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The rough sphere model is extended and suitably generalized to collisions between partially rough spheres,
“spheres” with anisotropic mass distributions, and spheres with domains of roughness and smoothness
distributed in such a way as to model polyatomic models. These models are used to compute various
relaxation and correlation times. In addition, a model is devised for the interaction of a chiral molecule and
nonchiral solvent molecules. This model is used to compute the couplings between translations and
rotations. In treating the chiral systems we extend the independent binary collision model to the

multivariate case.

I. INTRODUCTION

There is a long history in the kinetic theory of gases
and in statistical mechanics of constructing very simple
models for the collision between molecules.! The per-
fectly smooth elastic sphere has been used to describe
atomic fluids, whereas the rough and loaded sphere
models have been used to describe polyatomic fluids.
These models have played an important role in our
present understanding of the structure and dynamics
of simple gases and liquids and in the discovery of new
phenomena, This success is remarkable given the
crudeness of the models. Recent applications of sta-
tistical perturbation theories using some of these mod-
el fluids as zero order reference systems have been
successful in incorporating the detailed features of
more realistic intermolecular potentials.?

Given the foregoing, it would be interesting to retain
many of the simple features of the smooth and rough
sphere models while at the same time extending them
so that they can account for some of the properties of
real polyatomic molecules. For example, in symmet-
ric tops there is an anisotropic mass distribution. This
is not properly accounted for by the rough sphere mod-
el. In addition, in polyatomic molecules, because of
the space filling nature of molecular groups, collisions
involving different regions of the molecule will be rela-
tively more “slippery” than others. This is likewise
not properly accounted for in the rough sphere model.
Both of these features are rather easily incorporated
into a generalization of the c¢ollision model.

The basic philosophy of this paper is to devise the
simplest models consistent with the more pervasive
properties of polyatomic molecules, These models are
then used to study translational and rotational relaxa-
tion processes in polyatomic fluids, All of the results
are simple to derive and, moreover, are physically
transparent. The models lend themselves rather easily
to study by molecular dynamics. In devising these mod-
els, attention is given to boundary conditions intermedi-
ate between slip and stick boundary conditions,

Much work has already been done on molecular mod-
eling. Particularly noteworthy is the work on general
convex shaped bodies and the particular applications to
spherocylinders and prolate and oblate elipsoids.® The
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chief advantage of these models is that they are aniso-
tropic space filling models, whereas the models devised
in this paper are all isotropic with respect to their
space filling properties. The chief disadvantage of
these more realistic models is that they are much more
cumbersome {o use,

The properties of gases and liquids containing optical-
ly active molecules should be different from those con-
taining inactive molecules. For example, in chiral
systems there should be a direct coupling between
translational and rotational motion with the consequence
that a forced translation will lead to a forced rotation
and vice versa. To our knowledge, there exists no
simple kinetic models for chiral molecules that are
analogous to those for nonchiral molecules, Much work
exists in hydrodynamics on chiral systems.* The sim-
plest hydrodynamic object with chirality is the iso-
tropic helicoid. In this paper, we propose a very sim-
ple model for the interaction between a chiral and a
nonchiral molecule—a model we call the rough screw-
ball model. This model is then applied to a study of the
coupling between translations and rotations.

The major points in this paper are: (1) a generaliza-
tion of the smooth and rough sphere models to the case
of collisions between partially sticky spheres, (2) a
new model for collisions between symmetric top mole-
cules, which we call the “sturctured sphere model, ” (3)
a binary collision model of angular velocity and linear
velocity relaxation in fluids of structured spheres, (4)
a simple kinetic model for collisions between a chiral
molecule and nonchiral model which we call the rough
screwball model, and, finally, (5) a study of the cou-
pling between translations and rotations in a fluid con-
taining a rough screwball in a host consisting of ordi-
nary rough spheres,

il. LINEAR AND ANGULAR VELOCITY
RELAXTION TIMES

It is of interest to study rotational and translational
relaxation in fluids defined by the foregoing models.
In particular, we are interested in the autocorrelation
functions of the total linear ¢, and angular w, velocity
of a given sphere

C,()=(c, - e**ie/(ch (2.1)
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Loy /(wh 2.2)

