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Simple analytical forms for the orientation dependence of the potential between two molecules are
derived from a Gaussian overlap model. Orientation-dependent range and energy parameters are determined,
which can be used with any two-parameter atomic potential to give simple and reasonable polyatomic

potentials.

INTRODUCTION

Until recently, an accurate intermolecular potential
for any system with a respectable complement of elec-
trons was just a gleam in the theorist’s eye, or a non-
committal “V” on his paper. Accordingly, statistical
mechanical studies were done with model potentials.!
The structure and dynamics of monatomic solids or
fluids were calculated on the basis of simple, convenient,
and “reasonable” pair potentials, and often enough the
results were surprisingly good; for example, molecular
dynamics studies have shown that the Lennard-Jones
(12-6) potential accounts quite adequately for the
thermodynamic and transport properties of liquid
argon.? Even cruder model potentials have been used
to explore fundamental questions of statistical mechan-
ics, concerning ergodicity, the nature of phase transi-
tions, the long-time behavior of correlation functions,
and so on.

A good model potential, then, is a useful object. The
potential must have two characteristics: It must be
mathematically simple, involving only functions which
are easy to calculate; and it must not violate too
strongly our sense of what is physically correct. As our
ignorance recedes, of course, it becomes more difficult
to satisfy both criteria; however, short range inter-
actions of polyatomic molecules are still sufficiently
mysterious that the chief criterion for a good model
potential is simplicity. It is in this spirit that we offer
here a variety of model potentials defined by Gaus-
sians, the functions of choice when one has to work
with many variables. We try to model the repulsive
part of the intermolecular potential—that is, the shape
of the molecule—and Gaussians are sufficiently flex-
ible to represent easily molecules which are spherical
or flat or thin or warped. In the body of the paper we
specify the basic model, discuss special cases, describe
a number of variations on it, and comment on the
relation to other commonly used model potentials for
polyatomic systems.

THE MODEL

We think of a space-filling model of a molecule, con-
structed from the little balls and bonds available from
companies specializing in chemical education. Regarded
under low resolution, as produced for example by

squinting, the molecule may look like an ellipsoid, or
like several ellipsoids partially intersecting one another
(Fig. 1). We shall think of a molecule, then, as a rigid
union of a set of ellipsoids; to simplify the model fur-
ther we shall specify that each ellipsoid is rotationally
symmetric about a principal axis—that is, an ellipsoid
of revolution.

Et

F16. 1. Modeling of ethylbenzene.

Now consider the Gaussian function of a three-
dimensional vector x defined by

G(x)=exp(—x-y':x),
(1)

where u is a unit vector along the principal axis and
| is the unit matrix. The surfaces of constant G are

v=(o)*—cs2)uu+to.?
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F16. 2. Geometry for the overlap model.

ellipsoids of revolution about the u axis, and we can
think of G as representing, in some sense, the distribu-
tion of matter in one of our molecular ellipsoids, the
spatial extent of the distribution being of order 2g
along the principal axis u and of order 2¢. perpendic-
ular to it. With every molecular ellipsoid we associate
the corresponding Gaussian; with every pair of ellip-
soids, one each from adjoining molecules, we associate
a potential of interaction proportional to the mathe-
matical overlap of their Gaussians; and we say that the
total potential between two molecules is the sum of the
pairwise interactions of their respective ellipsoids. We
refer to this as the “overlap model,” or OM, with
apologies to Allen Ginsberg. It is a mathematically
tractable model of the dependence of short-range repul-
sive forces on the shapes of the molecules involved.?
Our problem is to calculate the potential of inter-
action between two ellipsoids of revolution as a func-
tion of the relative orientation of their axial unit vec-
tors uy, u, and of the vector R joining their centers.
Referring to Fig. 2 for the overlap model, we have

V(uy, ug, R)~| y1 [y, [712[dx
X exp[—x-yr - x— (x—~R)-y; 7'+ (x—R)], (2a)

where | y;| denotes the determinant of the range
matrix y; and

(2b)

