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A systematic study is made of rotational relaxation in rough sphere fluids for densities ranging from 0.1 to
0.666 of the closest packed density. Many of the current models of rotational relaxation are tested against
the results of molecular dynamics. It is found that for densities higher than 0.40 of the closest packed
density only the Fokker-Planck model is consistent with experiment. The various extended diffusion
models, the jump diffusion model, and the rotational diffusion model are not only internally inconsistent,
but also do not agree with experiment. No theory is consistent with experiment at intermediate densities
where the collisional and the inertial time scales are comparable. In addition to the foregoing, it appears
that the rough spheres tumble more freely in the solid state than they do in the fluid state at the melting

density.

i. INTRODUCTION

Much of what is known about the structural and dy-
namical properties of fluids springs from the study of
the properties of the smooth hard sphere fluid. This
model has played a central role in the development of
the kinetic theory of gases. The structure of the hard
sphere fluid has exercised many an able theorist. Re-
cently it has been found that the hard sphere fluid pro-
vides an excellent reference system for “thermodynamic
perturbation theory” in the calculation of the structure
of more realistic fluids.! It is hoped that perturbation
theories of transport properties will be forthcoming in
the near future.?

In recent years the smooth hard sphere fluid has been
studied in great detail using the two major techniques
of numerical statistical mechanics: Monte Carlo studies
of the static properties and molecular dynamics studies
of both the static and time dependent properties. Such
studies have shown that the hard sphere fluid in two and
three dimensions undergoes a liquid-solid phase transi-
tion.® More important perhaps is the discovery that
those time correlation functions whose time integrals
determine the transport coefficients (through the Kubo
relations) depend asymptotically on time as ¢?/2, where
d is the dimensionality.®* On further investigation it
appears that Lennard-Jones fluids also exhibit this be-
havior. This discovery has rather profound implica-
tions. It means that transport coefficients diverge in
two dimensional fluids, and concommitantly that the
equations of fluid mechanics can not apply to such sys-
tems. Furthermore, the Burnett coefficients diverge
in three dimensions.® This has led to much feverish
theoretical activity which has resulted in part in cor-
recting the time honored Boltzmann and Enskog equa-
tions of the kinetic theory of gases to include correlated
binary collisions.® The “new kinetic theory” that has
resulted gives complete agreement with the computer
experiments in that it predicts the /2 dependence.

Two important conclusions are immediately apparent,
Because of its simplicity, the hard sphere fluid has
been very productive in conjunction with computer ex-
periments in advancing our knowledge of the fluid state
and in pointing in the direction of future developments
in analytical theories. The properties of these fluids
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are often found in more realistic fluids.

Until recently, much of the activity in the theory of
fluids has centered around studies of simple fluids
whose molecules have no internal degrees of freedom.
Yet polyatomic fluids are of considerable interest in
chemistry and physics. The whole question of rotation-
al and vibrational relaxation and energy transfer in
fluids is of enormous interest to a wide range of scien-
tists. In addition, the question of molecular reorienta-
tions is very important to the understanding of many
forms of spectroscopy such as infrared, microwave,
Raman, Rayleigh, depolarization of fluorescence, pico-
second absorption, dielectric relaxation, and thermal
neutron scattering. Nevertheless, there has been no
systematic study of such fluids from a theoretical point
of view.®

This paper represents the first of a series of papers
devoted to a systematic study of fluids containing rigid
molecules. We begin with a study of the rough sphere
fluid, although this series is by no means limited to this
system. It is our hope that this model will be as re-
vealing about the relaxation properties of molecular
fluids as the smooth sphere fluid has been about the
properties of simpler fluids. One of the useful features
of the rough sphere fluid is that its structure is identi-
cal to that of the smooth sphere fluid at the same densi-
ty. Thus, information already obtained in previous
studies is of use to us here.

The rough sphere model of molecular collisions has a
long history.” It was first proposed by Pidduck, and
was later explored by Chapman and Cowling. The rough
sphere is perhaps the simplest particle that has rota-
tional degrees of freedom, A collision between two
rough spheres is instantaneous (of zero duration). Dur-
ing this collision, the relative velocity of the points of
contact of two spheres is completely inverted. Thus,
one sphere can transfer not only linear momentum but
also spin angular momentum to the other sphere. Ob-
viously, many features of the rough sphere fluid will
differ from those of the smooth sphere fluid.

There are several questions that can be posed about
these fluids, For example, (a) how are the transport
coefficients modified by roughness? (b) is there any
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long time persistence in the spin angular velocity or
orientations ? (c) is the kinetics of the melting transi-
tion altered by roughness ? Although we believe that
these are interesting questions, ‘we shall not discuss
them in this first paper. Rather we shall focus our
attention on the problem of rotational diffusion in these
fluids. In addition, some attention is given to transla-
tional self-diffusion.

There exist several important theories of molecular
reorientations. Oldest and best known is the theory of
rotational diffusion—a small step random walk model—
put forth by Debye. ®

Ivanov extended the Debye model by developing the
jump diffusion model in which a molecule is assumed to
be locked into place between reorienting jumps.? The
two quantities of interest here are the mean time be-
tween jumps and the distribution of jump angles. When
only small angles are allowed, this model reduces to the
Debye model. This model is often invoked for reorien-
tation in solids where activated jumps can be envisioned
and for hydrogen bonded solutions. We do not expect
it to be relevant to our studies of the rough sphere
fluid. More recently, Gordon has developed a very
simple and appealing extended diffusion model in which
each molecule is regarded as rotating freely between
instantaneous collisions.? A collision merely either
(a) randomizes the direction of the rotational angular
momentum (M diffusion), or (b) randomizes (thermal-
izes) both the direction and magnitude of the angular
momentum (J diffusion), Gordon further assumes that
successive binary collisions are uncorrelated. The
chief result of the Gordon theory is embodied in a re-
lation between the orientational correlation function in
the model and the free rotator orientational correla-
tion function,

Only one parameter enters the theory, and that is
B=(I/RT)' (1/t,) (1.1a)

where I is the moment of inertia, and ¢, is the mean time
between collisions. g reflects the ratio of the free

rotor tumbling time to the collision time and is expected
to be very small for a dilute gas and very large for a
dense fluid. Because he applied these models to real
systems with continuous pair potentials, where there is
no well defined collision time, Gordon treats g as a
parameter to be fit to experiment. In the rough sphere
fluid there exists a well defined collision time, so that
Gordon’s ideas'® can be directly tested.

Recently, Chandler has introduced a model which he
claims takes into account all sequences of independent
binary collisions.!' This model gives C,(r) which are
identical in functional form to Gordon’s J-diffusion model,
except that 8 is now

Bg=(I/KT)'/? tl ,

w

(1.1b)

where ¢, is the angular momentum correlation time in
the Enskog approximation (hence the subscript E)—a
quantity also easily calculated for the rough sphere fluid
[see Eq. (3.13b)]. Thus, we can also compare this
“Enskog” model with our rough sphere molecular dy-

namics. It is expected that both of these models will
reduce to the Debye model for very large values of 8,
or 3.

The extended diffusion model is very appealing be-
cause it incorporates the obvious physical features of
orientational relaxation and because it is relatively
simple to apply. Nevertheless, for cases in which there
is cooperativity in the decay of the angular velocity, this
model cannot describe the orientational relaxation. In
addition, as will be shown in Sec. III, even in a rough
sphere system, the angular velocity cannot be random-
ized in the collision time,

Fixman and Rider!? have presented a unified approach
to rotational relaxation based on a general Markoffian
operator which for instantaneous collisions acts just in
angular momentum space. They then showed that the
extended diffusion model and various ad koc models
were special cases of this general Markoffian theory.
This formulation enabled them to generalize the extended
diffusion model to cases intermediate between the J-
and the M-diffusion model. In addition, Langevin relax-
ation of the angular velocity could be incorporated and
a Brownian motion theory of orientational relaxation
could be given. In this way, a Fokker-Planck (F-P)
equation'®? is derived for the joint orientation and
angular momentum distribution function.  For a spheri-
cal top molecule, only one parameter is needed, and
this is the rotational friction constant. For large
values of the friction constant this model reduces to the
Debye model, but for small values of the friction con-
stant this model, like the above extended diffusion mod-
els, also describe the inertial (free rotor) reorienta-
tions, In this paper we shall show that for spherical
tops, the Fokker—Planck theory'? is preferable to the
extended diffusion model.

Thus, in this first paper in this series, the reorienta-
tion of a unit vector u rigidly attached to the center of
each of the spheres is studied and the correlation func-
tions

C,(1)=(P,(u(0) - u()))

where P,{(x) is a Legendre polynomial of order /, are
determined. In addition, the autocorrelation functions
of the spin angular velocity w(f) and the linear velocity
v(t),

C,[H=w(O) -v(t)) ¥,
C,(1) ={w(0) - w(®))(w*™?,

are determined.