In the binary collision model, >~7 the trajectory is ap-
proximated by a trajectory consisting of an infinite se-
quence of uncorrelated binary collisions. All collisions
are then independent, and in this event it can be shown
that the correlation functions are exponential functions
with time constants

: }:ﬁ;g@g% [ aqvge, - @ - c1)> (2.3)
» 18

T c

(2)
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C, () ={(w, - e'F

w1)>w (2.4)

where the sum goes over all components 8 in the sys-
tem, ng is the number density of component 3, g% (0y,)
is the contact pair correlation function between parti-
cles of type 1 and B, oy =(0; +03)/2 is the distance of
closest approach in the collision, vy, is the relative
velocity of a sphere of type g with sphere 1, and dQ is
the solid angle. The brackets indicate an average over
a Maxwell distribution of the initial linear and angular
velocities and the subscripts 18 indicate that the values
¢, and w, after collision are to be calculated using the
dynamical law for a collision between sphere 1 and a
sphere of type 8.

Given its anisotropy with respect to its mass distri-
bution and force center distribution, a symmetric top
should experience more or less drag from the bath de-
pending on whether it translates in a direction parallel
(1) or perpendicular (1) to its molecular axis u,. Like-
wise, the molecule should experience different drag
torques depending on whether it rotates about an axis
paralleltou, or perpendicular to u,., This leads us to
investigate the following variables:

ci=(c, - uuy, (2.5a)
c,=(6-uu)-¢ , (2.5Db)
w,=(w - )y, {2.5¢)
w,=(6-wu)- -y |, (2.54d)

where ¢, and w, are the linear and angular velocities of
the symmetric top molecules. The correlation times
of these variables in the binary collision model are
given, respectively,

(Tl>u - g(cz(>CI =

v

(2.6a)
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(2.6¢)

- w, )>

()~ ipi

Ty

X<f a7, fdmmwl o (8- wyu,) - (W) - wx)> (2. 64)

for the case where there is one anisotropic sphere in a
fluid of perfectly rough spheres.

The correlation times of the total linear and angular
velocities ¢, and w, are, respectively, given in terms
of their parallel and perpendicular component

=oal() 2R
el 6

Structured spheres, like other structured molecules,
diffuse anisotropically both with respect to translations
and rotations. For symmetric tops, the translational
dynamics is given by the diffusion tensor D, and the
rotational diffusion tensor ®, In the principle axis
frame of the molecule

(2.7a)

(2.70)

D, 0 ©

p=| 0 D o0 ]}, (2.8a)
0 0 D
e, 0 0

e={ o0 o 0 |, (2. 8b)
0 0 €

where D, and D, are, respectively, translational diffu-
sion coefficients parallel and perpendicular to the sym-
metry axis and correspondingly where ©, and O, are,
respectively, rotational diffusion coefficients around
the axis parallel and perpendicular to the symmetry
axis.

The components of these diffusion tensors are related
to the various linear and angular velocity correlation
times already introduced. Explicitly,

Ky T

D, = =B (Tv)n H (2.9a)
my

and

KgT
9,= (2.9b)

6=

n

Molecular reorientations are often discussed in terms
of the orientational correlation functions®®

C, () =(P,[u(@) - u@®))y ,

where u is a unit vector embedded in the molecule, and
P,(x) is the Legendre polynomial of rank I, u can be
taken either parallel to the symmetry axis u=u, or per-
pendicular to the symmetry axis u=u, depending on the
case of interest. As pointed out in Ref. 7 it is easier
to work with the irreducible tensorial set

(2.10)

al) =Y, , (2.11)
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where Y,(u) is an irreducible tensorial set consisting of
the 27 +1 spherical harmonics {¥;,(u)}. In addition the
tensor dot product o is defined such that ¥,(u,)@Y,(u,)

= P,(4; - u;). From this it is clear that Eq. (2.1) can be
written as

(= ayoa®)y, (2.12)

where L is the Liouville operator. The aim is to com-
pute these correlationfunctions. A binary collision ap-
proximation scheme has been developed™” according to
which the Laplace transform of C,(/) can be expressed
as

- . C9(s48)
C,(s) T3 (s3] (2.13)
where the parameter 8, is by definition
_(&”’OT&(”)
B,—<&( o&M) - (2.14)