As with any Gaussian integral, we get the exponen-
tial of a quadratic form, divided by a determinant,

V(uy, uz, R)~| yit+ vz [ exp[—R- (y1+y.)-R]
3)

The dependence on R is entirely in the exponent. For
fixed u; and u, the equipotentials are ellipsoids in R,
with principal axes along the eigenvectors of (yi+vyz).
The shape of these equipotentials depends on the
relative orientation of u; and u,, through the eigen-
values of (y1+7vY:), as does the strength of the poten-
tial, through the determinant | y14v; |.

The overlap model is a five-parameter model: Two
parameters (o, 01) characterize each molecular ellip-
soid, and we need in addition a strength parameter to
define the potential (3) completely. It is clear from
Eq. (3), however, that the overlap model generates

Y:= (G'i| |2—cm.2)uiu,-+au.2l.
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only a four-parameter set of potentials: ¥ is completely
determined by the strength parameter and by the three
parameters—(o112+021%), (o112—0142), (o9 P—021?)—
that define (y1+vs).

It is obvious from Eq. (3) that the potential can
be expressed in the simple form

V(w, e, R)=e(uy, uy) exp[ —RY/o*(us, up, R)], (4)

where e(uy, uz) and o(uy, uy, fl) are angle dependent
strength and range parameters, respectively, and R is
the unit vector in the R direction. In general one calcu-
lates these parameters from Eq. (3) by first finding the
eigenvectors and eigenvalues of (yi1+v¥2). This amounts
to diagonalizing a 2X2, since a vector perpendicular
to u; and u, is automatically an eigenvector of (y1+ ),
and we leave the general calculation to the reader. In
the important special case that the molecular ellipsoids
have identical parallel and perpendicular range param-
eters, we find

€ (u17 u2) = 6[1 _X2 (ul'u2)2]~1/23

0'(111, Uy, ﬁ)

L {(f{-ul+ﬁ~uﬂ)2
=o| 1-3x

[1+x(ur-uy)]

(ii'llr“ﬁ'llz)z} —1/2
[1—x(u1-uz)]
(5a)

where €, o, and x are strength, range, and anisotropy
parameters, respectively. In terms of the range param-
eters o) and ¢1 characterizing each molecular ellipsoid,
we find

o=Vios,  x=(ot—oi?)/ (o1t +as).
Notice that to first order in the anisotropy the poten-
tial depends on R-u; and on R-u; but not on up-uy;
in other words, the potential between weakly aniso-
tropic ellipsoids is virtually unchanged by rotation of
one ellipsoid with respect to the other about the line
joining their centers.

Equations (5) confirm that the strength of the
interaction, which is measured by the overlap of the
molecular ellipsoids when their centers coincide, is a
maximum when the ellipsoidal axes are parallel, and
a minimum when they are perpendicular, as it should
be. We also find from Eq. (3) that the interaction is
most anisotropic when the ellipsoidal axes are parallel,
the equipotentials in R space being ellipsoids of revolu-
tion about the molecular axis with range parameters
V2e|, and V2o.1. The interaction is most isotropic when
the ellipsoidal axes are perpendicular, the equipoten-
tials in R space being ellipsoids of revolution about
u, XU, with range parameters V2o. (along u; Xu,) and
(o*4012)V2 (transverse to Uy Xug).

There is a second special case of Eq. (4) which is
worth discussing: When one or both of the molecular
ellipsoids degenerates to a sphere, we have a model
potential for atom—molecule or atom-atom interactions.