1=1,2, (1.2)

(1.3)
(1.4)

These correlation functions are determined for the
rough sphere fluid for a series of densities by perform-
ing computer experiments on these fluids. The resulting
correlation functions are compared with the predictions
of the preceding major models of molecular reorienta-
tion. In addition, there is some discussion of the Hub-
bard relation,

The chief conclusions of this study are

(a) No theory is consistent with the molecular dynamics
results at all densities. Only at the very highest stable

J. Chem. Phys., Vol. 63, No. 6, 15 September 1975

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2378 J. O'Dell and B. J. Berne: Dynamics of molecular fluids

fluid density does the Hubbard relation* apply.

(b) At the melting density, rough spheres reorient
more freely in the solid than in the liquid.

(c) Only at the melting density does the Debye theory
describe the reorientations,

(d) The angular velocity correlation function always
lies above the exponential predicted by the Enskog equa-
tion, indicating that at high densities correlated col-
lisions are important even at short times.

(e) There are systematic differences between the ex-
periments and the Enskog theory introduced by Chandler,!!
and these differences are significantly larger than the
possible uncertainties in the experimental results.

(f) The Fokker-Planck theory of all the models seems
to be in best agreement with experiment,

These conclusions are particularly important with re-
gard to the extended diffusion models, ** since the col-
lisions between rough spheres are truly instantaneous.
Should this model not work for rough spheres, we should
have grave reservations about its applicability to realis-
tic fluids. :

In order to present our study in a coherent form we
outline the simple theories in Sec. II. In Sec, Il we
discuss some of the analytical features of the rough
sphere model, and in Sec. IV, we summarize the meth-
ods used in our molecular dynamics study. In Sec, V
we compare theory and experiment, and in Sec. VI we
discuss the results.

Il. THE THEORY OF MOLECULAR REORIENTATION

In this section, several models of rotational relaxa~
tion are reviewed and applied to rough spheres.

A. Free rotation

The orientational correlation function of an ideal gas
of rough spheres (no collisions) ig!

ZI: eimwt>

m==1

1
@Oy o (——
C: (t)'<2z+1
where w is the rotational speed of a sphere and the
brackets indicate an average over the Mzaxwellian dis-
tribution [w(w) dw=4m(I/2 7k T)?/2 f e ™" /%7 4], Ex-
plicit evaluation of the integral gives

+l

1 2
Oy 22y el 2 1
(ohad ()] 571 MZI 1-m*r%)e ) 2.1)
where 7 is the reduced time,
1/2
r=lit = (B0) .2)

I is the moment of inertia of the particle, and 7 is the
temperature. The free particle correlation functions
are denoted by the superscript (0). These functions
decay on a time scale 7~1, but finally approach (27+ 1)
rather than zero. This results from the fact that the
component of the unit vector along the axis of rotation
does not change in time. This projection is given by
the w =0 term in Eq. (2.1), which is (27+1)".

B. Extended diffusion

In the Gordon extended diffusion model, !° it is assumed
that each sphere rotates freely between collisions which
are of zero duration. During a collision, the angular
velocity discontinuously changes, but a unit vector em-
bedded in the sphere does not reorient at all. Further-
more, it is assumed that successive binary collisions
are independent. Gordon discussed two extreme mod-
els called the M-diffusion and the J-diffusion models.

In the M-diffusion model, each collision randomizes
the direction of the angular velocity, leaving its mag-
nitude unchanged; whereas in the J-diffusion model,
each collision randomizes both the direction and mag-
nitude of the angular velocity. These two models are
sufficienily simple that the orientational correlation
functions can be determined for them. First we treat
the J-diffusion model,

Let us denote by C,(n, 7) the orientational correlation
function for the subset of molecules that have undergone
n-1 collisions in the (reduced) time 7 irrespective of
the precise times of these collisions. Furthermore,
let us assume that this function is weighted by the frac-
tion of particles that have undergone n~ 1 collisions in
7. Then, for example, C,(1, 1) is the weighted correla-
tion function for a particle to undergo zero collisions in
the time 7. C,(1, 7) is consequently the free particle
correlation function C®’(r) weighted by the probability
that a particle will not suffer a collision in the time 7.
Because the model postulates that the successive col-
lisions are uncorrelated, the weighting factor is e/,
where 7, is the mean time between collisions or “the

collision time” (in reduced units). Thus,
C,(1, T)=e e CO(r) . (2.3)
To proceed, we note that
C,n+1, 7)= JOT c,1, r-7) %T—, Cin, 7'). (2.4)
¢

The integrand is simply the contribution to C,(n+ 1, 7)
from those particles which suffer n - 1 collisions in time
7', suffer the next collision between 7’ and 7'+ d7’,

and then rotate freely for the time 7 - 7', The factor
dr'/7, is the probability of a collision between 7' and
7’+dr’. Clearly, 7' can occur anywhere between 0

and /—hence the integration. Laplace transformation

of Eq. (2.4) yields

Cytn+ 1, p) = AC,(1, p)Cyln, p) 2.5)

where the convolution theorem has been used, p is the
Laplace variable, and 3 is the parameter

B=1/7,.

The Laplace transform of Eq. (2.3) gives é,(l, p)
=C®(p+ B). Substitution of this into Eq. (2.5) followed
by iteration yields

Ciln+1, p)=[BCP(p+ A CO(p+ B) .

It is clear that C,(7) can be found by summing C,(n+1,
1) from n=0 to «; that is, over all numbers of colli-
sions so that C,(1)=Fmg C;{n+1, 7). Likewise for the
Laplace transform. Thus, for J diffusion,

(2.8)

2.7
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Cipy=2. [BCO(p+ A CO(p+ B, @.8a)
n=0
Cip)=CQ(p+B)/[1-BCL (p+ B, 2. 8b)

where the last equation results from an explicit sum-
mation of the geometric series, Equation (2. 8b) is the
chief result of the Gordon theory, although it was orig-
inally expressed in this form elsewhere.!® According
to Eq. (2.8b), the Laplace transform of C,(7) is de-
termined completely by the parameter B and the free
particle correlation function C§°)('r)—through its trans-
form

EO(p+ §)= jo” dre-®oT CO(r) 2.9)

Substitution of Eq. (2.1) followed by integration gives

COp+ )
ARG - G

where (2:10)
flx) = (;—T)l & 22 erfe(x/VD) , (2. 10b)

and where erfc denotes the complimentary error func-
tion.

The M-diffusion model can be developed along the
same lines. Because in this model the angular speed
of a sphere does not change from collision to collision,
C,(n, 7)=Cy(n, 7lw); that is, C,(n, 7) is a function of the
angular speed. Following the same logic, the M-dif-
fusion correlation function result is

- _ C.J(O’({_)+Blw) "
Cl(p) 1~ é§°)(p+f3|w)> 5 (2. a)
where
+1
EO(pe Blw)= s O (p+B-imw)t,  (2.11b)

27+1

mzal

and where the brackets indicate an average over the
Maxwell distribution function w(w).

Fixman and Rider'? have generalized the extended dif-
fusion model so that situations between the M-diffusion
and J-diffusion model can be handled. They define two
parameters , and 8, such that By /B,+ 8, and 8, /8,

+ B, are, respectively, the probabilities that a collision
will equilibrate the rotational kinetic energy distribution
and the probability that this will remain unchanged.
Thus, if 8,=0, J diffusion should obtain, whereas if
B9=0, M diffusion should obtain. It is possible to ex-
press the results of Fixman and Rider in a suggestive
form. For this purpose let C;(p|8) and C*(p18) de-
note the Laplace transform at Laplace variable p of the
orientational correlation function C,(r) in the Fixman
and Rider theory and in the M-diffusion theory, re-
spectively, for parameter 8. Then we find that

é;”)(ﬁ‘* BOIB1)
1-8, é;m(P*‘ BolBy)

Ci(p1Bo+ By) = @.11c)

Because C*(p10)=C®(p), this formula correctly re-
duces to the M- and J-diffusion results in the appropriate
limits.

In the following, the J-diffusion model will be used to
illustrate some of the techniques that are often used in
comparing these extended diffusion models to experi-
ment,

A parameter often discussed in the literature is the
“orientational correlation time” 7, defined by

7¥=lim dt Cy(r) e =1im C,(p) .
»~0 0 p~0

(2.12)

This quantity is the area under C,(r) in reduced time
units [in real time, #,=75(I/kT)]. Clearly, 7¥ canbe
evaluated explicitly in terms of 8 by substitution of Egs.
(2.8b), (2.10a), and (2. 10b) into Eq. (2.12) and taking
the limit p -0, This gives

7 =C(p)/[1- BE®(B)], (2.13a)
where
1 ~ B 8 ./B\\ 1
CP®= 571 {2 2—; m (1'Ef<}ﬁ>>+ E} ’
(2.13b)

where f(x) is defined in Eq. (2. 10b).

