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We have extended the molecular dynamics method to permit the simulation of systems containing
cylindrically symmetric molecules with arbitrary eccentricity. This extension is accomplished by means
of a potential energy function which models the primary interaction effects of molecular anisotropy,
and which is mathematically convenient for computer use. The method is then applied to two
problems, one involving the stability of the nematic liquid crystal phase, and the other illustrating

the effect of cooperative reorientation on spectral line shapes.

INTRODUCTION

The technique of computer simulated molecular dynam-
ics has proven to be a useful aid to our understanding of
the relationships between the motion of individual mole-
cules and the observable properties of matter. Given a
postulated intermolecular potential energy function, one
numerically integrates the classical equations of motion
for an assembly of 102~10° molecules and thereby obtains
a trajectory in phase space containing detailed micro-
scopic information about the molecular system. Statisti-
cal mechanics then enables one to use the phase space
trajectory to calculate a variety of quantities of physical
interest.'

The complexity of intermolecular potential functions
for polyatomic molecules has limited the application of
molecular dynamics to systems consisting of relatively
simple molecules. Most molecular dynamics simula-
tions performed thus far have dealt with spherically
symmetric particles. Some work has also been carried
out on molecules such as N,, CO, and H,0.2"* In these
studies, molecular anisotropy was modeled through the
use of expressions for dipolar and quadrupolar inter-
actions and through the use of force centers located on
individual atomic sites on the molecule. In the latter
case, the total interaction of two molecules is a sum of
atom-atom interaction terms. We know of no molecular
dynamics study to date, however, of molecules with sub-
stantial anisotropy.

In this article, we describe a method for modeling the
interactions of cylindrically symmetric molecules of
arbitrary anisotropy. The model is based on an intui-
tive picture of the primary effects of molecular anisot-
ropy on the interaction potential. Our method is suf-
ficiently simple that it may easily be incorporated in a
molecular dynamics program, and yet it is sufficiently
flexible to allow the simulation of highly elongated par-
ticles. As a result, one may probe the dynamics of
reorientation and the effects of anisotropic molecular
structure under a variety of conditions.

The details of the modeling procedure are briefly
described in the following section. In the remainder of
the paper, we shall discuss two applications of the meth-
od. The first of these involves a search for the condi-
tions of molecular eccentricity and density necessary
for the existence of a stable nematic liquid crystal phase.
The second application is an analysis of cooperative ef-
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fects in reorientation. Such effects are important in the
interpretation of depolarized Rayleigh light scattering
in liquids. In addition, two applications of our method
have been reported previously.*® These involved the
dynamics of angular velocity relaxation and the relative
importance of the repulsive and attractive parts of the
Lennard-Jones potential in self-diffusion,

THE MODEL

Berne and Pechukas have recently proposed a Gauss-
ian overlap model of the interaction.of two cylindri-
cally symmetric molecules.” Each molecule is envis-
ioned as an ellipsoid of revolution whose spatial orien-
tation is specified by a unit vector # parallel to the
molecule’s major axis. Each molecule is characterized
by a three dimensional Gaussian distribution of force
centers, characterized by a length g, parallel to % and a
width o, perpendicular to #. The interaction energy of
two molecules is modeled by evaluating the overlap in-
tegral of their two associated Gaussians (see Fig. 1).
When evaluated the integral 7 is seen to depend on a
strength parameter ¢ and a range parameter ¢ which
are analytical functions of the relative position and
orientation of the two molecules.
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Here, y is determined by the anisotropy of the ellipsoids;
ifa =0,/0,, then

x=(a%-1)/(a?+1) .

7, and #, are the orientation vectors of the two molecules.
r is a vector joining the two centers; it has magnitude
7, and #=1/¥. ¢ and ¢, are scaling parameters.