(5b)
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The energy parameter is angle independent. We find
o(u, R) = (c.24a:2)12
X {1=[ (o= 0s2)/ (o1 *+02) J(R-u)?} 2, (6a)
for atom-molecule interactions and
o= (012_|_0.22)1/2

for atom—atom interactions, where a1, o; denote the
atomic range parameters. Notice that for atom-mole-
cule interactions the surface R=¢(u, R) is an ellipsoid
of revolution about the u axis. For atom-molecule
interactions we have a four-parameter model—strength,
a||, 61, oz which generates a three-parameter family of
potentials; for atom-atom interactions we have a
three-parameter model—strength, o1, c;—which gener-
ates a two-parameter family of potentials.

We close this section with a remark on the total
interaction between molecules composed of several
ellipsoids. Here one wants the interaction as a function
of the molecular centers of mass and of the relative
orientation of body-fixed coordinate systems attached
to these centers of mass. This is a simple problem in
vector addition. The distinguished axis of each ellipsoid
and the vector from the center of mass to the center
of each ellipsoid, are both body-fixed vectors. They
have accordingly a definite expansion in a body-fixed
basis attached to the center of mass. We simply sub-
stitute these expansions into the formulas above for
the interaction of two ellipsoids.

(6b)

DISCUSSION

Model potentials have a long history in statistical
mechanics,’*® and ours is by no means the first pro-
posal for modeling anisotropic molecular interactions.
One can make a rough division of models into two
classes, according to whether a geometric or analytic
interpretation is more appropriate. The hard sphere
model of monatomic fluids is the canonical example of a
geometric model; the appealing physical and mathe-
matical simplicity of this model have made it a favorite
for both equilibrium and dynamical studies. For molec-
ular fluids, the spherocylinder, hard ellipsoid, and loaded
and rough sphere models are very much in the same
spirit; the Kihara potential,® although making use of a
Lennard- Jones for distance dependence, also introduces
anisotropy through a fundamentally geometric con-
struction. Unfortunately, the intuitive geometric sim-
plicity of these various models is not matched by
analytic simplicity of the potentials to which they give
rise, and in fact only the loaded and rough sphere
models are at all suited for dynamical calculations.
Our Gaussian potential is also basically geometric in
flavor, yet at the same time sufficiently simple in ana-
lytic form—in particular, susceptible to differentia-
tion—that dynamical calculations with it should pre-
sent no problem.
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An intuitive geometric interpretation is sacrificed in
the second class of model potentials, where one starts
with the observation that a general anisotropic poten-
tial can be expanded in Wigner rotation matrices, with
expansion coefficients that are functions of the separa-
tion between the centers of mass of the molecules.
Model potentials are generated by truncating the ex-
pansion and assuming functional forms for the coeffi-
cients. There are two difficulties with this approach.
First, it is difficult to visualize the change in the shape
of the potential which one produces by changing a
given expansion parameter. Second, if the potential
between two polyatomics is represented even roughly
by a sum of pairwise interactions between the constit-
uent atoms, one anticipates that many terms will be
needed to give an adequate representation of the poten-
tial between distinctly anisotropic molecules: Roughly,
the greater the spread in force centers, the more slowly
convergent will be the expansion in Wigner matrices.
These model potentials, therefore, should be used pri-
marily for weakly anisotropic molecules. The Gaussian
model above, on the other hand, can represent with
equal ease the nearly spherical and the extremely
anisotropic.

We end with a suggestion for increasing substantially
the flexibility of the Gaussian model. The model was
devised primarily to give simple expressions for the
orientation dependence of molecular interactions; it is
not expected to mimic closely the distance dependence
of realistic potentials. However, as we see from Eq. (4),
every Gaussian potential is characterized by orienta-
tion-dependent strength and range parameters. This
suggests that we simply use these expressions in any
two-parameter atomic potential, such as a Lennard-
Jones (12, 6), obtaining a simple intermolecular poten-
tial with what is, presumably, a more realistic distance
dependence,

V(u, e, R)=e(uy, 43)$[R/o (1, u, R)].  (7)

This approach recalls a suggestion made by Corner?
several years ago. Corner proposed a potential between
linear molecules in which force centers placed along the
molecular axis of one molecule interact through Len-
nard-Jones (12, 6) potentials with force centers on the
axis of the other molecule. One gets a complicated super-
position of potentials; to simplify the mess, Corner
numerically fit it to a single Lennard-Jones (12, 6)
potential, obtaining angle-dependent range and energy
parameters. OQur approach is much simpler in that it
gives analytical—not numerical—formulas for these
parameters, and our anisotropy parameter can be
readily varied, making possible the study of varying
degrees of anisotropy without necessitating a new nu-
merical computation for each case.

