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The effect of long range Coulomb and dipolar forces on the collective tumbling of rigid linear
dipoles is considered. It is shown that the Debye relaxation times are modified by the presence of
these long range forces in important ways. Explicit expressions for these relaxation times are derived
for polar and electrolyte solutions. It is shwon that for dense solutions there are significant deviations

from the Debye semicircle in the Cole—~Cole plot.

. INTRODUCTION

The problem of orientational -relaxation in fluids has
received much attention in the recent literature, not only
because it is intrinsically interesting but also because
there are applications of fluctuation spectroscopy where
it is important to know how the orientational dynamics
are reflected in the observed spectrum. The simplest
model of orientational relaxation is that of rotational dif-
fusion first proposed by Debye.! In this model each rig-
id molecule diffuses independently. The question im-
mediately arises as to whether the presence of long
range forces such as Coulomb, or dipolar forces would
effect the results of the Debye theory. 1In this case each
molecule not only experiences the usual frictional forces
which give rise to a “diffusion equation,” but also must
respond to the local electric field which arises from the
permanent multiple moments on the neighboring mole-
cules. In this paper we include these added forces and
torques in a generalized diffusion equation and solve this
equation self-consistently with the Poisson equation.

[In a sense our calculation is similar in spirit (but quite
different in detail) to the lattice model proposed by
Zwanzig? and studied recently in great detail by Cole.?]

In this paper the question of Debye relaxation is con-
sidered in the context of dielectric relaxation. Recent-
ly Fatuzzo and Mason* have shown that the autocorrela-
tion function of the net dipole moment of a sphere em-
bedded in a medium of the same dielectric constant (as
the sphere) is related to the frequency dependent dielec-
tric constant as

L [.@] _[e(w) - 1[2¢(w) + 1],
at - Fo—l][2€0+1]€(w) ’

where ¢(¢) is the normalized dipole moment autocorre-
lation function

(Dgug Ba0) = s (2))
(124 201

L denotes a Laplace transform, and €(w) and ¢, are,
respectively, the frequency dependent and static dielec-
tric constant of the medium [¢;=¢€(0)]. The controversy
surrounding Eq. (1.1) has recently been resolved by
Titular and Deutch® in a comprehensive review of the
problem,

(1.1)

(1.2)

()=

Further progress can be achieved only if ¢(¢) is cal-
culated. In this paper we seek to generalize Debye’s
original calculation of ¢(¢) by including long range di-
polar forces on the dynamics of the dipoles. For sim-
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plicity the treatment is restricted to nonpolarizable rig-
id linear molecules with dipole moment p parallel to
the molecular axis. We shall indicate how this model
can be generalized later. We are guided in our initial
formulation by the literature on electrolyte solutions.®

In this paper expressions are derived for the autocor-
relation functions

Ciml@,1)= <Z e Oy I (u,(0)
X;eiq.rﬁ(t) th(us(t ))>’

where {Y,,(u)} are the spherical harmonics of rank / and
projection m. The correlation function ¢(#) required for
dielectric relaxation is then

(1.3)

5() =11 E'lm-x Cinmlq,?)
=lim ———

a0

. (1.4)
E:;-:-l C!m(qvo)

It is found that when dipolar forces are taken into ac-
count ¢(¢) decays on two different time scales specified
by the relaxation times

7,=(2Dg)*,
7,=(2(1 + )Dg)?',

(1.5a)

(1.5b)

where Dy is the rotational diffusion coefficient, and
x=(41/3KpT) 12p,. (1. 5¢)

" The model is extended to binary solutions containing
two polar components and to dipolar relaxation in an
electrolyte solution. As far as we know, the results of
this model are new. Titular and Deutch® also find two
relaxation times in a single component polar fluid on the
basis of a totally different model. Tt remains to be seen
how these two calculations relate to each other.