An explicit derivation of Eq. (2.14) is given in Ref, 7.
T is the total binary collision operator. It is conve-
nient to evaluate the parameter 3, using the representa-
tion for the rate of change of &;,

eV =iw.1a'? | (2.15)

Here w is the angular velocity of the molecule and
I=i(uxV,) is the generator of the rotations of u about
an axis perpendicular to u, that is, the angular momen-
tum operator perpendicular to u, It should be noted
that u- I=0. Writing Eq. (2.15) in Cartesian form and
substituting into Eq. (2.14) gives

B <[(Iia“))0(1jd“))] wiij>
- ([(I,; a‘”)o(Ij. am)]wi, wj,)

B: (2.16)
This follows from the fact that instantaneous collisions
do not change the orientation but only the angular and
linear velocity so that 7 commutes with Z,a‘?,

It follows from the transformation properties of angu-
lar momentum operators that (see the Appendix)

l
(I,-a‘”)o(lja‘”)=—(lz+——1)(5,-,—uiu,) . (2.17)
Substitution of this into Eq. (6.7) then gives
_{w- (6—uu) - Tw) (2.18)

b= - o)

Certain experiments probe only the reorientation of
the symmetry axis u,. Taking u=u, in Eq. (2.18) and
comparing the results with Eqs. (2.6c) and (2. 6d) gives
for this case

1
GRS

Other experiments probe the reorientations of vectors
perpendicular to the symmetry axis. There are three
orthogonal unit vectors u,, u,;, and u,, that specify the
orientation of the symmetric top. u, is along the sym-
metry axis whereas u,, and u,, lie in the plane perpen-
dicular to u;,. If we look at the reorientations of the
unit vector uy,, then the relaxation time that character-
izes this reorientation is given by Eq. (2.18) with

(2.19)

8—u,u,, =u,u; +u,u,,. Substitution into Eq. (2.18) and
comparison of the result with Eq. (2.6) shows that

ri=al(), 6o

It is clear from a comparison of Eqs. (2.19) and
(2.20) that parameters 8, and 8, respectively, charac-
terizing the reorientations of the symmetry axis u, and
a vector u, orthogonal to this are clearly different,

For linear molecules there is no rotation about the sym-
metry axis and there is no need to consider the reorien-
tation of u,.

u=uy,, U, (2.20)

The remaining sections will be devoted to the evalua-
tion of these various relaxation times for different kine-
tic models.

I1l. GENERAL CONSIDERATIONS

In the ordinary rough sphere model,! a sphere of
type 1 is characterized by several parameters: its
diameter o, its mass m, its moment of inertia I,, or
equivalently its dimensionless moment of inertia

K =4I /ma? | 3.1)

where k; =0 when the mass is concentrated completely
at the center of the sphere, x; = 2/5 if the mass is uni-
formly distributed throughout the sphere, and x; reaches
its maximum value x, =0.6 when all of the mass is dis-
tributed on the surface of the sphere. In a collision be-
tween two impenetrable spheres of type 1 (gy, m,, %)
and type 2(0,, m,, k,) initially translating with center of
mass velocities ¢, and ¢, and rotating with angular ve-
locities w, and w,, the relative velocities of the point

of contact of sphere 1 and sphere 2 changes from its
initial value of

8.2)

to a value gél after collision. In the following a prime
will always denote the properties of the two molecules
after collision. The vector n is defined in Fig. 1. It

_ 1
€21 7C; — €; — 3N X (0,Wy +0,W,)

~|

FIG, 1. The shaded areas on sphere 1 indicate domains of
roughness and are characterized by polar angles 6, and 6,,
Sphere 2 is a perfectly rough sphere, The collision is rough
only if the point of tangency lies in the shaded areas of sphere
1, thatis, if xy=cosb; <@ - u1)=<1or —1=<(z-y)=<-cosb,
=-—x9; otherwise it is smooth.
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is a unit vector pointing along a line from the center of
sphere 1 to the center of sphere 2 and passing through
the point of contact. This is called the apse line,

The relative velocity vector g,; can be resolved into
a vector parallel to n denoted by g, =(n - g,)n and a vec-
tor g, perpendicular to n. The dynamical model is com-
pletely specified by how g, and g, change upon collision.
Towards this end it is important to consider the con-
straints imposed by energy conservation.