The only parameter that enters the Gordon theory
is B. As mentioned in the introduction, B should in-
crease with density from =0 at p=0. The dependence
of 77 on B as given by Eq. (2.13) is plotted in Fig. 1
for /=1 and =2, It is a simple matter to show that for
small 8

T = zil g-!  (dilute fluid) , (2.13c)
and for large 8
1 .
TN B (dense fluids). (2.134)

Figure 2 is rather easy to understand. At zero density,
B=0, and C;(1)=C{?(r). Since C{¥(r) decays to (21 +1)!
and not zero, its time integral is infinite, thereby leading
to 75 =,

At sufficiently low densities, collisions are sufficient-
ly infrequent that the rotors rotate many cycles be-
tween collisions, giving rise to small 8, Thus, for
times smaller than the collision time g™}, C,(t) behaves
like a C{”(r). However, for times on the order of g,
collisions reorient the axis of rotation, thereby giving
rise to changes in the projection of u on the rotational
axis. Thus, C,(7)shoulddecay to zero for times large
comparedto f~!; and 7¥, the area under C,(7), shouldbe
large but finite. Thus, as p increases from 0, 7+ de-
creases as predicted by Eq, (2.13c) (see Fig. 1). For
very large p, collisions are so frequent that u cannot
rotate much between collisions. Then C,(7) is ex-
pected to decay very slowly with time. This gives rise
to a time integral, 7%, which is again very large—hence
Eq. (2.13d). The minimum in Fig. 1 occurs at a point
where the decay time of the projection of u on the initial
rotation axis is approximately the same as the decay
time for the components of u perpendicular to this axis.
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o THMEXPT) vs. |/ru,*(SLOPE)
3 .
Tz*
2 .
J-DIFF ]
' N
\FOKKER-PLANCK \FOKKER- PLANCK
O 1 1 ! L { S St E N I
0 | 2 3 4 5 6 O 2 3 4 5 6
I/ Ty* B
FIG. 1. The orientational correlation times tf and 7§ {cf. Eq. (2.12)] are plotted vs 1/ 1w* or B where Tw* is the angular velocity

correlation time and B8 is an adjustable parameter that is defined in the text {cf, Eq. (1.1a)].
gives a theoretical prediction of 7§ vs 1/7% (slope) which is indicated for T} by the upper curve,
a theoretical prediction for 7} vs 1/7%(area) which is indicated for 7¥ by the lower curve.
TF (exptl) vs 1/7} (area), and the squares indicate a plot of 1§ (exptl) vs 1/7X (slope).
(B) Same as (A) only for 7f.

Planck theory is consonant with experiment.

(A) The Enskog theory [cf. Eq. (3.19)]
The Fokker—Planck theory gives
The triangles (AAA) indicate a plot of
From this it would appear that the Fokker—
(C) The upper curve represents the theoretical depen-

dence of 7f on the parameter § in the J-diffusion model, whereas the lower curve represents the theoretical dependence of 7§ on

the reduced friction constant in the Fokker—Planck model.

determined by the prodedure given in connection with Eq. (2, 14).

The open circles (000) indicate a plot of 7f (exptl) vs B, where By is
Note that the experimental correlation times lie below the theo-

retical prediction in the neighborhood of the minimum, (D) Same as (C), only for 75,

In arbitrary fluids there is no well defined collision
time and hence no independent way to determine the pa-
rameter 8, Thus, one way to proceed is to determine
7% (exptl) by calculating the area under an experimentally
determined correlation function C***(1). Then g is
found from theoretical curves like Fig. 1 by determining
where 7¥(exptl) intersects the curve. For all values of

T} (exptl) above the minimum value of 7} allowed by the
theory, there will be two possible values of g—that is,
two roots. Only one of these roots is valid. The valid
root is that one which, when used in conjunction with
Eq. (2. 8b), gives upon numerical Laplace inversion a
correlation function C,(7) in closest agreement with the
experimental function C¥ (7). Thus, if the theory is
valid, we expect that corresponding to every experimen-
tal determination of C,(7) there will be a value of g,

Now it is very important to recognize that if 75 (exptl)

is significantly less than the minimum in Fig, 1, there
will be no value of g consistent with the experiment, and
we must conclude that the J-diffusion model must be in-

valid, Later we shall see that the corvelation functions
C (1) determined from molecular dynamics studies of
rough spheve fluids at certain densities are such that

% (exptl) s indeed significantly smaller than the mini-
mum T, thus indicating that the J-diffusion model can-
not vepresent these fluids over the whole region of den-
sities.

Another obvious test is to measure C,(7) for two dif-
ferent values of I, say /=1 and /=2, If these measure-
ments ave such that the vesulting g's ave diffevent for
C,(7) and C,(7) determined for the same theymodynamic
state, then clearly the Gordon model must be invalid,
This is another criterion of validity used in this paper.

It often happens that the experimental data {C,(T)} be-
come progressively less accurate as 7 increases or is
not extensive enough to determine accurate values of T}.
This is often the case in molecular dynamics. In this
eventuality, we have designed the following procedure.
The quantity A,(T!g) i8 defined such that
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FIG. 2. A plot of the orientational correlation functions C;(r) vs the time in units of the collision time for various densities, In
all the figures, the dashed lines are the dynamics data, In curves A, B, and C, the solid lines are the optimized J-diffusion re-
sults, and in D, E, and F, the solid lines represent the Enskog model. The densities are indicated with 0, 666(1) denoting the ligquid
state at the highest density studied,

data are extensive, these two methods give the same g;
however, when the data are incomplete, this procedure
is advantageous. The method adopted here is to use the
area method where possible to guess a value of 3 and
then to evaluate A (T'|g) for a mesh of g's around this.
The value of g that then minimizes 4, is then chosen as
the optimum value of g.

T
selp=7 [ arlePim-cimal, (219

where the cutoff T is chosen to include a good part of the
decay. This quantity measures the deviation of the ex-
perimental function C$®')(1) from the theoretical function
C(7; p) for a given value of B. A,(T|p) is computed as

a function of g, and that g8 which minimizes A,(T(p) is
considered the optimum 8, As we shall see, when the Although we have discussed only the J-diffusion model
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in detail, the same approach can be used for the M-dif-
fusion model.

For sufficiently large 8, Eq. (2.13d) should apply.
It is not very difficult to show that in this limit inertial
behavior quickly dies out and the correlation functions
quickly become

Cir)=exp-1(I+1)gr (2.152)

or

Cir)=exp-T1/7}, (2. 15b)

which follows from Eq. (2.10a). Thus, in the limit of
high B, the Gordon model gives a simple exponential de-
cay. The extended diffusion model has enjoyed con-
siderable popularity. It is very physical and simple to
apply. Moreover, it reduces to the Debye model for
high densities. Unfortunately, we shall see that this is
impossible to achieve at any stable fluid density. Chand-
ler has developed an approximation scheme whereby g
can be computed in the binary collision approximation.
More shall be said about this in Sec. III.

C. Small step diffusion-the Debye model

Of the many theories of rotational relaxation, the old-
est and best known is the Debye theory of rotational dif-
fusion.® In this theory, the unit vector is assumed to
perform a random walk on the surface of a unit sphere,
consisting of infinitesimal angular steps. The resulting
correlation functions have the form C,(#)=e™*VPr?
where Dy is the rotational diffusion coefficient and ¢ is
the real time. Comparison with Eq. (2. 15) shows that
the Debye model is the high g limit of the Gordon model,
and gives Dy in terms of 3,

kT 1/2 )
DR=<I—> gL,

D. The jump diffusion model

(2.16)

Another model, first put forward by Ivanov, ® is the
jump diffusion model in which u performs a random walk
on the surface of unit sphere that is not restricted to
infinitesimal angular jumps. This theory results in

C(r)=exp - t/79, (2.172)
where

1. [1-(Py(cos))] 1 ’ (2. 170)

T -rj

where 7, is the mean time between jumps, 6 is the jump
angle, and {...) denotes an average over the jump angle
distribution function, This reduces to the result of the
Debye model if only very small angular jumps are made
for then 1/79=1(I+1)D,, where Dy =(6%)/47;. This
model is not terribly relevant to our studies.

E. The Fokker-Planck model

The angular momentum of a molecule can be regarded
as a Gaussian stochastic process and can thus be de-
scribed by a Langevin equation

dw;

=T w; Wy ~y;w; +A (D),

e (2.18a)

where w; is the ith componentent of the angular velocity,
v; is a friction constant, A; is related to the random
torque, and T'; = (I, ~1,)/I;, where I; is the moment of
inertia about a body fixed axis. For a rough sphere I;
=l;=1,=1, andy;=y;=y,=¥, so that the Langevin equa-
tion simplifies to

dw/dt=—yw + A(t) . (2.18h)

If the random torque is assumed to be a Gaussian
random process, as is usually the case in Brownian
motion theory, the Langevin equation can be used to
derive the Fokker-Planck equation!?

[ 2P 1
[5;+lw.l—va°(vw+<ﬁ>w)]P(w’ u; t;wO’UO;O):O ’

(2.19a)
where P(w, u,#; wy, Uy, 0) is the joint probability distri-
bution for finding a particle with orientation u,, angular
velocity w, at time =0 and with orientation u, angular
velocity w at time /. The operator I is the dimensionless
angular momentum operator of quantum mechanics,
and the term jw- I generates the free particle rotation.
The differential operator which appears as a factor of
Y represents the collisional relaxation. Equation
(2. 18b) must be solved subject to the boundary condi-
tions

P(w, 1, 0; wy, Uy, 0) =P, (w) 8{w - wy) 6u—12) , (2.19b)

where P, (wp) is the Maxwell distribution function. With
the solution of Egs. (2.19), the correlation functions
can be determined. For example,

<cC:Eg> = f dwj dw, j du [ du,

P;(u-u,

x( i 0)>P(w,u, f;we,Y,0) . (2.20)
[ wo

It is useful to express the time in reduced units 7= (k7/

I)'/2¢ and the friction constant in reduced units 8= y(I/

ET)/%. In these units,

cw(T):e-B’r s (2-213)

so that the angular velocity correlation time 7% in these
reduced units is

1/7%=8.