Il. THE SELF CONSISTENT ROTATIONAL
DIFFUSION EQUATION

In the usual treatment of a fluid containing rigid linear
molecules, the starting point is the “diffusion equation”

aC/at =DpVEC+DVEC,

where Dy and Dy are, respectively, the translational and
the rotational diffusion coefficients, V_ is the gradient
operator on the space (x, y, z), and V, is the rotation
operator’ V,=ux8/su. In this equation C(r,u, #)d%ud’»
is the number of molecules with orientation u in the sol-
id angle d%u and center of mass in the neighborhood d3y

Copyright © 1975 American Institute of Physics

Downloaded 01 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Bruce J. Berne: Theory of rotational diffusion 1155

of the point r at time #. The microscopic definition of

Cis
N
Clr,u,1)= 2 6 - 1(1))o 0 ~ (1)) (2.1)
8=1
where r,(¢) and u,(¢) are, respectively, the position and
orientation of molecule 8 at time # and the sum goes

over all the molecules. The average value of C is (1/
4m)p,, where p, is the number density of the fluid.

Among the approximations made in deriving the dif-
fusion equation are the neglect of inertial terms, and
memory effects., The rotational and translational dif-
fusion coefficients are assumed to contain multipolar
friction terms of which the dielectric friction discussed
by Zwanzig and Nee® is an example. It should not be too
difficult to include memory effects in these equations,
but we choose to consider this simple model for its ped-
agogical value, Strictly speaking the translational dif-
fusion coefficient of a linear molecule is anisotropic.
We shall ignore this anisotropy since it will not change
any of the important conclusions. '

If the linear molecules have permanent multipole mo-
ments the above equation requires modification. Long
range forces and torques then arise because of long
range Coulomb forces between the charge distributions
on different molecules. In order to include these forces
we propose to use the “forced diffusion equation” which
has been used so effectively in the theory of electrolyte
solutions:

8C/8t == BD;V, -(FC)~ DY, - (NC)+ D, VEC+DyV2C,

(2.2)
where B is (K3 7)™, where K, is Boltzmann’s constant
and T is the absolute temperature. The force and
torque F(r,¢) and N(r,¢) acting on a molecule at (r,¢)
arise from the Coulomb interactions between the mole-
cules and can thus be expressed as

Fir, )= f dsZ(s)E(r + su) (2. 3a)

N(r,t)=fdsZ(s)su><E(r+su) . (2. 3b)
To arrive at Eqs. (2.3a) and (2. 3b), consider the linear
molecule centered at r with orientation u and let (r + su)
be the position a distance s from the molecular center
along the molecular axis. Then E(r + su) is the electric
field at this point due to all charges in the system. Now
let Z(s)ds be the charge on the molecule in the neighbor-
hood ds of the point s; that is, Z(s) is the linear charge
density. It is obvious that dsZ(s)E(r + su) is the electric
force exerted on this charge by the surrounding fluid.
Likewise suXdsZ(s)E(r + su) is the corresponding torque.
Equations (2. 3a) and (2. 3b) simply result from a sum-
mation of these terms over the length of the molecule.

To make Egs. (2.2) and (2. 3) self-consistent we shall

eventually make use of the Poisson equation
V,-E(r,t)=—V§¢(r,t)=41rp(r,t), (2-4)

where p(r,t) is the charge density and ¢(r,¢) is the elec-
trostatic potential at r, ¢.

The charge density is clearly

p(r,t)=zz Z,5(r —r,(t) - s;us(t)) (2.5)

B Jeh
where the sum first goes over the charges Z; on mole-
cule B and then over all the molecules in the system.
After some manipulation it is found that

ple, )= [ dszs) [’ [aso - x- s,
(2.86)
where Eq. (2.1) has been used in addition to the defini-

tion of the molecular charge density Z(s)=3,Z,5(s - s,).
This formula is easily verified by substitution of

Eq. (2.1) for C(x, «/, ?).

From Egs. (2.3), (2.4), and {2. 6) it follows that ¢,
and correspondingly F and N, are linear functionals of
C, so that Eq. (2.1) is a nonlinear equation in C, In the
following simple treatment we shall linearize Eq. (2.2)
in C because we are interested only in small fluctua-
tions,9 and we shall use Eq. (2.4) to express N and F in
terms of C,

The final equation is now obtained by the following
steps.

(a) Linearizing Eq. (2.2); that is, replacing V, -(FC)
and v, . (NC) by C,V, «F and CyV, -N, respectively, gives

8C/8t = — BD;Co%, +F - BDCV, N+ D VEC+ DV EC.
2.7m
(b) Fourier transforming the resulting linearized equa-
tion with respect to the spatial variable r, where

pla, 1) Efdsr evTplr,t),

clq, u,t) Efdsrei"'c(r,u,t)

(2.8)
(2.9)

are, respectively, the spatial Fourier transforms of
plr,t) and C(r,u,t).

