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It is shown that the angular velocity autocorrelation function for symmetric top molecules can in
principle be determined from infrared and Raman band shapes, and from thermal neutron scattering
when the molecular tumbling rate is slow compared with the relaxation of angular momentum. The
theory is compared with molecular dynamics studies on a liquid crystal and an isotropic liquid.

INTRODUCTION

The infrared and Raman spectra of a symmetric
top molecule are related to the orientational dy-
namics of the molecule.? If u is the unit vector
specifying the orientation of the top axis, then

Bw)= = | dte ! B fulo) - u(n]) 1)

w©

are respectively for /=1 and 2 the normalized line
shapes of the infrared and Raman spectra. P,(x)
is the /th order Legendre polynomial,

In this short note we shall show that

(0,(0)  w, () =2[1@+ D] [*7 dwe'™* 1, (w),
- @)

where w,(f) is the component of the angular velocity
w(t) perpendicular to the initial orientation of the
top axis, u(o). This formula is derived under the
condition that u(#) changes very little on the time
scale characterizing the decay of w(t). This con-
dition should be met in a variety of liquid systems.
It is then possible by measuring «’I,(w) spectro-
scopically to determine the angular velocity cor-
relation function, a property that would otherwise
be very difficult to measure,

In addition to deriving Eq. (2) we show in the ap-
pendix how incoherent and coherent neutron scatter-
ing can also be used to determine the angular velo-
city autocorrelation functions.

Anderson and Ullman® have used orientational
relaxation measurements to study angular velocity
correlations in a variety of experimental systems.
Their discussion relates {(w(0)- w(t)) specifically
to the dipolar orientation correlation function
(cos8,(t)cosb,(t + 7)), where 6, is the angle between
the ith molecular dipole and an external field,
Furthermore, their discussion assumes that the
three cartesian components of the angular velocity
decay at identical rates. However, in many sys-
tems of physical interest (e.g., liquid crystals),
it is to be expected that the component of w paral-
lel to u will decay on a time scale far different

4486

from the other components of w, The present dis-
cussion allows for this anisotropy.

Litovitz et al.® use Eq. (2) to deduce from their
experiments the angular velocity correlation func-
tion.

Molecular dynamics studies of a liquid crystal
and an isotropic liquid confirm Eq. (2). This gives
us confidence that the angular velocity correlation
function can be measured in this manner.

THE DERIVATION OF EQ. (2)

It should be noted that the Fourier transform of
the function

U, ()= (= d#/at?)(p,[ul0) - u(t)]) 3)

is the measurable quantity

wzz,(w)ﬁl; fmdte"“‘¢,(t). (4)

From the definition of ¢,(¢), the spherical har-
monic addition theorem, and the Hermitian prop-
erty of the Liouville operator, it is easy to show
that

47
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where u is the initial orientation of the symmetric
top axis, and where [Y,,(u)] are the normalized
spherical harmonics. The operator iL={ , H} has
the property that

i“ [iLY,,,,(u)]*e‘“[iLY,,,,(u)]> , (5)

maal

iLY, (W)=iw 17, (W), (6)

where w is the angular velocity and 1 is the angular
momentum opérator [ - {(uxv,)]:

Py, (w)=11+1)Y,,(),

Iz Ylm(u)= m Ylm(u)-

1t is clear that any rotation about an axis parallel
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to u should produce no change in Y,,, (1) so that
u-1v,, () =0, 7
This enables us to write Eq. (6) as
iLY,, W) =iw,- 17, (8)

where w, is the component of @ perpendicular to u.
[w,=w- (u- wlu]. The operator ¢'** has the effect
of displacing its operand to time ¢. Substitution
of Eq. (8) into Eq. (5) yields

0)=( wi(o)wi(t){szl 5 e

X[I! Ylm(u‘)]}> 3 (9)

where 7 and j denote the cartesian components and
repeated indices indicate summation.

If we now assume that u(¢) varies very slowly
compared to w(t), it is permissible to replace u(z)
by u(0) in Eq, (9)

I
by () = <wi(0)w{(t){ 2?: i 2 (LY, ¥, Y,,,,(u)]}> .
mest (10)
This function can be evaluated by first calculating
the conditional average

(wi(0)wi(t)),,

where the subscript indicates that the average is
done in an ensemble for which u(0) is fixed at u.
This function is a second rank symmetric tensor.
By symmetry this tensor can be written as

(Wh(0)wi @), = a®)s,; + b()ugu; - % 6] (11)

The trace of the tensor gives
a(t)=4% (w,(0) « w,(t),,
whereas the scalar product with u;u; gives

wf2) +% b(t)= <[u . wl(O)][u . w],(t)pu =0,

wherethe zero follows from the fact that [u . w,(0)]=0.