C,(t) is relatively easy to evaluate, since it follows
directly from the Langevin equation. The solution of
Egs. (2.19) C,() is much more difficult, and in fact,
no analytical solution has yet been given in three di-
mensions. Nevertheless, Fixman and Rider'®!? have
numerically solved Eqs. (2.19) and (2.20) and have de-
termined C{¥~®(r) for different parameter 8. We shall
subsequently compare the molecular dynamics with this
numerical solution.

(2.21b)

i, THE ROUGH SPHERE FLUID

In fluids composed of molecules that interact through
continuous potentials, there is no uniquely defined col-
lision time because each molecule may be in continuous
interaction with its neighbors. In contrast, fluids con-
taining “hard particles” have uniquely defined collision
times. The mean time between successive collisions®
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t, experienced by a rough sphere of diameter ¢ is given

by
1 R kT\)”z
i =4n0 pg(cr)(w7 ;

3.1)

where p is the number density, g(o) is the contact pair
correlation function, and ¢, is given in seconds. It is
common in the literature to use the Enskog time /,,
where

1tg=301/¢,) .
Combining Eqs. (1.1) and (3. 1) then gives an a priovi

calculation of 8,
1

c

8,=v 8wk pglo) , (3.2)

where c denotes that 2 has been computed using #,, 7,
is the collision time in reduced units, and

ﬁEp/pc.p. = (1703)/\/7,
k=4l/ma? .

(3.3a)
(3. 3b)

Here I is the moment of inertia of the rough sphere, and
P..p. is the density of the rough sphere system when it

is closest packed (p,,, =V2/0%). p is simply the number
density expressed in units of the density at closest pack-
ing. For future reference it is important to note that
the rough sphere fluid exhibits a liquid-solid phase
transition at 5=2/3. The parameter ¥ measures the
mass distribution within a sphere. If the mass is lo-
calized at the center of the sphere ¢ =0, if it is distrib-
uted uniformly over the sphere k=2/5, and if it is con-
centrated on the surface of the sphere, « reaches a max-
imum of k=2/3. As k increases from x=0 to 2/3, the
flywheel capacity of the sphere increases.

According to Eq. (3.2), B, does not depend on the
temperature, but does depend on j—both directly and
through the dependence of g(o) on 5. An excellent ap-
proximation for g(o) in the fluid state is'®

_{2-7n)
glo) = AP (3.4a)
where
n= % D - (3.4b)

The dependence of B, on j is thus easily found by com-
bining Eq. (3.2) with Eq. (3.4),

Although the initial formulation of the Gordon model
requires that the parameter in Eq. (2.6) should be 8,,
it will be shown that this results in a paradox, and a
contradictory result. This question will be dealt with
later.

The collision dynamics in a rough sphere fluid are
completely defined” by the laws of conservation of linear
and angular momentum and the following law of inter-
action between two spheres, labeled 1 and 2. A collision
between 1 and 2 causes a complete reversal of the rel-
ative tangential velocity g,, of the colliding pair where

(3.5)

and where w; and v; are the angular velocity and the

1
€21 = V21 + 30N % (W + W,)

center of mass linear velocity of particle i, v, =v, -V,
is the relative center of mass velocity of particle 2 with
respect to particle 1, and n is a unit vector pointing
along the line of centers from 1 to 2 when the particles
are colliding (kissing). Since g,; is completely reversed
by the collision, the relative tangential velocity g3, after
the collision is simply g, = — g . In the following, a
primed quantity will always denote a quantity after a
collision and an unprimed quantity will always denote
that property before a collision. From this it follows
(see Chapman and Cowling)? that

q 1
Vi=Vy+ kKTl [v21+ §n><(w1+ Ws) + X nn-v2,] , (3.6a)

Wi=w+ [% (ke + 1)] " {HX[V21+ an(w,+ (4}2)]} , (3.6b)

with similar expressions for vj and wj. These equa-
tions essentially define the rough sphere interaction,

Our objective is to determine among other things the
time autocorrelation functions® of the properties vy
and w,. These functions have the form

(A ettt A

CO="qaEy

(3.7a)

where 4, is either v, or w;, the bracket ( ) indicates an
average over the canonical ensemble, and L is the Liou-
ville operator.?® Equation (3.7a) can be expressed as

CA(t)=«e{“>>A 3 (3.b)

where {{-+ ))={A; (- + - ) A)) * {4, A))"! defines a new aver-
age, and C,(#) is the average value of the propagator.
Equation (3. 7b) can be expressed as a cumulant ex-
pansion?!

C,(t)=exp i E:%: s (3. 8a)
n=1
where for example
K== tl ={GL)4 (3.8b)
A
ke = (ELY N, = [GLN),F (3.8¢)

This kind of approximation was recently exploited by
Chandler.? If the cumulant expansion is truncated
after the first term, one finds that

Cult)=exp-t/t,, 3.9)

where 1/¢, is given by Eq. (3.8b). Chandler asserts®
that truncation at this level is equivalent to assuming
that only sequences of uncorrelated binary collisions
contribute to C, (). Any deviation from Eq. (3.9) theve-
fore must arise from correlated binary collisions.

In order to proceed, it is necessary to evaluate the
correlation time ¢, which is defined by Eq. (3.8b) ex-
plicitly by

1 (AGLA)

— =gyt 3.10

ta (AD) (8.10)
Now the Liouville operator in a hard sphere system can
be expressed as?*

J. Chem. Phys., Vol. 63, No. 6, 15 September 1975

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2384 J. O’Dell and B. J. Berne: Dynamics of molecular fluids

iL={Ly~ Ty
H>i=1

where L, is the free particle Liouville operator and T,
is the binary collision operator for the pair of particles
(i, ) defined by Zwanzig.?* If the quantity A; does not
depend on the position (like v, or w,), then Ly A; =0 and
iLA1==72,,T; A . Clearly, collisions between i#1 and
j#1 do not change A,, so that iLA;=-},,, T A, and
Eq. (3.10) becomes?
AT TaAY vy AT Ap
= —'———<A—§S—— = (N 1) _T@__ 5 (3. 11)

where in the last equality recognition was taken of the
fact that all T, (j=2,...,N) give the same result.

1
t

Zwanzig?! has provided a method for determining
averages like Eq. (3.11). By generalizing the deriva-
tion of Zwanzig’s Eq. (A13) (Ref. 24) to take into account
excluded volume effects, it follows that for rough
spheres of diameter o,

2r o
=<Ai>-‘pg<o)<jo a | dbblvm\Al[A;—Al]>, (3.12)

where A, and A] are the properties of A, before and af-
ter a collision of particle 1 with particle 2 with impact
variables (b, ¢) and COM relative velocity v,,. The
brackets indicate an average over the Maxwellian dis~
tribution of particles 1 and 2. In order to evaluate this
integral, A; must be calculated using Eqs. (3.6a) and
(3.6b). Then for v, and w,, the well known resulis (see,
for example, Ref. 22 and references cited therein),

_l 2k+1
t, K+l>

1
t

(3.13a)

3(K+1) tc (3.13pb)
are obtained, where ¢, is given by Eq. (3.1) and « is de-
fined by Eq. (3.3b). Thus, if one can ignore correlated
binary collisions, the velocity and angular velocity cor-
relation functions are

Cv(t):e-lﬂltv ,
Cw(t)=e"t|”w

These are often called Enskog covrrvelation functions be-
cause in their derivation, as in the derivation of the
Enskog equation (of the kinetic theory of dense fluids),
correlated binary collisions (c. b. c.) are ignoved. De-
viations from these functions therefore measure the
importance of correlated binary collisions.