(c) Substituting the spatial Fourier transforms of Eqs.
(2.3), (2.4), (2.5), and (2. 8) into the equation resulting
from steps {(a) and (b). This gives a linear equation for
cla,u,t).

(d) C(q, u,?) is now expanded in the spherical harmon-
ics {Y, (W}:

C@,1)= 2 amnl@, ) ¥ §, @), (2. 10a)
im
where the coefficient g;,, is obviously
am(@,0)= [ a2y, @)cQu,t) . (2. 10b)

Substitution of Eq. (2.1) into Eq. (2.10b) then gives

am(@,2) =2 e T Y, (u,(t)) 2. 10¢)
8

Thus the correlation functions defined in Eq. (1. 3) are

simply

Cin(a,t) = {a1n(2,0)a;,(a,2))

Consequently what is required are the quantities ay,,(g,t).
These are found by substituting Eq. (2.10a) into the
equation resulting from step (c). When the scalar prod-
uct of the resulting equation with ¥,,(u) is evaluated it

is found that!® '

2.11)
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ga_lé"ticbt_) +7(@laimla,t)=- JZK: Tie(@asla,t) , (2.12)
where
7(q)=[q®Dr + 101 +1)Dy] (2.13a)
T/7(q) = (4m?iY"P Bpgy, (q)
X[Q1@QAa)/ %] Y 1nl@) Y0k (@) 5 (2.13b)
QA0 = [ asz(s)i.gs) (2.13¢)

where § is a unit vector parallel to q, j,(gs) is a Bessel
function of order I, and Q,(q) is a “multipole-moment”
generating function, Equation (2.12) is the primary
equation of this section.

It would thus appear that a,,{(g,?) is coupled to many
other coefficients (JK).

A considerable simplification results in the “g—~0
limit.” In this case the following should be noted:

@lg)=0, (2.14a)
Q;(g)—(const) ¢’ (2.14b)
q~0
Q(g)—31uq, (2. 14c)
q-0
where p is the “dipole moment”
u= [dsz(s)s . 2.15)

Equation (2. 14a) follows because the molecules are as-
sumed to have no net charge; that is [dsZ(s)=0. Equa-
tion (2. 14b) follows from the property of the Bessel
functions that j,(x)~ x' as x—0. Therefore as g— 0 the
coefficient which is lowest order in g is @,(g), and it
follows that

T};‘(Q) (‘S‘”)aﬁﬂ- Po%Y1,,,(q)Y (4)5115.”'*'0((12)

The solution is further simplified without loss of gen-
erality if q is taken parallel to the Z axis. Then Y,,,(0,0)
=(3/4m)/%5,, o and

(2.16)

T 7% (q) = 1%8 118 7 10 modro » (2.17a)
where
r=47pulp, . (2.17b)

Equation (2.12) then reduces to the simple form

BBt (1461,10m, N Viinlast) 5 (2.18)
with the solution

Wm(51) = A1n(q;0) €Xp = [L +8, 18, AIME - (2.19a)
Thus the correlation functions [Eq. (1.3)] are®*

Conl@,t) = | arm(@)F) exp ~[1+6; 15, A7t ,  (2.10b)

and the dipole correlation function of Eq. (1.4) is
O(2) = 2(2 e2PRE 4 o (1*V2DREY (2.19¢)

In deriving Eq. (2.19c) weused the factthat ¥, ~ I(/+1)Dp
as g=0 and (g 12)=agu!?).

It is important to note that in the absence of a net
molecular charge, the only multipole moment that con-
tributes to the orientational relaxation in the ¢ -0 limit
is the dipole moment. This should not be surprising
since only the dipolar potential is sufficiently long
ranged. What is surprising is that these forces only af-
fect the rank /=1 correlation functions. This is be-
cause the equation has been linearized. The major con-
clusion is that there are two different “Debye relaxa-
tion” times which are given by Eq. (1.5). We shall re-
turn to the ramifications of this later.

It should be noted that the “transverse” dipolar corre-
lations are given by C,,,(g,¢) and the “longitudinal” di-
polar correlations are given by Cyy(q,7). Thus the two
correlation times 7, =(2D,)" and 7,=(2(1 +1)Dg)™! that
appear in Eq. (2.19c¢) give the decay of the transverse
and longitudinal fluctuations, respectively.

