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Onset of Brownian Motion in a One-Dimensional Fluid*
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In this article we describe a computer study of the onset of Brownian motion in a model, one-dimensional
system. It is shown that clusters of particles behave like Brownian particles in the limit of large mass.
The normalized velocity autocorrelation functions and the corresponding memory functions of these
clusters have been determined and compared to theoretical predictions. An interesting result of this study
is the mass independence of the self-diffusion coefficient.

In this article we describe a computer study of the
onset of Brownian motion in a model one-dimensional
system! The model consists of 1000 equal mass par-
ticles interacting via a pairwise, additive, truncated
Lennard- Jones potential with the potential parameters
(¢/k=119.8°K, 0=3.405 &) and periodic boundary con-
ditions. This set of 1000 particles is then grouped into.
various sized contiguous clusters. Each cluster has a
mass equal to the total mass of its constituents (M =nm)
and a velocity equal to the average velocity of its con-
stituents: Clusters of mass M =10m, 25m, 40m, 50m,
60m, 75m, 90m, and 100m have been analyzed.

Our purpose in this study is to investigate the onset
of Brownian motion as a function of B mass. Toward
this end, we study the mass independence of the normal-
ized velocity autocorrelation function ¥ (f), and its
memory K (f), which are related by the equation

6;¢M(t)=—M"1 /ldTKM(T)Il/M(t—T). (1)
0

We tind that:

(1) The mean-square force on a B particle becomes
independent of the mass for masses above M>75m
(see Table I).

(2) ¢Yu(1) approaches a linear form above M >25m
and its decay constant is equal to {/M where { is mass
independent (see Fig. 1 and Table I).

(3) The memory function, K (f), becomes mass
independent for masses above M >40m (see Fig. (2)).

(4) The self-diffusion coefficient, D, is mass inde-
pendent for all masses (see Table I).

The conclusions are based on the data in the table
and in Figs, 1 and 2.

In addition, the normalized velocity correlation func-
tion for a group of 100 particles randomly sampled
from the 1000-particle system, was determined. The

TasLE I. Mass dependence of dynamical properties.

M/m D 8 ¢ K (0)
1 0.053= 14 14 442
10 0.048b 1.6 i6 318
25 0.046 0.64° 16 243
40 0.038 0.49 19 200
50 0.042 0.35 17 180
60 0.046 0.27 16 169
75 0.051 0.19 14 149
90 0.049 0.17 15 141
100 0.047 0.16 16 139

s {r2(1) Y=2Dr.

-]
b D=/ ar {V(n)v) ),

0

D=T*§,  T*=0.735, {=(M/m)f.

¢ Least squares fit of Iny (7).

particles in the group are not contiguous. As can be
seen from Fig. 3, this correlation function is identical,
within machine error, to the normalized velocity cor-
relation function of a single fluid atom; thus showing
that the linear time decay observed in clusters of
contiguous atoms is not due to a statistical effect.
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BROWNIAN MOTION

We regard the model system as being very close, but
not identical, to the models used to derive the Langevin
equation, or the Fokker-Planck equation from mechan-
ics % These derivations are based on a three-dimen-
sional model in which the mass of the B particle in-
creases, but its interaction potential remains the same.
Our B particle experiences forces which depend on
its size, but due to the finite range of the potential,
the forces become independent of the size as the mass
increases. Thus, for sufficiently large clusters (M > 75m)
[see Table I for the mean-square forces, K(0)], our
results are quite similar to the theoretical predictions
in that the theoretical decay is exponential which for
t<&<M/¢has a linear form.®*Our model differs in one other
respect from the theoretical model. It has internal

NORMALIZED VELOCITY AUTOCORRELATION FUNCTION

TIME

F16. 1. Mass dependence of the normalized velocity autocor-
relation function. Time is in units of 10~ sec.

degrees of freedom. Nevertheless, this model shows
essential agreement with the theoretical models.

There are, however, several points which are clarified
by the computer study. Recall that the memory func-
tion in Eq. (1) is explicitly”

Ku(t) = (Fs exp(iQLt) F5)/kT, (2)

where Fp is the force on the B particle and Q is a pro-
jection operator,

Q=1-P,  P=V(V--+)/(V?),

onto the orthogonal subspace of V in the Hilbert
space of dynamical variables. Since the force, Fp, is
not expected to change with the mass of the cluster
(for M>75m), the only mass dependence in Ky (f)

IN A ONE-DIMENSIONAL FLUID
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NORMALIZED MEMORY FUNCTION
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F1c. 2. Mass dependence of the normalized memory obtained by
inverting Eq. (1) numerically. Time is in units of 10 sec.
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NORMALIZED VELOCITY AUTOCORRELATION FUNCTION
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Fic. 3. Comparison of the normalized velocity autocorrela-

tion function for clusters selected randomly and contiguously.

must arise from the dynamics which is contained in  Time is in units of 10-% sec.
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2852 M. BISHOP
the propagator exp(iQLt). The Liouville operator L is
the sum of a fluid operator L; and a B-particle operator
Ly. The theoretical treatments assume that as the
mass of the B particle increases relative to the host,
Ly ceases to contribute and
KM(t) M_) (FB exp(ﬂ,L/t)FB)/kT,

so that the memory function becomes an autocorrela-
tion function in a ‘“Hamiltonian system.”” The com-
puter experiment shows that this happens at a mass
of M>40m. Moreover, from Eq. (1) we see that as
M increases, the time rate of change of Yy, da/ar, de-
creases due to the factor M1 Thus for sufficiently
high masses, ¥ (¢) varies slowly compared with K (1),
there is a separation of time scales, and Eq. (1) re-

duces to
O (8) =— (5/M)¥u(t)
with

= /w K (D).

Since Ku(¢) is independent of the mass, the friction
constant, {, is independent of the mass.

One of the interesting conclusions of this study is
that the self-diffusion coefficient, D, is independent of
the mass (see Table I). Although there is no theoretical
explanation of this we conjecture that it is due to two
competing mechanisms:

(a) The heavier the B particle, the slower it moves.
(b) The heavier the B particle, the larger is its mo-
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mentum, and the smaller is the effect of solvent forces
on its motion.

Thus, although massive particles move slowly on the
average they have so much inertia that they continue
along the same path for a longer time than light par-
ticles. The net effect is that in a time ¢, massive par-
ticles will move the same distance as light particles.
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