(3.14a)
(3.14b)

Return for a moment to the Gordon theory of extended
diffusion.® In that theory it is assumed (a) that succes-
sive collisions are uncorrelated, and moreover (b) that
each collision randomizes the angular velocity. From
(a) it follows that the collision times are distributed
according to a Poisson distribution; that is,

I (N e
n[(ic) ¢ )

where P,(f) is the probability that a particle will experi-
ence #n collisions in the time ¢, where {, is the mean free
time. Now in computing C,(#) it follows from (b) that

P, = (3.15)

since there is no correlation between the angular ve-
locity before and after a collision, C,(f) must be equal
to the fraction of particles that have not yet collided in
the time ¢ or Py(t}. From Eq. (3.15) it then follows
that

ClONt) = et /e

(3.16)
where the superscript G indicates that this result springs
from a quite literal interpretation of the Gordon model.
The important thing to note is that the Gordon model is
much more restrictive than the independent binary col-
lision (I. B. C.) model. Since #,<{,, the Gordon model
predicts a shorter correlation time for C,(f) than does
the I. B. C. model. Thus, if we use Eq. (3.16) to-~
gether with Eq. (2.8b), we will obtain C{®(¢), which
corresponds to a too rapidly decaying angular velocity.
In point of fact, Eq. (3.18) cannot describe the dynamics
of any real fluid because it does not satisfy the moment
theorems, whereas Eq. (3.14b) may be a reasonable

approximation. Comparisons of this sort are made in
Sec. 1V,
Thus, if the Gordon model is taken seriously, a con-

tradiction results. In the Gordon theory the primary
event is a collision, and it is assumed that this event
randomizes the angular velocity. This latter assumption
is clearly in error. It is possible, however, to salvage
the extended diffusion model by assuming that there are
independent events—albeit fictitious events—separated
on the average by the time ¢, (not ¢,) and such that the
angular velocity is randomized after each such event.
This model gives Eq. (3.14b) and, moreover, gives

Eq. (2.8b) if we take B equal to

2 . 1

Bw:(l/kT)”zi - b= (3.17)

t, 3(k+1)
where the next to last equality follows from Egs. (3.13b)
and (3.2), and 7¥ is ¢/, in reduced units.

This attempt to salvage the model is somewhat arti-
ficial, Chandler'' has, however, developed a simple
scheme similar to that which led to Eq. (3.9). Chandler
first writes down the cumulant expansion of the mem-

ory function K,(f) corresponding to C,(f). He then
writes
K=K O exp D (=6 7 (3. 182)
n=1

where K’ is the memory function of a system of free
rotors, and K“” are the cumulants of the free rotor
system. Chandler then asserts that a truncation of the
cumulant expansion after n=1 is equivalent to an ap-
proximation in which only sequences of uncorrelated
binary collisions are kept. This is the same approxi-
mation which leads to Eq. (3.14b). He then shows that
(Ky~ K™ =-1/t,, so that the I. B, C. approximation
gives

KgENS‘K)(t) = K§°’(t) e‘”t“’ ,

where the superscript ENSK refers to the independent
binary collision (or ENSKOG) model. This approxima-
tion will be referred to in the sections as the Enskog
approximation, and the correlation functions springing
from this approximation will be denoted by a super-

(3.18Db)

J. Chem. Phys., Vol. 63, No. 6, 156 September 1975

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. O'Dell and B. J. Berne: Dynamics of molecular fluids 2385

script (ENSK). As far as we know, this may well be
the first attempt to place the J-diffusion model on a
molecular basis.

The memory function equation for C,(#) then takes the
form

- 1
(ENSK) —
C; (S) = S+ ia,ﬁ)(S-F l/tw) ’

where from Eq. (3.18) we have used K(s)=K®(s+1/
t,). Now clearly, C{*(s)=(s+ K®(s))!. Eliminating
K®(s+1/t,) in favor of C®(s+1/¢,) gives, in reduced
units,

g p) - _CulPrB)
1- chz(P+ Bw)

where p=s(I/kT)!/2, and B, = (I/kT)! /%t are in the re-
duced units used throughout this paper. This is the
same result obtained from the J-diffusion model [Eq.
(2. 8a)] by substituting #, in place of £,. The very nice
thing about the 1. B. C. model is that it is internally
consistent, Nevertheless, its validity must be tested
against molecular dynamics. What is remarkable is
that this very plausible model does not agree with ex-
periment throughout the whole density regime,

(3.19)

It should be noted that of the Enskog model!! were
valid, it would give upon combining Egs. (3.17), (2.13),
and (2.16),

*=(1/20)+* (dilute fluid) , {3.20a)
¥7*=1/1(1+1) (dense fluid) , (3.20b)
Di=1*=1/8 (dense fluid) , (3.20c¢)

where 7%= (2T/I)!/?t, is the angular velocity correla-
tion time in reduced units and D} is the rotational dif-
fusion coefficient in reduced units. These equations are
variants of the Hubbard relations which have been
derived in several different ways., The importance of
these relations is that they give a relationship between
the orientational correlation time and the angular veloc-
ity correlation time. At low densities 7¥ is proportion-
al to 7% because the area under C,(r) decreases as col-
lision reorient the angular velocity and thereby destroy
the projection of u on the initial value of w(0). At high
densities, 7¥ is inversely proportional to 7% because
rapid changes in w lead to smaller step diffusion of u,
The original relation derived by Hubbard!* was for high
densities and is analogous to Eq. (3.20D),

T¥r¥(area)=1/1(1+ 1), (3.21)

where 7%(area) is the area under C,(r). Hubbard did not
discuss the low density limit.

IV. EXPERIMENTAL METHOD

Inorder totest the foregoing models of rotational relaxa-
tion, molecular dynamics calculations were performed
on rough sphere fluids at the ten densities, 5=0.01,

0.1, 0.2, 0.27, 0.3, 0.333, 0.4, 0.555, 0.625, and
0.666. Although the basic procedure is quite similar
to that used to study smooth sphere fluids, there are
significant differences that arise owing to the presence
of the rotational degrees of freedom.

In molecular dynamics a system of N rough spheres
in a box of volume V is simulated by solving the equa-
tions of motion subject to periodic boundary conditions.
The phase space trajectory generated is then used to
determine the time dependence of various dynamical
properties and correspondingly, through time averaging,
both static properties and time correlation functions, %

These are several important parts of a molecular
dynamics study. First, one must choose the initial con-
ditions, Second, one must develop an algorithm for
solving the equations of motion. Third, one must de-
cide on criteria for bringing the system to “equilibrium, ”
Finally, one must develop efficient codes for determin-
ing the static properties and time correlation functions.
The remainder of the section is devoted to an explana-
tion of some of the details involved in our procedure.

A. Part |: Initial conditions

The initial state is so chosen that the total linear and
angular momentum of the N particle system is zero.
This is accomplished by sampling the linear and angular
momenta of N-1 of the molecules from a Maxwell-
Boltzmann distribution. The remaining particle is as-
signed a linear and angular momentum such that the
total linear and angular momentum is zero.

The initial configuration of the system is so chosen
that the centers of the N spheres are placed on the points
of a face centered cubic {fcc) lattice of appropriate di-
mensions for the density under study. This limits the
study to systems containing 4, 32, 108, 256, ...spheres.
This initial solid configuration is obviously far removed
from the typical configuration of a liquid. As the dy-
namics code runs the spheres leave their lattice posi-
tions and eventually, after many collisions, occupy a
configuration which is typical of the liquid state. Sev-
eral criteria are used to determine when this has
occurred. These are described later. The system is
then said to be equilibrated.

An alternative procedure would be to sample the con-
figuration using well developed Monte Carlo codes. An-
other procedure is to scale the positions of a previously
equilibrated dynamics run.

At the density 5=0.66686 there is a solid to liquid
phase transition,® Starting out in the fcc configuration,
it was found that a very large number of collisions is
necessary before melting takes place. Thus, it is easy
to study the ordered phase at this density. On the other
hand, it is very inefficient to wait for the system to
spontaneously disorder. Thus, the initial states of the
disordered phase at p=0.6666 were generated from an
equilibrated trajectory of the fluid at 5=0.625 by ex-
panding the volume of the spheres at each collision,
taking care that no two spheres overlapped. This was
done until a density of 0.6666 was reached.

All of this work is done in the reduced units in which
the molecular mass is one, the molecular radius is
one, and the linear velocities are scaled to give &, T
=1. In these units the moment of inertia of the spheres
can vary from 0 to 2/3, In particular, when the mass
is entirely concentrated in the center, 7=0. When the
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mass is distributed uniformly over the sphere, 7=2/5,
and when the mass is concentrated on the surface of the
sphere, I=2/3. The value of [ in these reduced units
is simply « given in Eq. (3.3b). In these units the ve-
locities are measured in units of (k5 7/M)'/% and the
Maxwell distribution is (27)3/2¢"¥?/2, The properties
of the rough sphere fluid, like those of the smooth
sphere system, when expressed in reduced units, do
not depend explicitly on the temperature. In fact, the
only significant parameters for the specification of the
state are the density 5 and the mass distribution pa-
rameter k.

B. Part I1: Trajectory calculations

The studies reported here involve a small number of
molecules (N=108) in a box of volume V. The motions
of these molecules are solved subject to periodic bound-
ary conditions. The system can thus be regarded as an
infinite system consisting of the “real particles” in the
original box and their periodic “image particles.” Thus,
if a real particle 7 has position (x;, v;, z;), it has images
at x,+ L, x;+2L, etc. Not only collisions between two
real particles but collisions between a real particle and
image particles must be considered in the calculation
of the phase trajectory.

In hard sphere fluids the particles follow linear tra-
jectories between instantaneous collisions. The first
step is to examine all pairs of molecules and to deter-
mine for which pair there will be a collision. If there
is a collision, the time at which it occurs is stored in a
list and a pointer is attached to the collision pair. This
list is easily constructed from the known positions and
velocities of the particles. The list is now examined to
determine the shortest collision time T, and thereby
the pair of particles that will collide first, The time
T, is subtracted from the other times listed and the
molecules are all advanced along free particle trajec-
tories for the time 7,. The linear and angular veloci-
ties of the colliding pair are then changed according to
Eq. (3.6). The time at which the collision occurred and
the new linear and angular velocities are stored on disc,
The two collision partners are then examined with re-
spect to all the other molecules and their images to
find out if the previously constructed list of collision
times should be changed.