1l. ROTATIONAL RELAXATION IN MIXTURES

Let C,{r,u,¢?) denote the density of molecules of com-
ponent ; at (r,u,#). As before this density satisfies the
linearized forced diffusion equation

3¢, /ot =~ BCY[DF(V - F,) + DYV, -N,]

+DIPVEC+DYVE ¢y, (3.1)

where Dy’ and DY’ are the translational and rotational
diffusion coefficients of component 7.

Proceeding as in the last section we obtain the gener-
al equation for a mixture

sailg. ¢
maﬁq, )+‘y,”(q)a(”(q,t)

=20 2 T (iv)al(a,t)
v JK

(3.2)
where

79 =[q2D8 + 11+ 1)DY] , (3. 3a)

{i)% {(v)
T Fiiv) = (4m)i 9 gp, 4P (q) & (q)Q’ (q) Y (@)Y 14(2)

W)= [ dsz(s)irlas) - (3. 3¢)

In these equations Z,(s) is the charge density on a mole-
cule of type v and p; is the number concentration of com-
ponent . These equations are easily specialized.

We choose to consider only the simplest cases of po-
lar and electrolyte solutions here. In all that follows
only the g— 0 limit is considered. Moreover without
loss of generality q is taken parallel to the z axis.

1IV. BINARY MIXTURE OF POLAR MOLECULES

In this section we consider the orientational correla-
tion functions in a fluid mixture composed of two kinds
of linear molecules denoted 1 and 2 with different dipole
moments u, and y,. In this case it is easy to show

from Eq. (3. 3b) that for 4, v=1,2

T35 @) = %" XiyBim, 100,10 » (4. 1a)
where

Ny =370kl (4.1b)

and where in the g~ 0 limit
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¥ —1(1+1)DY .
a-0

4.1¢)

Combining Eqs. (4.1) and (3. 2) it is seen that the co-
efficients a{f) for I+1 evolve just as predicted from the
usual Debye theory; that is, they are unaffected by the
long range forces. The coefficients i} and ¥, on
the other hand, are coupled by the dipolar forces. The
equations that result from substituting Eq. (4.1) into
Eq. {3.5) can be expressed as the matrix equation

9a,,/8t =-M.2,,, (4. 2a)

where 8,4 is a column matrix

[(s, + (1 + 732)% )aiy -N)gafy]

ay(t) = (s,-s.) [- 7% 7‘21“{(1!)

The other coefficients are

aii(0)e™?

a,,(2)= a®) ezt s (4. 3b)
where the roots are
$2= = 3L+ 2% + (1 +2g9) 7]
27 {{(L+2)7 = (L4 20) %P + 400, 7) (070) 1 /2 @ 30)
. 3¢

Now the correlation function required for dielectric re-
laxation is

o(1)= }; i)/ Z 10), (4.4)

where

Unlt)= Zu,<a“’ ©)al? (¢t Wy, (4. 5)

The static correlation coefficients are defined as

Galiv) = @2 (0)a (o>>:<Z ) Y,’;(ua)y,mma)). 4.6)

aei Bei

These are real numbers.
Now from the preceding

ll)n(t)=2 [z “ictl(iv)“u] emroltl 4.7)

These functions behave in the manner specified by

It is clear that G,(iv) = GX(vi).

Debye. ,(¢) however decays in a more complicated
manner, In fact

%(1)— ( {d) es+lt| _ d) es- ltl} (4. 88.)
where

U= [B1Go(1,1)(s,+ (1 + Aga)7p) + 13G(2, 2) (s, + (1 + 2 yy)7y)
= 1 HGo(1,2) 105 — B 11Gy(2,1) % Ny] (4. 8b)

From Eq. (4. 3c) it can be seen that the decay constants
s, are very complicated and involve the ordinary Debye
decay rates in a complicated manner.