We believe that the Gaussian model should prove
very useful for molecular dynamics and for Monte
Carlo studies of liquid crystals, the Kerr effect, and
other fluid manifestations of molecular anisotropy.
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Argon-ion laser Raman spectra have been recorded photoelectrically from a 10 volume 9, solution of
T,0 in Hz0 at temperatures from 26 to 94°C and from a 3.6M ternary solution of NaClO; in 5 volume
% T:0 in H,O at 25°C. Laser-Raman spectra were also obtained from a 10 volume %, solution of H,Q
in DyO at temperatures from ~23 to 96°C. At 26°C, a Raman intensity maximum was observed in the
OT stretching region from HTO near A7=213045 cm™, and a shoulder was apparent near Ap=2225-
2250 cm™. An jsosbestic frequency was also indicated for HTO near As=2164+47 cm™! from 26 to 70°C
and for HDO near 3450 cm™ from ~23 to 63°C. The shapes of the OT and OH stretching contours from
HTO and HDO were approximated by two broad Gaussian components using an analog computer, and the
resulting plots of logre (Inus/IuB) vs 1/T, where I ngp refers to the high-frequency nonhydrogen-bonded
Gaussian component intensity (the shoulder), and I'yp refers to the low-frequency hydrogen-bonded
intensity (the peak), were characterized by values of about 2.54-0.2 kcal /mole OTO and 2.24-0.3 kcal /mole
OHO in resonable agreement with a previous two-Gaussian value of 2.5+0.6 kcal /mole ODO. Two pro-
nounced intensity maxima were also observed in the OT stretching region from the ternary NaClQ, solution
near Ap=2150+435 cm™ and A5=22254+5 cm™! in general support of the two-Gaussian analysis of the binary
solution stretching contours. The AH® values corresponding to the disruption of O-T++-0, O-D- -0, and
O-H- - -0 bonds agree despite the facts that the three contour shapes are different and that the nonhydrogen-
bonded OT stretching component is, relative to the hydrogen-bonded component, roughly 2 times more
intense than the corresponding OD and OH components. The value of ~2.5 kcal /mole hydrogen bond
was also found to agree with numerous other experimental AH® values, as well as with a recent value from
molecular dynamics calculations.

INTRODUCTION of value in several respects. The intramolecular vibra-

tional coupling between OT and OH stretching vibra-

Raman spectral investigations of solutions of HDO
in HyO at temperatures from 16 to 97°C12 and of
HDO in D,O 3* have been conducted, and the studies
have been extended to include effects of electrolytes®®
and of pressure.®” In addition, stimulated Raman
spectra from solutions containing HDO have been
obtained.®® Raman spectral investigations of solutions
of HTO in H;0, however, have not been reported,
although information relating to the fundamental
vibrations of gaseous HTO, DTO, and T,;0 is. avail-
able from infrared studies,®!! see also Refs. 12 and 13.

Raman data from solutions of HTO in H,0 are

tions is minimal for HTO, and thus intermolecular
interactions at the OT or OH groups should be more
distinct spectroscopically. Some experimental advan-
tages should also result from the greater frequency
separation of the OT and OH stretching vibrations.
In addition, experience with HDO 7 suggests that
the hydrogen-bonded OT stretching components should
be narrower than those corresponding to the OD and
OH vibrations. Narrowing of the hydrogen-bonded
OT stretching component would tend to make certain
spectral features more pronounced relative to HDO,
and this expectation was verified by the observation
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