The parameters ¢ and ¢ reflect the spheroidal sym-
metry of the molecules. It is then possible to use these
orientation dependent parameters in any of the variety
of two-parameter potentials which has been proposed to
describe atomic interactions.
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NON-CENTRAL POTENTIAL

FIG. 1. The geometrical significance of the parameters used
in defining the overlap potential. k=a is the axial ratio,

We have used the ¢ and € generated by the Gaussian
overlap model in the Lennard-Jones 12-6 potential:
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By this means we construct a differentiable potential
energy function which depends realistically on the dis-
tance between the molecular centers, and whose depen-
dence on molecular orientation is based on a geometri-
cally intuitive model. Molecules of any eccentricity
may be handled with equal ease, since the expressions
for ¢ and € incorporate the length to width ratio of the
molecule. This feature distinguishes our potential from
multiple force center potentials such as that due to
Corner, which become unwieldy at large eccentricity.®
Furthermore, the fact that the orientation dependent
Lennard-Jones potential is differentiable makes it very
convenient for molecular dynamics calculations, as
opposed to a hard ellipsoid model or the Kihara poten-
tial.? We therefore consider the model a useful tool in
the examination of the properties of anisotropic systems.

STUDIES OF THE STABILITY OF NEMATIC ORDERING

Nematic liquid crystals are characterized by the long
range rotational order of their constituent molecules,
while they retain the translational disorder found in or-
dinary liquids. This ordering results in experimentally
observed anisotropy in the mechanical and optical prop-
erties of nematic substances.®

The nematic state is observed in dense systems of
elongated molecules. One may therefore surmise that
nematic ordering is primarily a consequence of steric
hindrance to molecular reorientation.!' There has been
some recent experimental evidence in support of this

interpretation.’? It is therefore of interest to determine
the conditions of density and molecular eccentricity re-
quired to sustain nematic ordering. Such information
should provide some insight into the question of which
molecular systems may be expected to exhibit a nematic
phase.

We have examined the stability of nematic ordering
in a number of two dimensional systems of ellipses
which differ in number density p and axial ratio a =¢,/0,.
In a geometric interpretation of nematic ordering, the
temperature would be expected to play a less important
role than p or a. The temperature was consequently
not treated as an independent variable. In each system,
however, constant temperature was maintained by the
velocity scaling technique common in molecular dynam-
ics studies.

At the start of each run, rotational order was imposed
by switching on an external electric field. Each of the
144 molecules was imagined to have an anisotropic po-
larizability of the form

a=o,ai+a, (1-a4),

where | is the unit tensor. In the presence of an electric
field E, a term is added to the energy of each molecule
of the form

Ve=—%E° a-E

If E=E#, where # is a space fixed direction, and o, >a,,
then V, produces a torque tending to align the molecules
along 7, Therefore, when the field is on the entire sys-
tem becomes rotationally ordered. The degree of or-
der is measured by a rotational order parameter ¢,

_ {((12- 7)?—% ; 2 dim

ClGE- R~ ; 3 dim
where the average is taken over all the molecules in
the system.

After a system is ordered by means of the electric
field, the field is switched off. The order parameter
¢ is then monitored to see whether the field-induced or-
der relaxes. If the order parameter stabilizes at a
value significantly higher than zero, and if the density
of the system is lower than the expected solid density,
we infer that the nematic phase exists.

There is a substantial difficulty with this procedure.
One can never be certain that a given system has attained
thermodynamic equilibrium.!?® It is easy to see that a
very dense system may become caught in a configurational
bottleneck, which results in a long lived metastable
state. Indeed, we have noted, in several of our studies
time periods on the order of 10000 time steps during
which the order parameter did not vary systematically,
followed by a sudden change of ¢ to a new plateau value.
Such a shift in the value of ¢ indicates that the system
has found a pathway to a persumably more stable con-
figuration. Therefore, one must be guided to some de-
gree by intuition and by past experience in the interpre-
tation of these studies.

2

The results of our studies are summarized in Table
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TABLE I, Results of studies on the stability of rotational or-
dering, a is the axial ratio, p/p, the density relative to the
close packed density, M the number of time steps calculated,
and ¢ the final value of the rotational order parameter.

a p/pg M 4

3 0.75 42 000 0.83
3 0,70 38 000 0,44
3 0,65 36000 0,21
3 0,63 40 000 0.15
3 0. 60 14 000 0,03
2 0, 90 20000 0,75
2 0,30 44 000 0,17

I. The density for each system is expressed relative

to pg, the density at close packing. p, is obtained by
congidering a system of hard spheres of diameter .