In the event that molecule 1 is considerably larger
than 2 and has a larger dipole moment (that is y, <7,

+ (S+ +{1+ A11)')’1)‘1{(2))]

aiy’ (0,)

20002 i0,1)

and M is a 2X2 matrixwhich we call the relaxation matrix

(4. 2b)

1+ 2% A
M- 11N 12 (4. 2¢)
Ay (1 +25)72
where
y, = (1) 2D(1) ' (4. 2d)

Equation (4.2a) can be easily solved subject to the ini-
tial conditions. In matrix form the solution of this equa-

tion is
, 1 [s.+ (L +255)%p)aly) - N\aid ] ,
oSt 8.
(s, -s.) [- %2sald’ +(so+ (1L +2y)%]
(4. 32)
-

but p,> u,), then the roots simplify. To first order in
7, they become

: X
S.= ~[(L+2)%+ L +2)n]+ 71(1 + ———13-1 )
+ Xy

4.9)
s.= =~ ')’1(1+

i)
142,/
This indicates that the smaller molecules screen the
dipole moment of the larger ones, whereas the larger
molecules do not screen the dipole moments of the
smaller ones. This is analogous to translational dif-
fusion in polyelectrolyte solutions where the presence

of small counterions enhances the translational diffu-
sion coefficient of the polyion.

V. ROTATIONAL RELAXATION IN ELECTROLYTE
SOLUTIONS

In this section we consider the orientational correla-
tion functions in electrolyte solutions,? in which the
linear molecule, component 1, is assumed to have a di-
pole moment g, and no net charge and the electrolyte
solution consists of two oppositely charged spherical
ions of charge z, and z3 and concentration p, and p,.
Although H,0 is not a linear molecule, it is clear that
this should reflect on aqueous electrolyte solutions. In
this case it is easy to show from Eq. (3. 3b) that, for
v=1,2,3,

AL D)= %6 miob ko 5 (5.1a)

Im 3 ayi/zf Py V22
T;%(1,0)=-=(q}) <p 2,Y101mi0bar00 s U=2,3
7 b (5. 1b)

(ﬂ:v) < )q Dy8imoodsxep s Ky0=2,3 (5.1¢c)
u
Im i ay/ef Pu N2 2, D81 moob k10 s H=2,3

i (0,1) =% (yq2) (f) wDudim ’

q 1 (5. 1)
where

=(¢®D,+2Dy) , (5.2a)
A =tmpuf, (5. 2b)
sz;:4nﬁzzz;pv; v=2,3 (5.2C)
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and where p,, p,, and p,, and 2“ are, respectively, the
number concentration (cm3) of the three species and Eu
is the sign of the charge u. In the above, g, is the in-
verse Debye screening length of the ionic species
v(=2,3), which is proportional to V¢, where ¢ is the
salt concentration.

Combining Eqs. (3.2) and (5. 1) it is seen that the co-
efficients af!) for Im+#(00), (1,0) evolve just as predict-
ed on the basis of the usual Debye theory; that is, they
are unaffected by the long range forces. The coefficients
ald, af?, and af) on the other hand are coupled by the

dipolar forces. The equations that result from substi-
1

q p \/2 .
1+x)n —z(—2-> 71@(“1‘) 2
Y q P2
M- iqqeﬁ_l(j D;z, (g2 +q3)D,
. 1z 2\
lqihﬁ( > Dyzq <;§)QSD3

Equation (5. 3) can be solved by Laplace transforms.
Let

a(s)= [ " dteta(o,1)

0

(5.4)

be the Laplace transform of Eq. (5.3b). Applying the
Laplace transform method to the solution of Eq. (5.3a)
gives

a(s)=(st+M)*.a(0,0), (5.5)

where | is the 3% 3 identity matrix and (sl + M)™! is the
reciprocal of the matrix {s|+M).

The elements of (si +M)™ are each proportional to the
determinant of an element of the cofactor matrix divided
by det(sl+M). Thus it is clear that the poles of {sl+M)™
are the zero’s of the denominator which is the det(sl+M).
Thus the poles are found by solving the dispersion equa-
tion

det(sl +M)=0, (5.6)

which is a cubic equation. These roots (s,,s,,s;) con-
tribute to the Laplace inversion of Eq. (5.5) in that they
are the decay rates in three exponentials et!, %', and
e, The solutions of Eq. (5.3b) a{Y, a2, and afY,
are each consequently superpositions of these three ex-
ponentials. Thus without writing out the elaborate for-
mulas, we can find the decay rates. It then turns out
that in the limit ¢—- 0