This procedure is repeated. The total energy, linear
momentum, and angular momentum are checked peri-
odically to ascertain whether the algorithm is of suffi-
cient accuracy to satisfy the laws of conservation of
total energy, linear momentum, and angular momentum.
When the desired number of collisions is reached, the
final total phase point is stored for future enlargement
of the trajectory. Needless to say, the information
stored on disc allows reconstruction of the full phase
space trajectory whenever it is needed. The storage
required for 10800 collisions is 2,1x10% bytes of direct
access storage, 1.7%10° bytes of core storage, and
approximately 20 min of CPU time on an IBM 360/91
computer.

C. Part lll: Equilibration

A suitable measure of the translational order in the
system is given by the translational order parameter
N

L) = 1 Z [coskx,(t) + cosky,(t) + coskz,(1)] ,

4.1
3 4 (4.1)

where k=47/s and where s is the distance along the x
axis between the molecules on the fact of the fcc lattice
at the density under study. Given our choice of initial
conditions, £(0)=N. If the system disorders, ¢(f) should
decay from its initial value N and after a sufficient time
should fluctuate around an average value of zero. The
amplitude of these fluctuations should be +V'N. In this
latter region, the fluid is said to be in “configurational
equilibrium.” If the system remains in the solid phase,
£(¢t) should decay to some nonzero value about which it
should continue to fluctuate. It is then said to be in con-
figurational equilibrium, At the highest density studied
(p=0.6666), we were able to equilibrate at two different
order parameters: one finite (¢~108, solid) and one
zero (£=0, fluid). For all lower densities the equilib-
rium configuration corresponded to £=0 (fluids).

In addition to the order parameter ¢, the pressure P
and the contact pair correlation function g(¢) were cal-
culated using the virial theorem as outlined by Wood.

When both {(¢) and g(o) fluctuate by no more than 5%
around their respective average values, the system is
assumed to be in equilibrium, A trajectory consisting
of 10 800 collisions is then computed for this system in
microcanonical equilibrium,

D. Part IV: Time correlation functions

The time correlation function of the property A can be
evaluated as follows. The time over which the trajec-
tory is known, T, is divided into M equally spaced time
intervals A¢ (T=MAt). Denoting A, and 4,,, the values
of the property A at time #,=jAt and ¢,,,= (j+n)Atf, it is
clear that the time correlation function of A can be ex-
pressed as

1 M-n

(AQA)= 77— D A4, . (4.2)

- =1
If At is chosen very small compared to the correlation
time of the function, there will be much unnecessary
and time consuming calculation, whereas if Af is chosen
to be of the order of the correlation time, the resulting
function might be greatly in error. The choice of Af,
often called the graining, is totally within our control.

In the case of single particle properties, A'® is the
property of the ath molecule and Eq. (4.2) takes the
form

N M=n
<A(0)A(t)>=m X; ; ADALD @.3)

The data written on the disc in Sec. IV. C are written
at unevenly spaced time intervals, In order to utilize
Eq. (4.3) for the calculation of C,(¢) and C,(¢#), it is
necessary to reformat these data in such a way that the
phase space trajectory for the equilibrated system is
written in equally spaced time intervals. In all of our
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TABLE I. Initial slopes in mean collision

times,
p B 1

Tv Tw
0,100 0,862 0,457
0,200 0,862 0,477
0,270 0,877 0.465
0,333 0.857 0,473
0,400 - 0,857 0,475
0,500 0.857 0,477
0,555 0,885 0,466
0.625 0,835 0.459
0.666() 0,866 0.475
0.666(s) 0,861 0.472
Average 0, 862 0,472
Theory 0,857 0.476

studies, the equilibrated trajectory contains 10 800
collisions, and the value of x is 0.4, corresponding to

a sphere of uniform mass distribution. The graining
chosen is anywhere between 0.1 and 0. 4 collisions per
particle, depending on the correlation function and the
density being studied. The program produces three
randomly accessable files of data—one for the linear
velocities, one for the angular velocities, and one con-
taining information necessary for the calculation of C,(¢)
and C,(¢).

Files for a 108 particle trajectory are stored on an
STC Model 3330 Random Access Disc Drive and occupy
approximately 900 tracks of 13000 bytes each for latter
processing. This program normally requires 10 min
of execution time on an IBM 360/91,

In the early stages of this project, C,(f) and C,(t) were
evaluated by assigning unit vectors u to each molecule in
a random fashion and evaluating the correlation function
by direct calculation of Eq. (4.3). Because the correla-
tion functions are very sensitive to the relative orienta-
tion of u with respect to w, this method was rejected
because it was felt that it might introduce errors in the
correlation functions.?® An alternative procedure was
therefore adopted. In this procedure, a set of three
orthogonal body fixed axes are embedded rigidly in each
sphere. The reorientation of the body fixed axes of
the ath molecule is completely specified by the direc-
tion cosine matrix R‘*(f) evaluated in the laboratory
fixed coordinate system. Given the information gen-
erated on Block 2, the matrix elements, R,‘j” (#), can be
determined and stored on disc in equally spaced time
increments. If u‘® is a unit vector rigidly embedded in
the ath sphere, then

(O =R{P)uO) , (4.4)

where the Einstein summation convention is implied;
and where «{*'(t) is the ith component of u‘**'(#) in the
laboratory fixed coordinate system at time {£. Equation
(4. 4) can be used to evaluate the correlation function
Cy(¢) and C,(¢). )

To accomplish this, it is important to note that

(a) in an isotropic ensemble {u,u,)=30,,;

(b) R(t) is an orthogonal matrix, so that R,,(f)=Rj}(¢).
Then it is easy to show that

C,(®) =1 (TrR1(0) *R(¥)) (4.5a)
and

Co(t) =t { < [TrK(9)]?) - (TrK () - K(®)) - 2}, (4.5b)
where

KB =R -R({t'+7) . (4.5c)

These functions C,(f) are easily found from appropriate
time averages of the rotation matrices.

V. DATA ANALYSIS

The initial slopes of C,(#) and C,(f) were evaluated by
fitting polynomials of order 1-4 to the log of the first
ten points of the correlation functions and choosing for
the slope the value of the linear term of the polynomial
which has the smallest variance. The error was esti-
mated to be ~1% from the Zwanzig-Ailawadi formula
and was estimated to be 3% on the basis of several tra-
jectories run at a density of 0,3333. These initial
slopes are tabulated in Table I, in units of the inverse
mean collision time, along with the initial slope pre-
dicted theoretically using the binary collision operator
[see Eq. (3.13)]. The agreement should be noted, since
it is a measure of the consistency of the molecular dy-
namics study.

The velocity and angular velocity correlation times
determined from the initial slope are called the Enskog
correlation times in the ensuing discussion. In the
literature, the correlation time of a random variable is
defined as the area under its time correlation function
[ef. Eq. (2.12)]. In the ensuing discussion, these cor-
relation times are denoted by (area), and are evaluated
by Simpson’s rule integration of the experimental cor-
relation functions. Table I contains both the velocity
and angular velocity correlation times determined from
the initial slope (Enskog) and from the area. These
data are presented in reduced units—that is, in units of
the free rotor tumbling time (I/&T)'/2, Table II con-
tains additional data—all in the above reduced units,
7f and 7§ are the correlation times of C,(1) and C,(7),
74 is the Enskog collision time, and 8, and 3, are the
values of 8 which give, respectively, the best fits of the
Gordon J-diffusion model® to the experimental C,(7)
and C,(7). These values are called the optimized values
of B. Equations (2.13a) and (2. 13b) are used to deter-
mine the dependence of 7¥ for the J-diffusion model on
B. This is plotted in Fig. 1. For the sake of compari-
son, the experimental 7% are plotted vs the optimized
B; on the same curve, The poor agreement in the neigh-
borhood of the minimum points should be noted. The
reason that the M-diffusion result is not included for
comparison is that it gives areas that always lie above
the J-diffusion result., No attempt was made to find the
best fit parameters for the Fixman~Rider generaliza-
tion' of Gordon’s theory for the same reason. This will
be discussed in the next section. Suffice it to say that
the generalized extended diffusion model can not be
made to fit the results,
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TABLE II. Time constants from dynamics in reduced units,

- 1 1 1 1 1

p (Relative — — — —_— —

to close T 5 S 5 TS By Ba Eh ¥
packed) (Enskog) (Enskog) (Area) (Enskog)  (Area) (Opt) (Opt) (Dyn) (Dyn)
0,100 0,382 0.329 0,341 0.174 0,176 0,289 0. 306 1.82 0. 887
0,200 0.954 0.822 0. 840 0. 455 0,420 0,531 0,504 1.25 0, 632
0.270 1.49 1.29 1.27 0,694 0,621 0,778 0.824 1.11 0. 572
0.333 2,11 1.81 1.74 0,994 0.903 0,734 0.615 1.04 0.552
0,400 3.14 2,69 2.83 1.49 1.30 0,849 0.648 1.19 0,604
0.500 5,19 4.46 5.32 2,48 2.10 1,48 1.15 1.40 0,675
0, 555 6,46 5.71 7.35 3.01 2,43 1,87 1.28 1.48 0,729
0,625 9,62 8.03 15,0 4,38 3.7 3.18 3.02 1,92 0, 831
0.666() 12,0 10,1 24,3 5,59 4, 52 4,15 4.15 2.45 1.04
0.666(s) 8.93 7.60 89,3 4,42 3.48 3.21 3. 06 1,97 0,837

The optimized values of 8 were determined using the
procedure outlined in connection with Eq. (2.14). The
first 80 points of C¢™!(1) were used, and the optimized
value of §; is that value that minimizes the deviation
A (T, B). These values are then used to compute the
orientational correlation functions in the Gordon J-dif-
fusion model. This is done by Laplace inverting Eq.
(2.8b). An algorithm was developed using the IBM SSP
fast Fourier transform routine. 500 Fourier coeffi-
cients proved sufficient to do all the work here. A
comparison between the experimental C,(r) and C,{r) and
those predicted using the Gordon theory is presented in
Figs. 2 and 3.