In a collision between two spheres as depicted in
Fig. 1 the linear and angular velocities of the two
spheres after collision {primed guantities) are related
to those before collision by

miey=me;=J (3.3a)
nzzc2' =Nty +d (3. 3b)
L =hw, +30,@xd) , (3.3¢)
Lw; =Lw, +30,xJ) (3.3d)

where n is a unit vector along the apse line as specified
in Eq. (3.1) and J is the impulse, The rest of the pa-
rameters are specified in the text. These equations
conserve linear and total angular momentum,

The relative velocity of the points of contact before
collision are given by Eq. (3.2).

The collision changes g, to géi, resulting in the
change Ag=g,, - €. Equation (3.3) can be solved for
J in terms of Ag,

_mym,

g (A A
J Wy (ag, +K,08)

(3.4)

where Ag, denotes the component of Ag along n and Ag,
is that part of Ag perpendicular to n. The parameters
are the total mass m,=m +m,, and

_ MKy Ky _ KKy
wy + M,

K Kip = 3.5
0 ’ 127 kg +Kg ®.5)

The change in total energy on collision can be com-
puted from Egs. (3.3) and (3.4):

AE=E'—E=1(M>
2\ my

x[AgE+28, - Ag, +K(Agk+2g, - Ag)) .

Thus, the energy is conserved only if the term in pa-
renthesis is zero. Now if the dynamical law is to be
the same for different choices of k, and k, and there-
fore ky,, it follows that energy is conserved only if the
following two conditions are satisfied by the dynamical
law:

Agu[AGu +ZSu] =0 ,
ag, -[ag, +2g,}=0

Introducting the definition Ag=g’ - g into Egs. (3.7a)
and (3,7b) gives, respectively, two conditions for ener-
gy conservation

gi=g ,
gi=g2 .

Because two riged spheres are completely impenetrable

(3.6)

(3.7a)
(3.70)

(3.8a)
(3. 8b)
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g is always inverted by a collision, that is,
glll ==8 (3.9)
This clearly satisfies Eq. (3.8a), and typifies all mod-

els considered here.

The two models used most often in kinetic theory are
the smooth hard sphere model (SHSM)

glll =—8u
’

(SHSM) = {
gL=8e

" and the rough hard sphere model (RHSM)

k4
8u == 8u
!
g.=—8&:
These two dynamical laws satisfy momentum and energy
conservation.

(RHSM) :{

It is clear, however, that Eqs. (3.8a) and (3. 8b) admit
of a greater variety of dynamical laws. For example,
any transformation that preserves the length of g' will
suffice. Thus, there may be a collection of dynamical
laws that are consistent with energy conservation.
These all correspond to rotations and inversions of g.
Suffice it to say that in accepting or rejecting a given
dynamical law, other symmetries must be considered.

IV. PARTIALLY STICKY COLLISIONS-THE
KINETIC SLIP MODEL

The trouble with the rough sphere model is best
summarized by Chapman and Cowling: “Because of the
reversal of the relative velocity of the points coming
into contact, even a grazing collision can produce a
large deflection. Finally, experiment suggests a rela-
tively slow interchange between translatory and rota-
tional energies; such a slow interchange is obtained by
taking k., k, small, but (contrary to what one would ex-
pect of actual molecules) this still permits free inter-
change of rotational energy between molecules.”

If the rough sphere model is to be useful, it must be
generalized in such a way that grazing collisions are
somewhat less effective. This can be done in a variety

of ways., Towards this end we define an intermediate
model in which
Ag,=-2fg , (4.1)

where f is a function that can either be 0 or 1 depending
on the physical model. Then Eq. (2.4) becomes

-2
J Sk LOUL | (g, +Kyp f gx) .

my (4.2)

When f =0 we recover the smooth sphere result, where-
as when f =1 we recover the rough sphere result. Note
that in either case (g!)? =g2 so that energy is conserved

in the collision,

In our first model, we assume that when the relative
kinetic energy €, along the line of centers exceeds a
certain energy E, the collision is rough, whereas, when
it is less than E the collision is smooth, that is,
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1
§o, (,,EEM t<p
f= "

21, €>E (4.3)

This model springs from our notion that when two
real spheres collide their “depth of penetration” in-
creases with their speed along their line of centers with
a concomittant increase in their tangential friction. We
call this the kinetic stick model,