C.(2) = W2y im s1(s;+ %) gstit!
10( ) <|a10 | 0 (31—32)(31_33)

(82—31)(82"83) (33—‘81)(83—32)
where the roots are to be evaluated for ¢~ 0 and where

(5.8)

o Salsa+ %) poltl sglsg + %) es3'“:|,
(5.7

Y=q5Dy+q3Ds

is the reciprocal of the “ionic relaxation time” 7,. 7,
specifies the time scale on which deviations from local

tuting Eq. (5.1) into Eq. (3. 5) can be expressed as the
matrix equation

%a/9t=—-M-a, (5. 3a)
where & is the column vector
aido,t)
a(r)={ ai@(0,¢) (5. 3b)
aiy (0,¢)

and M is a 3X3 matrix which we call the relaxation ma-
trix:

1/2
(i)
q P3
(23,2
(Zz >q2D2

(612*‘6]:2’,)1)3

(5.3c)

I

electroneutrality relax by diffusion back to this condition
or, more exactly, the time it takes the ions to diffuse a
distance equal to the ionic screening length.

All that remains is to compute the roots (s;s,s;) of the
dispersion equation (5.6) which follows from Eq. (5. 3c).
After much tedious algebra this equation becomes in the
limit g~ 0

s 2+ [+ 2)n + vols B+ 175 =0 (5.9)
The roots in the limit g~ 0 are

$1=0, $=5., S3=s_, (5.10a)
where

se= =[x )n+ %) =3 {{L+x)n+ w2 - 40w 2.

(5.10b)
It thus follows that

Clo(t )= < ‘ am(o)l 2 >/(S+ -s.)
X[ (s, +yp) et = (s.+ ) '] . (5.11)
When Eq. (5.11) is added to the unaffected functions,

C1¢1(t):<|a1*1(0)|2>€'”|” . (5.12)

We find
o(t)=5{2e™ 41/ (s, ~ s )[(s, + %) e = (s.+ 7p) 51} .
(5.13)

Thus there are three relaxation times contributing to the
1=1 correlation functions, these are 7' =(2Dg)™, s;!,
and s,

One of the most interesting features of this solution is
that the ionic relaxation time 7,=%;' contributes to the
orientational relaxation times through s,. Thus the di-
pole either must drag or is dragged by the ions, and
depending on which moves faster, the rotating dipole or
the translating ions, the roots will be different. 1In fact
we can estimate the roots by perturbation theory in two
limiting cases.
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Downloaded 01 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Bruce J. Berne: Theory of rotational diffusion 1159

o 1 I 1 i 1 1 1 1 1

y'—
FIG. 1. Cole—Cole Plots of ¥’/ (w) versus §’(w) for various
values of A. ¢¥’(w) and ¥’’(w) are, respectively, the real and
imaginary parts of the Laplace transform of the function (¢)
=—d¢(t)/dt, where ¢(¢) is the orientational correlation function
given by Eq. (2.19¢). Tt should be noted that A=0 gives the

Debye semicircle. The plots change dramatically as A in-
creases.

Case 11 7 <v,.
idly than the period of the rotation.

Here the ions relax much more rap-
Then

8§, = -(')’o‘*' 7\1')’1)

5.14a
o=y, ( )

and
d)(t) ge'Ylltl

and we get the same result as in the Debye theory. Thus
rapidly moving ions tend to screen the dipole-dipole in-
teractions in such a way that we recover the original
Debye relaxation.

(5. 14b)

Case 2: 7v,> 7,. Here the molecule rotates rapidly
on the time scale of the ionic relaxation time. Then

S*E{— M)y =[N/ +0)]% (5.15a)

- 70/(1 +)\1) ’

and, to a very good approximation
d)(t)_%(e‘zrlltl+e-(1+).1)rlltl) . (5.15b)

This is precisely the same form we obtained in a pure
dipolar fluid. Slowly moving ions tend not to screen the
dipoles. The roots are thus seen to be strongly depen-
dent on ¥, or concomitantly on the ionic concentration.

These effects should be seen in rotational relaxation
in aqueous electrolyte solutions. As far as we know,
these results are entirely new and give the only known
dependence of the dielectric relaxation times on the ion-
ic strength.