Substituting of Eq. (11) into Eq. (10) then yields
5©=(30,0)- wL(t){[41r/(21 SIS (L2, @]
i),

Because I is an Hermitian operator, this formula
canbe further evaluated interms of I12¥; {u), sothat

¥, () =11 + 1)/2]<w1(o) . wl(t){[‘lw/ @1+1)]

X Y}“,,,(u)Y,,,,(u)}>

which reduces to

D ()= [2Q + 1)/2 )0, (0) - 0, (2))

=1 +1)/2)w(0) * w(2) - [u- w(o)][u- w()].
(12)

[4n/@1+ 1] 2 ¥, (WAY,,(0)=10+1)P,(1)=1(1 + 1).

[The term in curly brackets is where P,(1) follows
from the spherical harmonic addition theorem. |
Substitution of this equation into Eq. (4) followed by
an inverse Fourier transform proves Eq. (2).

COMPARISON OF THEORY WITH MOLECULAR DYNAMICS

Two molecular dynamics? simulations were car-
ried out for 256 molecules with cylindrical sym-
metry. Each molecule was envisioned as an el-
lipsoid of revolution with a major to minor axis
ratio of 3.5. The interaction potential was taken to
be of the pairwise additive Lennard-Jones (12-6)
form. For each bimolecular interaction, the
Lennard-Jones o and € characterizing the interac-
tion were dependent upon the relative orientation of
the two molecules, and were calculated using a
Gaussian overlap model discussed elsewhere, ®

For discussion purposes, a value of unity may
be assigned to the molecular mass, a scaled L-J
o, and a scaled L-J €. All other dimensions may
be expressed in terms of these reduced quantities.

A Runge-Kutta—-Gill procedure was used to in-
tegrate the equations of motion of the system with
a reduced time increment of 5x10%. In one cal-
culation, the initial conditions and equilibration
procedure set a reduced temperature of 0. 75, a
reduced number density of 0.29, and induced a
partial alignment of the molecules along a space
fixed direction. The phase space trajectory was
followed for 600 time steps (after equilibration),
during which the system was found to maintain its
orientational anisotropy. A more detailed study
showed that this system is a nematic liquid crystal.
The second calculation simulated an orientationally
disordered system with a number density of 0. 20
and a temperature of 1.00. The phase space
evolution of this system was also followed for 600
time steps.

Figure 1 shows (P,[u(0)-u(t)]) evaluated from the
molecular dynamics data described above, for
[=1and 2, Comparison with Fig. 2 shows that
u(t) changes very little in the time during which
w,(¢) decays. Therefore, these systems satisfy the
assumption made in Eq. (10), Plots of

- [2/1( + D)(@®/di?)KP,[ulo0) - u(t)])

are also shown in Fig. 2 for /=1 and 2; these func-
tions agree very closely with (w,(0) - w,(#)) for both
the nematic and isotropic liquids. Thus, the re-
lationship expressed by Eq. (2) is borne out by
these molecular dynamics calculations.
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It appears that infrared absorption spectroscopy,
depolarized vibrational Raman scattering, pure -6
rotational Raman scattering, and thermal neutron 12
scattering experiments can be used to determine w 0.8 C C
the angular velocity relaxation in dense systems ;, o4l - C
where the rotational motions are hindered. This > o -
conclusion is supported by molecular dynamics g ©° L C L
studies on anisotropic liquids. Moreover, this 'g -04r \/J - \// - w
idea has been used by Litovitz et al.® to determine 2 -08l - :
(w,(0)+w,(t)) (by experiment) and by Anderson and - - -
Ullman® to calculate relaxation times for angular 2 r C
velocity correlations. Angular velocity fluctua- -ler B C
tions may play a very important role in molecular -2.0F o -
reorientation processes in dense media. Zwanzig —2al L r Ly N L
and Nee® on the basis of a stochastic Liouville 3.3
equation, and Harp and Berne' on the basis of 3.0 d e f
molecular dynamics have suggested that the angular 24
velocity correlation function can be regarded as a
the memory function of the orientational correla- 1.8~ = B
tion functions (P;[u(o) -u(f)]). It would be interest- 12 - N
ing to pursue this idea using an experimentally w - - -
determined {w,(0) - w,(z)). g o6 i C
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APPENDIX: THERMAL NEUTRON SCATTERING

In this section we consider thermal neutron
scattering from an idealized solution in which:

(a) The solute molecules are rigid symmetric

{wylo} *w, (@), for a nematic liquid, where w,(f) = w(t)

—[w(® ~u©)]u(d. ) — @/dt*) {(Pilulo) ~ul®)]), for a
nematic liquid. (c) — (1/3)(d*/dt?) (Pylu(o) *u@)] ), for a
nematic liquid. (d) Same as (a), but for an isotropic liquid.
(e) Same as (b), for an isotropic liquid. (f) Same as (c),
but for an isotropic liquid.
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tops with principle axis u.

(b) The solution is sufficiently dilute that the so-
lute molecules scatter neutrons independently.

(c) The scattering from the molecules can be
separated from the scattering from the solvent
either for dynamic reasons or by virtue of the fact
that the solvent, by design, is a weak scatterer,

or relaxes on a different time scale then the solute.