The same fast Fourier transform procedure was fol-
lowed in evaluating the extended diffusion model in the
Enskog approximation!! as evaluated by Chandler [cf.
Egs. (3.17)-(3.19)], The values of 8 were evaluated
using Eq. (3.17) and thus come directly from column
5 of Table II. A comparison between experiment and the
orientational correlation function predicted on the basis
of the Enskog theory!! is presented in Figs. 2 and 3.
The disagreement between the theory and experiment
is larger than the possible uncertainty in the experi-
mental results. The experimental uncertainty is of the
order of +0.02 (see below).

To compare the Fokker—Planck theory'?'!® with mo-
lecular dynamics, we followed the following prescrip-
tion, According to Eq. (2.21a), C,(7) should decay ex-
ponentially in time with a rate of decay 8. However,
this exponential decay should not be taken literally.
Rather, it represents the angular velocity correlation
function in a coarse grained sense. Thus, we choose the
value of g such that we get the correct zero-frequency
value; that is,

Bl=7*(area) .

(If we chose the literal interpretation of the exponential
decay, then B-!=7¥%(slope).] As a result, the Fokker—
Planck theory requires one parameter which must be
extracted from the experimental data and is not cal-
culable from theory. The values to be used in the Fok-
ker-Planck theory are thus readily found in column 6 of
Table II, Fortunately, Fixman and Rider'? have de-
veloped algorithms for computing C,(7) for each of the
values of 8. The results of their calculation are com-

pared with dynamics in Fig. 4. The excellent agree-
ment should be noted. For very large values of 8, the
Fokker-Planck theory should reduce to the Debye model
of small step diffusion with a rotational diffusion coef-
ficient D¥ (in reduced units),

D¥= "= t*(area).

Thus, if the Debye model is valid, C,(r) should decay
as exp - [{{+1)D%7. A comparison of the Debye model®
with dynamics is also presented in Fig. 5 only for those
states for which it is in reasonable agreement. There
is no sense comparing this theory to the observed highly
nonexponential functions. The areas under the correla-
tion functions C;(1) and C,(7) predicted on the basis of
the Fokker—Planck theory are plotted vs 8=1/7%(area)
in Fig. 1. For the sake of comparison, the measured
values of 7¥ are also plotted vs 1/7%(area). The excel-
lent agreement for sufficiently high values of 1/7*(area)
should be noted.

The various orientational correlation times are pre-
sented in Table III.

Vi. DISCUSSION

It is clear from Fig. 5 that the angular velocity cor-
relation function deviates positively from the Enskog
correlation function, Eq. (3.14b). This positive devia-
tion grows with density over the whole range of fluid
densities and indicates that even at low densities, cor-
related collisions play an important role—so much so,
in fact, that simple models of reorientations based on
independent binary collision theory such as the Enskog
model developed by Chandler!! cannot describe the re-
sults. This positive deviation indicates a persistence
of angular velocity which may have its aetiology in hy-
drodynamic effects according to which C,(f) — #~@*2/%),
where d is the dimensionality of the system.2® So far,
there is no indication that this is the case, but we are
currently involved in a rather extensive exploration of
this problem. Several points must be considered in
connection with the positive deviation. First, it is not
obvious that the deviation should be positive, The linear
velocity correlation function of the rough sphere fluid
is also shown in Fig, 5. It is important to note that this
function deviates negatively from the Enskog correla-
tion function [cf. Eq. (3.14b)] and at high fluid densities
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FIG. 3. See Fig. 2 for description of symbols. This graph for C,’s uses the same notation,

become negative. This is entirely consistent with the
observed density dependence of the velocity correlation
functions in the smooth hard sphere fluid, and in the Len-
nard-Jones fluid. Thus, in a rough sphere fluid, as

the density increases the angular velocity correlation
function deviates more and more positively from the
Enskog theory, whereas the linear velocity correlation
function deviates more and more negatively from the
Enskog theory. This stands in marked contrast to molecu-
lar dynamics (and other experiments) on fluids contain-

ing anisotropic molecules?” where the behavior of the
angular velocity is much like the linear velocity—with its
high density negative deviation. In these fluids the cage
effect is thought to be responsible for the fact that on

the average a collision reverses both the angular and
linear velocity, thereby leading to a negative region in
both the vef and the avef at sufficiently high densities.
The positive deviation of C,(#) in the rough sphere fluid
even at the melting density is therefore quite unex-
pected—and has yet to be explained on theoretical
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FIG. 4. The orientational correlation functions C;(7) and C,(7) vs the time in units of the collision time at different densities.
Dashed lines are the dynamics data. The solid lines are the curves predicted by the Fokker—Planck model. The dots are the cor-
relation functions predicted by the rotational diffusion model.

tence of angular velocity, the fluid behaves more like a
collection of free rotors (where the avef stays constant),
and the orientational correlation functions should de-
cay faster, Thus, in general, we should expect the C,(1)

grounds.

It is important to note that if C (¢} deviates positively
from the Enskog theory—that is, if there is a persis-

TABLE III. Orientational correlation times,

T ke Tt T TF TS 5 TS
p (Dyn) (F-P)! (Opt)  (Enskog) (Dyn) (F-P)!  (Opt) (Enskog)
0.100 1.815 1.50 2.05 3.09 0,887 0.600 0,997 1.55
0,200 1.25 1.07 1.45 1.55 0,632 0,538 0,745 0,790
0,270 1,11 1.02 1.30 1.33 0,572 0, 542 0,664 0.680
0.333 1.04 1.03 1.32 1,29 0.552 0,555 0,701 0.650
0.400 1.19 1,11 1.29 1.37 0.604 0,582 0.692 0,670
0. 500 1.40 1.37 1.36 1.69 0.675 0.653 0,651 0,770
0.555 1.48 1.50 1.48 1.91 0,729 0, 686 0,657 0.834
0.625 1.92 2,05 1.97 2.49 0,831 0,831 0,835 1,00
0.666(1) 2.45 2,42 2,38 3.04 1.04 0.935 0,979 1.18
0,666(s) 1,97 1.95 1.98 1.91 0, 837 0,802 0,839 1,02
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FIG, 5. The angular and linear velocity correlation functions
showing, respectively, the positive and negative deviations
from the Enskog result. In both cases the lowest density shown
(0.100) is coincident with an Enskog exponential curve.

to decay more rapidly than would be predicted by the
Enskog theory. This is clearly evident in Figs. 2 and 3.

As was pointed out, the rough sphere system has a
melting transition at 5=0.666. The C,(¢) for the fluid
and solid at this density are presented in Fig. 6. Figure
6 indicates that in the solid, C,(7) decays more slowly
than in the fluid. In fact, the positive deviation from the
Enskog result is less for the solid than for the fluid.
Thus, it would appear that the spheres tumble more
freely in the solid than in the liquid, a fact consistent
with the larger collision frequency in the liquid. This
conclusion is also reflected in Fig. 6, where the orien-
tational correlation functions C;(7) and C,(r) for the
fluid and solid are compared. Thus, we conclude that
rough spheres tumble more freely in the solid than the
liquid state.

Comparing the orientational correlation times 7¥ pre-
dicts on the basis of the J-diffusion model [cf. Eq.
(2.13a)] with dynamics in Fig. 1 and Table III, we see
that there are densities for which the optimized 8’s
yield ¥ which are larger than the experimental correla-
tion times. In fact, there are no B8’s for which the
theory can give several of the observed 7¥. This clear-

ly argues against the viability of the J-diffusion model,*

This model fails to give the correct C,(¢) and in addition
fails to give the correct orientational correlation times.
As is clear from Figs. 2 and 3, the J-diffusion model
also fails to give the detailed time dependence of the
C,(7) for those densities for which it also fails to give
the correct orientational correlation times. Despite
this, at high densities it is possible to find values of 8
for which agreement can be achieved, but the value of

B which is optimum for C,(r) (denoted by £;) is not nec-
essarily the same as that for C,(7) (denoted by $,). This
is clearly seen in Table II. Nevertheless, the differ-
ences between 53 and 8, may not be large enough to say
categorically, given the experimental error, that there
is no self-consistency in the theory. From the above,

it is clear that the J-diffusion model is qualitatively
useful but is incapable of correctly giving C,(7) at in-
termediate densities and, moreover, cannot simultane-
ously give both C,(7) and C,(7). In addition, the optimum
values of 3, and 8, neither agree with each other nor
(more seriously) do they seem to have anything to do
with the collision time (see Table II).