Vi. CONCLUSIONS

It is clear from the foregoing simple self-consistent
model that long range Coulomb and dipolar forces can
“pbreak” the symmetry usually ascribed to the Debye
equation. The correlation functions C,,{(q,¢) defined by
Eq. (1.3) which result from the linearized forced dif-
fusion equation have the following properties.

(1) In the limit g~ 0 only monopole, and dipolar forces
contribute to deviations from the Debye theory. Quadru-

polar and higher multipolar forces are too short ranged to
give rise to any effects.

(2) The Coulomb and dipolar forces only affect the de-
cay of Cplg,¢) and C,,(q,t) correlation functions. The
higher ranked correlation functions are unaffected.

(3) In purely polar fluids the deviations from the Debye
relaxation times are given by parameters like A,
:—}‘;wﬁufpv. These parameters can be substantial (~ 1)
for dense fluids. For a neat fluid 1+ is of order € so

" that the longitudinal relaxation time has a screening of

order 1/¢.

(4) In electrolyte solution, the deviations from the
Debye relaxation times are not only determined by the
parameters A, but also by the ionic relaxation times in
such a way that at low ionic strengths, the relaxation
times are (1+Xy)y;, whereas for high ionic strengths,
they are the same as in the Debye theory.

(5) In the polar mixtures the fast dipoles screen the
dipole moments of the slow dipoles, whereas the slow
dipoles do not effectively screen the dipole moments of
the fast dipoles.

(6) Let
Y(¢)=-dop/dt

and
Wlw) = Lp(t) =9 () - " (w) .

The Cole—Cole plot of " (w) versus ¢'(w) of Fig. 1 shows
that for attainable values of Ax(~1), the Cole—Cole plot
corresponding to Eq. (2.19c) deviates significantly from
the Debye semicircle,

If the equation is not linearized, we conjecture that
these conclusions will change in that all the C,, will be
affected. We hope to turn to this question in a subse-
quent paper where we shall use the techniques of mode-
mode coupling theory.

In this paper the molecules were taken to be unpolar-
izable linear rigid dipoles. No real solution corresponds
to this simplification. When the polarizability is in-
cluded the problem becomes more complicated, for then
the local forces should depend on gradients of expres-
sions like %E-B?-E where & is the local polarizability den-
sity and E is the local field (with analogous terms for the
torques). This is clearly a nonlinear problem, and we
hope to consider it in our subsequent work. To estimate
the effects of polarizability, it might suffice to replace
47p in the Poisson equation by (41r/<p, where €, is a di-
electric constant due to the polarizability [(e, - 1)/(e,+2)
=poa]. Also the dipole moment of the linear molecules
might be taken as an effective dipole moment.

Thus this paper should be regarded as a study of a
simple model. The conclusions certainly point to inter-
esting consequences of long range forces.
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that the spherical barmonics ¥,,(u) are eigenfunctions of f?
corresponding to the eigenvalue 1( +1).
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%t is nevertheless clear that a more complete theory must
reckon with this nonlinear equation. Because the forces are
long ranged, a kind of mode—mode coupling theory may be re~
quired. we hope to return to this in a future publication.

O7hig equation follows only after a Rayleigh expansion of the
terms ¢™ "% and use of the properties of I%; that is, I°Y,,
=11 +1DY .

1t should be noted that if Cy,{q,#) of Eq. (2.19b) is spatially
Fourier transformed, we find

Ciml®, 1) = [4nDp(1 +6, ME1/% < | 2}, (0) | 2>

2 -
% & “‘““mo)DT'”e 21 *“'ﬂo’DR“' .

If this result is integrated over a spherical region of radius
a, we find the ¢(t) for a spherical region to be

Qbsvh(t) _ %Fi(t)eJDRt +§F0(t)e“2DR(1 + )t ,
where
Fplt) =4n(4n(1 +26,)Dy | £ 117/

Xf" dr,rze-,z/wn.sm{))othl'
0

Thus the dielectric relaxation of a spherical region should
contain effects of translational diffusion which give rise to
fluctuations in the number of molecules inthe sphere. Only for
sufficiently large spheres or slow diffusors should particular
effects be important if ever. Also if and when these effects are
important, other hydrodynamic effects should be considered,

2golutions consisting of two ions where ions of type 1 are linear
molecules of charge z; and “dipole moment” gy and ions of
type 2 are spherical ions of charge z, behave in precisely the
same manner.,
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