The factor f defined in Eq. (3.3) for the kinetic stick
model can be expressed in terms of the total relative
translational kinetic energy €= 4 uv%,. From Fig. 2
it follows that (n - v,,)? =25, cos®a so that Eq. (4.3) can
be expressed as

0
1

€=E/costa , (4.4)

b

, €>E/ecosta,

£t ={
where E is the cut off energy, that is, the energy above
which the collision is sticky,

Combining Eqs. (3.3) and (4. 2)-(4.4) then gives

1 n (0,)0_2 2r r/2 .
-_E=Tg<c—1>r<£ d¢>'£ da sina coso vy

x{ [1 - ;%f(e)] (0 o)+ —5 £ (€) v§1}> 4.5)
and

1 B ng(cr) 0’2 2r r/2 .
T—w = WI—) <j(]' dd) 'L‘ da sina cosa 'l)zlf (€)> . (4. 6)

These correlation times can be expressed in terms of
three parameters

2r r/2

B E% L de¢ £ dasina cosa (f (€) v3)/ w3, , (4.7a)
1 v/

75% fo o -{ “dasinacosa (F(hf)/0h),  (4.70)
] r/

5= 717 foa do jo‘ 2 da sina cosa (f(€)vy) vy (4.7¢)

where the brackets indicate an average over a Maxwellian
distribution of relative velocities. Then Egs. (4.5) and
(4.86) become

1 =1+1+(2}’—B)L

T, 1l+x Tg (4.8a)

1 5 1

TR {4.8b)
where 7 is defined by

1 8/nKyT\!/2

T‘E=§('—7z—) nglo)o? . (4.8¢c)

Letting A=2y — 8 and transforming to x =cosa, the rel-
evant parameters are

7\=2*/-B=-G§5foldxx(l—xz)fdep(e)f(e)vgl, (4.92)

6:

1
<vi>f0 dxx qu’(i)f(‘) Va1, (4.9b)

where p(€) is the Maxwell distribution function of rela-

2825

tive energies and the integrals go over all energies

from 0 to », Note, however, the presence of the factor
7€) defined by Eq. (4.4),
0, €sSE/x? ,
fle)= (4.10)
1, €> FE /x?

This factor merely places a lower limit on the integrals
which now read f;/xz de - .-, Substituting the explicit
form of the Maxwell energy distribution function gives
after some simple manipulations

1 YR2E/uN/2 Bupd
I dxx(1 = x2) [§* T2 gy 5 g Buv?/2
b dx x® [ dvvd emsuv?/e ’

(4.11a)

A=1

1
Y2E/ w1/ 2 2
[ dxx [V BB/ OYE gy 3 g uv?/e

frdxx [ avv’esuvt/z

o=1-— (4.11b)

Now transforming to z =v® enables us to express the
inner integrals in terms of

b(x)
I(x) =] dz z"e™*
0
where a=8u/2 and b(x) =2E/ux®, Evaluation of the in-

tegrals I,(x) and substitution into Eqs. (4.11a) and
(4.11b) then gives upon transformation to y =x"2,

A=2[(1 = x)wylx) +xw, (x) = wy(x)] (4.12a)

8 =[w,lx) +xw, (x)] , (4.12b)
where x =BE and where w,(x) is

w,,(x)Eflodyye“’" (4.12¢)
Integration by parts then gives

r=eBE=¢§ (4.13)

Substitution into Eqs. (4.8a) and (4, 8b) then yields the
final results :

1 _1+[1+2(8)k] 1

Tv_ 1+x T_E , (4.14a)
1 @1

Tw_1+K 75 ' (4.14b)

where A(8), the coefficient of stick, depends on
Bl=(%aT)™] and on the cut off energy E, above which
the collisions are sticky

AB)=e™®E | (4.15)

Thus, because A-0as E~«, and A~1as E-0, we re-
cover the smooth and rough sphere results in these two
limits. A(B) is a temperature dependent quantity so
that the fluid becomes stickier as 7=,