In two dimensions the density at close packing for such

a system is p,02=2/y3. For a system of ellipses of
axes 0, and a g, one obtains py62=2/a/3. The column
headed by M indicates the number of time steps for which
each system was followed after the electric field was
switched off. ¢ is the approximate value of the rotational
order parameter after the M steps. In the states of low
rotational order (£<0.3), ¢ was subject to fluctuations

of large amplitude and extremely long lifetime (greater
than 2000 steps). As a result, a reliable determination
of ¢ for these states was quite difficult.!*

There has been a recent Monte Carlo study in two
dimensions of the equation of state of ellipses of axial
ratio 6.'® In this study a solid—-nematic transition was
observed at a melting density of p,/p,=0.87. In addi-
tion, it is known that the melting density for hard discs
(a=1) is p,/py=0.79.% It is therefore reasonable to
assume that the melting densities for ellipses of a =2
and a =3 lie between these two values. We note from
Table I that the state (a=3, p/p;=0.75) appears to have
stable rotational ordering at a density below the expected
solid density. Even at the still lower density p/p, =0. 70,
the a =3 system maintains significant ordering.

These results indicate that a system of ellipses of
axial ratio 3 is capable of exhibiting a stable nematic
phase in a range of densities intermediate between the
solid and the isotropic liquid. This behavior is in con-
trast to the two dimensional g =2 system. In the latter
case, at density p/py=0.80, which should be very close
to the melting density, the degree of rotational order is
still quite low. The system seems well ordered at
p/pp=0.90, but such a high density should correspond
to the solid phase.

The variation of ¢ with p/p, for a =2 and a =3 is dis-
played in Fig. 1, along with the results of Ref. 15 for
a=6. The plots illustrate the loss of ability to sustain
rotational order as the axial ratio is lowered.

In addition, we have carried out a number of studies
of nematic stability in three dimensions., These studies
were less systematic than the two dimensional studies
described above, but a state was found which appears to
support stable rotational ordering. This state, with
a=3.5 p/py=0.71, and £=0.85, was used as a proto-
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type for nematic behavior in some of our previous work. *¢
We have also used this state to observe anisotropic ef-
fects in translational self-diffusion.

A simple argument involving tensor analysis (see Ap-
pendix) may be used to relate ¢ to D,/D,, the ratio of
the distinct principal components of the self-diffusion
coefficient tensor.'” The result of this argument is

D, _(1+2¢)(DY/DY+2(1-¢)
D, (1-9(@YVDN+@+0

DY DY is the ratio which would be observed in a system
of perfect rotational alignment (£=1). If D,/D, is known
for a particular ¢, the above expression may be used to

find D,/D, for any ¢&.

In Ref. 6 we have presented graphs of the velocity
correlation function for our three dimensional nematic-
like system, decomposed into velocity components par-
allel and perpendicular to the preferred alignment di-
rection. (In these studies it is clear that an ellipsoid
is more mobile when moving parallel to its principal
axis than perpendicular to it. This conclusion is also
reached with respect to translations in the isotropic
liquid phase.) From the area under these curves, D,/D,
was found to be 7.14. Since {=0.85 for this system,
we may use our expression to estimate D,/D, for a model
system with an order parameter typical of an actual
nematic liquid crystal. It has been determined that
£=0.556 for para-azoxyanisole (PAA) at 125 °C.'® Qur
model would then predict D,/D,=3.35. This estimate
is considerably above the recently measured value of
1.26.!° Nevertheless, given the simplicity of our model,
we regard the studies described here as quite useful in
establishing a physical picture of how nematic anisot-
ropy comes about, and in observing qualitatively the
effects of this anisotropy.