The Enskog theory as advanced by Chandler'! also

fails. First, the angular velocity correlation function
1.0 .
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deviates positively from the Enskog approximation.
Secondly, a plot of the experimental 7¥ vs 1/7% g0,
deviates considerably from the theoretical curve. This
is indicated in Tables II and III, and in Fig. 1. Thirdly,
the predicted orientational correlation functions, as in-
dicated in Figs., 2 and 3, are out of line with the experi-
mental curves, It is clear that the set of plausible as-
sumptions that were made by Chandler do not suffice
for a description of orientational relaxation.

Chandler has pointed out?® that his derivation of the J-
diffusion model is actually the unique microscopic deri-
vation of that theory. This fact is easily understood in
view of Eq. (3.18a). There is only one truncation of the
cumulant series which yields the J-diffusion model re-
sult that K;(#) is K{°’(¢) times an exponential, Thus,
Chandler’s Enskog theory actually removes the adjust-
ability of the parameter 3 in the J-diffusion model, and
any criticism of the Enskog theory is also a criticism of
the J-diffusion model. However, experimental work
frequency treats g as adjustable. For this reason we
have also presented a test of the J-diffusion model in-
dependent of Chandler’s microscopic analysis.

There is evidence that a good approximation to the
memory function K,;() introduced in Eq. (3.18a) is

K, () =KD (1) C(8)

where K'(¢) is the free particle memory function and
C,(#) is the experimentally determined correlation
function, Nevertheless, for this to be useful there must
be a theoretical determination of C,{t), a theory that
does not presently exist.

The M-diffusion and the generalized extended dif-
fusion models of Fixman and Rider are less satisfactory
than the J-diffusion model because for all values of 3
=Bg+ By, C,(1) would decay even more slowly in these
models than does the J-diffusion model.

The only theory that has any success at moderate and
high densities is the Fokker—Planck theory, but this
also fails at low densities. These conclusions are borne
out by Fig. 4, where the excellent agreement between
the theoretical and the experimental C,(r) is displayed.
In addition, the orientational correlation times also
agree, as is evident in Fig. 1 and in Table III. It is al-
so clear from Fig. 4 that the Fokker-Planck theory

B o C,(7)

et a 1)
= L
>3
S 4 T
“FS MELTING
. L DENSITY
o
T er

O 1. 1 | 4 1 1 1 1.

0 02 04 o6 - 08
REDUCED DENSITY

FIG. 7. Test of the Hubbard relation [cf. Eg. (3.21)] using the
relaxation time of C,{t) defined by its time integral.

reduces to the Debye model only at the very highest
densities. The friction constant was chosen such that
the correct 7*(area) is achieved. The rotational dif-
fusion coefficient then turns out to be D¥ = t¥(area).
The Fokker-Planck theory is not very successful at

low densities. It is quite possible that a Fokker—Planck
equation with memory would work:

[%Hw-IJP(z‘h Jot @B (= TIV, - [v“;% w] P(r)=0,

where P is the joint probability distribution function de-
fined immediately following Eq. (2.19a), and &,(7) is
the experimental angular velocity memory function.
This is a very difficult equation to solve and is also use-
ful only if & (f) can be independently determined.

In conclusion, no model known to the authors has yet
been devised which explains even the simplest single
particle orientational correlation functions over the
complete range of fluid densities. Most of the problems
seem to arise at densities such that inertial effects are
comparable with collisional effects. This is somewhat
surprising, since it is precisely in this density regime
that we would have expected the extended diffusion mod-
els to work. It appears that even at the lowest densi-
ties, the Enskog theory works less well for orientational
relaxation than it does for the linear and angular velocity
correlation function,

The high density—Hubbard relation'* [see Eq. (3.21)]
was tested by plotting I(I+ 1)7¥7%(area) vs the density.
The result is shown in Fig. 7. It is clear that if the
Hubbard relation is valid, then at high densities the
curve should approach unity for both /=1 and I=2. For
1=1 this seems to happen at densities =0.625, whereas
for 7=2 it can happen only for densities >0.666, which
is the melting density. We conclude that the Hubbard
relation'* is not valid for the rough sphere model at fluid
densities. It is expected that this relation may account
for the behavior in metastable superdense fluids, but we
have not pursued this matter here.

In conclusion then, we emphaize the following points
concerning the rough sphere system:

(a) Particles rotate more freely in solid than in the
liquid phase at the melting density. In addition, the de-
viation from Enskog in C,(f) decreases from liquid to
solid and in C,(#) increases from liquid to solid.

{b) As in the smooth sphere fluid, C,(7) deviates
negatively, whereas C,(r) deviates positively from the
Enskog results. These deviations grow with density,
but the deviation in C,(7) seems to arise at lower densi-
ty than that in C, (7). These deviations reflect the im-
portance of correlated binary collisions and, at least for
C,(7), these occur even at low densities.

(c) The J-diffusion model is incapable of accounting
for several features of these experiments. First, only
at sufficiently high densities can parameters 8 be found
which give reasonable C,(r), but even then these values
of B can in no way be interpreted as the collision rate.

In addition, the 8’s which are optimum for C, are not
optimum for C,. More importantly, no B’s can be found
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for densities for which inertial effects are comparable
to collisional effects which simultaneously give agree-
ment with the observed C,(r) or with the observed orien-
tational correlation times. In addition, the optimized
choice of B even at high densities does not appear to be
given by the collision time as required by Gordon’s for-
mulation, nor is it given by the angular velocity cor-
relation time in the Enskog approximation as would be
required by the Chandler theory.

(d) Any extended diffusion model intermediate between
the M- and J-diffusion model gives even worse agree-
ment than the J-diffusion model.

(e) The Enskog theory advanced by Chandler does not
agree with experiment even at low fluid densities where
we expect the Enskog approximation to be valid,

(f) The model which seems to agree with experiment
over the widest range of densities is the Fokker-Planck
theory. This model does not describe with accuracy the
range of densities for which the inertial and collisional
effects are of the same magnitude. The data do not go
to sufficiently small densities, but we suspect that the
Fokker—Planck theory will not work for rarified fluids.

(g) The small step diffusion model seems to give ap-
proximate agreement only at the two highest fluid densi-
ties studied.

(h) The high density Hubbard relation does not seem
to be valid at any stable fluid density.

Since almost all the theories outlined in this paper
are Markoffian theories, !? their failure at low densities
may indicate the failure of the Markoffian theory.

It is important to note that the rough sphere fluid is a
highly idealized model which probably underestimates
the collisional effects on the angular decay that are
present in anisotropic fluids. For example in real
fluids, the rotation of anisotropic molecule can involve
the displacement of neighboring molecules; that is, free
volume must be present for the molecule to tumble,
This is not required in the rough sphere fluid where
molecules have exact spherical symmetry. Neverthe-
less, it would not be surprising if some spherical tops
like CH, or CCl, were to exhibit similar properties to
the rough sphere fluid. Needless to say, to compare
these systems to the rough sphere fluid, the appropriate
value of ¥ must be used, and we have studied only the
case of k=0.4, There may be interesting dynamical ef-
fects at different values of x, a subject we leave for
future study. In addition, it is not difficult to change
the roughness of the sphere. Since we have been deal-
ing here with the roughest possible sphere, we do not
think that lessening the roughness will bring the model
closer to real systems,.

Needless to say, there is always some experimental
error in a molecular dynamics study. We have run
five different runs on the density 0, 3333 and find from
the normal error analysis that our curves are good to
within a few percent. This conclusion is also borne out

by Table I, in which the initial siopes are compared with

“exact” initial slope. In addition, three different runs
of 10 800 collisions were made at density 0,500. In

I-0

08 p=.500

06
Ci(t)

0-4

02

h i 1 L i 1
o] 20 40 60 80 100
TIME ( IN MEAN COLL. TIMES)

FIG. 8. Comparison of three different dynamics experiments
at $=0,500. The dots are the results of the experimental C,’s
and the solid lines are the Enskog correlation functions. The
error bars indicate the spread in the initial slopes in C, (7).

Fig. 8 the orientational correlation functions C,(7) and
C,(7) for these three runs are compared with the Enskog
theory, The Enskog curves were computed using the
three different slopes 1/7*(slope) from the dynamics,
These curves clearly show that there is a discernable
difference between theory and experiment.

Although the accuracy can be improved by studying
either a larger system or by running alonger trajectory,
we are confident that our conclusions are correct. To
improve our accuracy by a factor of 10, our computer
use would have had to be increased by a factor of 100,
from 5 h to 500 h, We are presently involved in a very
elaborate study of long time tails in the rotational re-
lation of rough spheres and ellipsoidal molecules.
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