Under these conditions it can be shown that the
differential scattering cross section (@%0/dedS)
for thermal neutrons is determined solely by the
temporal Fourier transform of the intermediate
scattering function®

F(k, t) :<E Z; Ol: aBe-{k-Ra (O)eik-RB(t)>, (Al)
a B

where o, and R,(t) are, respectively the scattering
lengths and positions of the fth nucleus, and the
sum goes over all nuclei in the molecule.

In an isotropic liquid it is a simple matter to
show that

clt)=~ {lim k2 (k, t)}

<Z aXaV,(0)- V,,(t)> (A2)

where V,(t) is the linear velocity of nucleus B at
time t. Small angle neutron scattering therefore
gives C(t). [What is deterimined is

lim (0w?/£?)S(kw)
k-0

which is the Fourier transform of Eq. (A2).]
Itis easy to see that Eq. (A2) canbe expressed as
c(t)=2 N,I,C,()+2i N,N,1L,,C,,. (), (A3)
14 viu
where v, u are labels for the vth and pth nuclei of
which there are N, and N, respectively in a mole-

cule. The coefficients I, and I,, are proportional
to the incoherent and coherent cross-sections

L={a|%-]|{a)|?
L, ={afa,

where ¢, is the scattering length of nuclei v. The
functions C,(t) and C,,(t) are

(A4)

cﬁﬁ{i P Vo) V,0)

C,ul®)= ( vz va(o)>- (NL z Va(t)>>

The position of nucleus a, R*, can be expressed
as

(A5)

R*(t)=R{t)+ r* (),

where R{¢) is the center of mass (COM) position
of the molecule and r*(¢) is the relative position of
the nucleus a in the molecule. It follows that the
linear velocity of the molecule is

V, (6)=V{t)+ w(t)xr* (1), (A6)

where V(z) is the velocity of the COM and w(f) is
the angular velocity of the molecule about its
COM. The second term follows from the equation
of motion (r*=wxr®). Substitution of Eq. (A86) into
Eq. (A5) together with the assumption that the
COM and relative motions of the molecule are in-
dependent, yields

Co ()= Yeom ) + 970, 1),
( Z11)(:om(t)+zpl.el(t)
where

Ivbcom(t) = <V(0) * V(t)),

(AT

(A8a)

Wor ()= (w; (o) {rl0os- 2 (¢)5,; — v, ()7, (0} 0, (2D,

(A8b)
Pt ) = (o, (0){r(0) - x5, 7 (1) 77 ()} w, 8,
(A8c)
where
Nv
7, (thr;(0) = FV—V ?1 ri@)rilo
» 2 (P)r * o) = —_— 0
7" ()r;*(0) l:Nv O‘Z;u r,(t)] [Nu :ﬁ 75 )]
In the limit of slow rotations
7 (Or; (0 27, (0)r; O = {r;7),,
(A9)

7 ()7, (0)* 27 (0¥ 7, (0)4 = (r ) (7)) e
Now in a symmetric top molecule we expect that
rov=ru, (A10a)
(Al0b)

where v, measures the assymmetry of the distri-
bution of the nuclei » along the principle axis u.
Only if the distribution is completely symmetric
about the COM, will v, be zero. The coefficients
a, and b, are found by contraction to be

a'u:% <yz>w
=3 32°-rD),.

These are like the independent elements of the mass
quadrupole tensor. It thus follows that

P (B) = & %+ 2% (@,(0) 0, (1)
+{® = 2N (w,(0) - w, (1), (A12a)
v @) =77, (@, (0)- w (). (A12b)
Combining Egs. (A3), (A8), and (A12) then gives

(rivy), = @,y + b, [usu, - 5 645}

(A11)
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C(t) = A o (8) + B(w,(0) * w, (1))
+ C{w, (0) + w, (), (A13)
where the coefficients are

A=2 NJ,+2. N,N,,,
v Vi

B=20 [NLG 0% +2%),]+ 2 NN, 77,
v vie

C EZ Nv-[v«'ra - Zz»,,.

It is usually true in a liquid that the relaxation
time for y,,,(t) is much longer than the relaxation
time of the components of the angular velocity. In
this eventuality it should be possible to separate
the contribution of ,,,(#) from Eq. (A13),

Equation (A13) simplifies considerably in several
cases:

(a) Spherical molecules: 7,=0, (3, =3(2,,
Yoo (8) =3 %), (wl0) - w(t)).

(b) Symmetric mass distribution along z.
Peay () =0,

(c) Linear molecule: %, =(y%,=0; 3, ={,,
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d):el(t) = <7’2>u<w1.(0) : wJ.(t»?
d)::] (t) = ,rllru<wl(0) . wl(t»o

(d) Planar molecule (disc).
Weoy (1) = D, {2 (@,(0) » 0, (1) + (w, (0w, ()},
YE =0,

rel

Thus for slow molecular reorientations neutron
scattering should be useful for finding the angular
velocity correlation function. It is not difficult to
work out other variations of the procedure,
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