COLLECTIVE EFFECTS IN REORIENTATION

It has been known for some time that depolarized
light scattering may be used to probe the dynamics of
molecular reorientation.?® The line shape observed in
Raman scattering contains information about single par-
ticle reorientation, while the Rayleigh scattering line
shape may be influenced by cooperative rotational dy-
namics in the scattering volume. If the rotational width
of a Lorentzian Raman line is I'y, then recent theoreti-
cal analysis has shown that the spectrum of collective
reorientations is also characterized by a single width
T, which is simply related to I' 21"%%;

rc:rs[(l +Ng)/(1 +Nf)]-

Here, N is the total number of scattering molecules in
the scattering volume, and fis a factor describing the
static orientational correlation of distinct molecules.
For molecules with cylindrical symmetry, fis given by

f:<Pz(ai * 72,)) ’

where #; and &, are the major axis vectors of two dif-
ferent scatterers. g measures the dynamic angular mo-
mentum correlation of two distinct molecules.

Recent experiments have been conducted to investigate
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FIG, 2, The variation of the rotational order parameter with

density. The dots and the curve going through them were taken
from Ref, 15 for ellipses of axial ratio 6. The crosses are
our data for a=3 and the triangles are our data for a=2,

the effect of cooperative rotation on depolarized Rayleigh

line shapes.? We have examined these collective motions

in two systems through molecular dynamics. One sys-
tem consisted of 256 prolate ellipsoids with axial ratio
a=2. The density was po)=0.405 and the temperature
was kT/€,=0.587. In the other system, the particles
were oblate ellipsoids modeled after the benzene mole-
cule, The intermolecular potential parameters were
selected to correspond to benzene by a numerical fit of
the temperature dependence of the second virial coef-
ficient.?* The simulated density was 0. 8787 g/cc, and
the temperature was 80 °C. Both of these phase space
trajectories were carried out for 3000 time steps.

The relevant single particle reorientation correlation
function for cylindrically symmetric particles is C,(2):

0.0
a
— b
4
w
g -1of
Q
Q
=
=
w
v
20 ! 1 L 1 L
0.0 05 1.0 15 20 25 30
TIME
FIG. 3. LogyC;(t) for system of prolate ellipsoids. (a) =1,

(b) I=2, The time is shown in reduced Lennard-Jones units of
To=0(m/€g) /2,

0.0

SEMILOG ORIENT

-20

- | 1 | |
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FIG. 4. Log;,C;#) for benzene-like system. (a)l=1, (b}1=2,
The time is shown in reduced Lennard-Jones units of T,
=aolm/€)1 /2,

C(t) = (P(2(0) . 2(2)) .

If a scattering volume contains N depolarizing scatterers,
the relevant collective reorientation function is C§ (#):

Ci(B=( 2 P(a'0)- 2')),
i,JeN

where the particle indices 7 and j range among all of the
N molecules, From our dynamics data, C,(f) was cal-
culated in the normal manner for evaluating single par-
ticle correlation functions. To calculate C§(f), we
labeled N of the 256 ellipsoids at random and only con-
sidered correlations among the labeled molecules, N
could then be varied so that a sampling of “concentra-
tions” of scatterers could be observed from a single
molecular dynamics trajectory.

Figures 3 and 4 show the function C,(?) for the two
dynamics systems, as well as the analogously defined
reorientation correlation function C,(¢). From the ap-
proximately linear shapes of the semilog plots, and from
the ratios of the slopes (I',/T;~3) of C,(f) and C,(¢) for
the two systems, one can see that these systems are
fairly well described by the Debye model of rotational
diffusion, Single particle rotational spectral line shapes
for these systems would therefore be Lorentzians, with
the width T, related to the rotational diffusion coefficient,

The function CJ(#) for a number of concentrations are
shown in Figs. 5 and 6. In accord with theory, the co-
operative reorientation correlation functions are each
characterized by a single relaxation rate I',. Collective
effects manifest themselves primarily by decreasing I,
as the concentration increases. Our data was not suffi-
ciently precise to permit a reliable quantitative deter-
mination of the variation of I'; with N. Nevertheless,
our results provide a complement to the theory by illu-
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FIG. 5. Log;,C} () for system of prolate ellipsoids. (a) N
=192, (b) N=128, (c) N=64, {d) N=32, The time is shown in
reduced Lennard-Jones units of TO=00(m/eo)”2.

strating the contribution of collective motion to rotational
spectra.

