficiently
small that the time scales for reorientation, and an-
gular velocity relaxation are not so well separated?
The radius that would be required would then be

a~p, KT /80mnt~10",

which is clearly absurd. We conclude that the long
time effects would not be likely to show up in studies
of the orientational correlation functions, and are
forced to look for them in the AVCF using either
molecular dynamics or spin rotation coupling magnetic
relaxation. We are presently trying to extend this
treatment to a viscoelastic treatment of the AVCF.

DISCUSSION

It should be noted that, in an incompressible fluid,
the motion of a macromolecule is accompanied by an
instantaneous displacement of the fluid, whereas in a
real compressible fluid, there is a time lag between
the displacement of the macromolecule and the mo-
tion of the fluid. This has some very important con-
sequences. In an incompressible fluid:

(a) the initial value of the linear velocity auto-
correlation function is

V2Y=KT/M*,
(b) the initial value of the AVCF is
@)=KT/I*,

(c) the translational and rotational diffusion con-
stants are given by their Stokes’ law values, K7'/6mna
and KT/8ma?, respectively, even when the drag force
and torque are correctly computed as in this paper.

Here M* and I* are the effective mass and moment
of inertia.

Statistical mechanics, of course, requires that the
mass and moment of inertia rather than the effective
mass and the effective moment of inertia appear in
(Vz2) and (@?). Thus, the incompressible fluid calcu-
lation is far from correct at short times. When the
calculation is done for a compressible fluid, the correct
result is obtained; but then the diffusion coefficients
contain a small correction to their Stokes’ law values.
This latter point was not noted by Widom in his
treatment of translational Brownian motion.

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

BRUCE jJ.

BERNE

In conclusion, we would like to point out that
Gordon and Messenger have some preliminary results
on long cylinders rotating about the cylindrical axis.
Although they do not calculate the AVCF, they do
calculate how a given initial angular velocity decays
to zero. They find for this case that there is a long
time tail of #. This is a much longer tail than we
have found, and seems to indicate that geometrical
shape can be exceedingly important. Nevertheless, it
should be born in mind that, with regard to trans-
lational motion, the cylinder acts very peculiarly in
that even in uniform motion it does not obey Stokes’
law; that is, the drag force is nonlinear in the velocity.
Perhaps the Gordon-Messenger result reflects analo-
gous behavior in the rotational motion. In order to
study the effects of molecular geometry we have per-
formed a calculation, of the AVCF of a disk rotating
about an axis perpendicular to its plane, and find
that in this case the long time tail is also #7572,

SUMMARY

The AVCF for a sphere rotating in a viscous in-
compressible fluid has a persistence of velocity which
gives rise to an asymptotic %2 tail. This tail results
from a purely hydrodynamic interaction between the
sphere and its host fluid.

In ordinary fluids, it is not expected that this per-
sistence could easily be observed in the long time behav-
ior of the orientational correlation functions, despite the
fact that these functions should in principle go as #%72.
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