The kinetic stick model easily lends itself to molecu-
lar dynamics calculations, where a test is readily made
to see whether the kinetic energy along the line of cen-
ters exceeds the cutoff E. If it does, the collision is
treated as perfectly rough; otherwise, it is treated as
smooth. We present the results of these calculations
in a subsequent paper in this series.
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FIG. 2. Two spheres 1 and 2 of diameters oy and ¢y and
masses my and my collide with impact parameter b, vy is

the initial relative velocity of 2 with respect to 1 before colli-
sion and v}, is the relative velocity after collision. x is the
scattering angle. The angle a is by construction & =37 —x.
From the diagram it is obvious that b =3(o; + 03) sina. The
angular integration in Eq. (2.3) is given by df =d€da sinw cosa,
where 0s€<27mand 0=<a=<n/2,

V. PARTIALLY STICKY SPHERES-THE ROUGH
DOMAIN MODEL

Another approach to intermediate boundary condi-
tions is the one that we recently proposed in a paper on
the coupling between translational and rotational mo-
tion.” In this case, we imagine that the surface of each
sphere of type 1 is covered by domains of roughness
between which there are domains of perfect smoothness.
These domains are randomly distributed and are such
that the fraction of surface area that is rough will be
denoted o, whereas the fraction that is smooth is
(1 - a;). Contact between the rough domain of one
sphere and the smooth domain of another sphere must
give rise to a perfectly slippery collision, whereas con-
tact between two rough domains gives rise to a perfect-
ly rough collision. The probability p of a rough colli-
sion between two spheres of types 1 and 2 is therefore
equal to

(6.1)

and the probability of a smooth collision is obviously
1-o0,.

PEA =@

To generalize, we substitute into Eq. (4.2) f =b,,,
where b,, =1 for a rough contact and b,, =0 for a smooth
contact, Now it should be clear from the foregoing that
when b,, is averaged over all collisions between a
sphere of type 1 and a sphere of type 2

<f>=<b21>=}\21=0110¢2, .o (52)

Thus, for a semisticky sphere there is a stick parame-
ter A, =, a,, which can vary between 0 and 1, All
properties will depend on A,;. The explicit calculations
for mixtures is found in Ref. 7. The results for a neat
fluid of semisticky spheres are

1 _[1+(1 +M0k 1 (5.3a)
T, 1+xk Tg .

1 A 1

— o= %) (5. 30}

Bruce J. Berne: Molecular dynamics of the rough sphere fluid. |I

where now

r=al | (5.3¢)

o being the fraction of the surface area that is rough.

This model also lends itself very easily to com-
puter experiments.!® In this case a collision is either
sticky or slippery depending on a sampling of random
numbers in accordance with the probability X = a?,

This model gives results that are quite similar to
Eq. (4.14) except that A is now temperature indepen-
dent.

Real polyatomic molecules, unlike the foregoing mod-
els, have discrete centers of force. It is possible to
devise a model that is closer to this reality. Such a
model is indicated in Fig. 1, Sphere 1 has different
size caps of roughness distributed such that there is
axial symmetry about the unit vector u,—the unit vector
specifying the orientation of the sphere, We call this a
structurved spheve. The structured sphere can be used
as an elementary model for a heteronuclear diatomic
molecule., Obviously, other distributions of domains of
roughness can be used to simulate other molecules.

For example, equal size domains located at the ver-
tices of a hexagon inscribed in a sphere can be used to
simulate benzene.

A collision between one structured sphere and a per-
fectly rough sphere is indicated in Fig, 1. In this case,
the function f is defined as

1, x={m-y)=lor-1<(n-u)s-x,,

f(n" ul): {
(5.4)

0 otherwise ,

b

where f is a function of the projection of u, on the apse
line and ¥, =cosf,, %,=cosf,. This follows immediately
from the fact that the collisions are rough only when the
point of contact n passes through the shaded areas in
Fig. 1, Collisions between two structured spheres can
also be treated, but the results are beyond the scope of
this paper. Before giving the explicit formulas for this
model we best turn to the question of the moment of in-
ertia anisotropy that is found in symmetric top mole-
cules.

VI. THE STRUCTURED SPHERE MODEL

The structured sphere model presented in Sec. IV
clearly involves an anisotropic mass distribution. For
the case presented in Fig. 1, the mass distribution
is axially symmetric and the particle is a symmetric
top with moment of inertia tensor

|1:I||u1u1+11(6—u1u1) N

where I, and I, are, respectively, the components of the
moment of inertia parallel and perpendicular to the sym-
metry axis whose orientation is completely specified by
the unit vector u,.