DISCUSSION

In the molecular dynamics studies reported here the
potential used was a Gaussian overlap model Lennard-
Jones (12-6) potential truncatedat its minimum, Several
previous studies have shown that for sufficiently dense
systems the truncation should not significantly alter the
structure or dynamical behavior®®'® of the fluid. As was
already pointed out truncation results in a considerable
saving of machine time, Despite this, these studies re-
quire a rather generous parcel of machine time—so
much so, in fact, that it is very difficult to study the
orientational properties of highly anisotropic fluids with
sufficient accuracy to make definitive quantitative state-
ments. One of the big problems results from the fact
that there exist two widely different time scales typifying
the translations and reorientations. In dense highly
anisotropic systems the angular velocity decays very
rapidly compared to the reorientations. Thus to exa-
mine orientational correlations one must generate a very
long trajectory—a very costly procedure. Thus it is
imperative to develop codes for handling systems with
two widely different time scales. Some progress has
been made in this context in a different problem, diffu-
sion in the solid state, Nevertheless much remains to
be done here, Also larger systems must be dealt with,
Using modified bookkeeping procedures?® we are current-
ly studying considerably larger systems.

Given the foregoing difficulties, this article can only
be considered as a “first foray” into the important area
of anisotropic fluids. There are several novel proce-
dures used in this study. To our knowledge this is the
first time in molecular dynamics that any orientationally
ordered phase has been studied. This was accomplished

by subjecting the disordered fluid to an orienting (sym-
metry breaking) external field. When this external field
is turned off the system either retains its order or does
not, The time dependence of this order parameter was
determined. The main feature to be stressed here is
that there should be many applications in molecular dy-
namics in which ordering fields will be useful.

1t should be noted that we have simulated only pure
fluids. Nevertheless, by randomly labeling particles
we have been able to study the cooperative properties
of solutions. This technique should be of considerable
utility in solution studies. Of course it is possible to
simulate solutions consisting of entirely different mole-
cules. This however is a very time consuming and ex-
pensive task. At low concentrations very lengthy run
times are required to obtain useful statistics. In addi-
tion each concentration requires an entirely new run,
Of course this lengthy program is desirable for study-
ing real solutions. Qur technique however is very use-
ful for the study of a fictitiously labeled solution. In
one production run it is possible to study solutions over
a wide range of concentrations by simply sampling dif-
ferent numbers of labels.

As far as our model potentials are concerned, they
are simple, intuitively appealing, and quite analogous
to those model potentials that have served the statistical
mechanics community so well in the past. Recently
MacRury et al. have determined the potential param-
eters for several molecules from gas phase virial coef-
ficients and have compared this model to other potential
models.? The usefulness of the model is demonstrated.

Needless to say, much remains to be done with these
interesting systems, This paper should be regarded as
the first in a series of studies on anisotropic fluids.

APPENDIX

In this Appendix, we derive the relation between D,/
D, and ¢ used in the text. Consider an “ideal” nematic
sample which is perfectly aligned; that is, all of the
molecular #’s are the same direction, A general ex-
pression for the diffusion tensor of this material is

D°=D8 1+ (D -D%) (- L1)

where DJ=4(D%+2D?). The diffusion tensor of a real
nematic may then be written as an average over the dis-
tribution of molecular #’s:

D=D5 1+ (D0 - DY) (i - 5V) .

If the preferred alignment direction is #, the component
of D describing diffusion parallel to # is

D,=#.D.#=D§+ (D} =DY){(ii. i)2 =9 .

Since the rotational order parameter has been defined by
g=(Pylit. 7)) ,

we obtain
D, =D§+5 (D) -DD)¢t

Now, molecular rotation can not alter the trace of D.
The component of D describing diffusion perpendicular
to #, D,, may therefore be obtained from
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FIG. 6. Log;,CY () for benzene-like system. (a) N=256, (b)

N=192, (c) N=128, (d) N=64, (e) N=32, The time is shown in
reduced Lennard-Jones units of 7y =0,(m/€)!/2,

D,+2D,=D0+2D)=3DY .
The result is
D,=Dy-3(D}-D)) ¢ .

The above expressions for D, and D, may be rearranged
and combined to yield

D, _(1+2f) (DY/DS)+2(1 = &)

D, (1-9)D/DY)+(2+¢)
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