In addition, the mass distribution is such that in gen-
eral the center of mass is displaced along u; from the
center of the sphere; then the object is a loaded sphere.
For simplicity we restrict our attention to the case
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where the center of mass coincides with the center of
the sphere, and where 6, =6, or equivalently x; =x,.

It is convenient to express the two components 7,
I of the moment of inertia tensor in the dimensionless
form k) =41} /m,0% and k;=41y/m, o},

To proceed, we must compute the impulse experi-
enced by the molecule, In the case of an anisotropic
mass distribution Eqs. (3.3a), (3.3b), and (3. 3d) re-
main the same but Eq. (3.3c) must be changed to

’ 1
llnwl=ll-w1+3(nXJ). (6.1)

Equations (3.3a), (3.3b), (3.3d), and (6.1) together
with (3. 2) can be solved for the impulse J in a collision
between the structured sphere and a completely rough
sphere 2:

mym
J=—2=2(Ag, +ki,
my

Y
X{Ag‘— 1+y[1-(n-u) (nxuy). A&}) , 6.2)

where the parameters are

i 1
. K
K= i ey e TUATTRR (6. 32)
K] Ky + Ky my +m,
and
myK, {1 1
75—2—1&(-—" - 1) (6. 3b)
My +mu\Ky K}

The parameter y measures the anisotropy of the mo-
ment of distribution, For a spherical top =0, where-
as for a prolate ellipsoid y > 0 and for an oblate ellip-
soid ¥ <0,

Although tedious, it is not difficult to establish for
this case that energy is still conserved if g} =—- g, and
g:>=g2. Thus, we may once again take the dynamical
law to be

Ag,=—28 , (6.4a)
Ag,=-2fg, , (6.4b)
where f is defined in Eq. (5.4). This gives the impulse

Jz‘_zrn’z?_ﬂ_n_g{g“ +K;2f(X)
0

x[g -k, (x)mxu)mxuy) - g}, (6.5a)
where for simplicity we define
b, (x) r (6. 5b)

T - (e uy]

and where x=n-u,. Equations (6.5a) and (6.5b) togeth-
er with Eqs. (3.3a), (3.3b), (3.3d), and (6. 1) complete-
ly specify the effects of the collision.

In a linear molecule I, =0. This means that no angu-
lar momentum is transferred around the symmetry
axis. Thus, in Eq. (6.1) we only consider the angular
velocity perpendicular to the symmetry axis
w,=(8 - uu,)u;. This gives

Lo =Lw, +3¢ @xJ) (6.6)

The same treatment used before then gives Egs. (6.5a)
and (6, 5b) with the simple change that

1
Wi, K
=-—2-1 6.7)
g K|
and w; ~ w,. This gives a very simple prescription for

extracting the linear molecule result from the general
symmetric top results: drvop all terms involving I, and
1/1, or equivalently ki and 1/k{.

It is a straightforward but tedious exercise to evaluate
the various relaxation times that enter the rough sphere

model. These are
(}—> 130,20 TE(i, 2) (6. 8a)
<T_lv>f{1 +3 K1 [2,(0) - ”-(7)”‘75(—11,5) , (6. 8b)
<Tiw> = %A'm TE(i, 3) (6. 8¢)
(;1_)1 :g ’f:l [2(0) +2 (0) = A(¥) = yA.(¥)] ?(11:7) ,
where the Enskog time constant is by definition 6.8
ol Rl L) MG L O

This is simply (16m,/8m,) times the collision rate be-
tween the symmetric top and the bath particles. The
only other dynamic parameters that enter are

{1£x%

1 1
M(?’)EZ fl dxf(x)r—‘—z— , (6.9b)

+y(1 - x

where v is a parameter specifying the moment of inertia
anisotropy [see Eq. (6.3b)], x=(n-u,), and f(v) is de-
fined by Eq. (5.4). Actually f(x) can be defined to take
into account more general symmetric top force center
distributions. X, (y) are two coefficients of slip that de-
pend on the precise form of f(x) and the moment of in-
ertia anisotropy. If y=0and f(x)=1 for all x, A,(0)
=2/3 and A.(0) =1/3 and the formulas reduce to the case
of a mixture of perfectly isotropic rough spheres where
the ! and 1 components are all equal,

Let us consider the case of a linear molecule, As
mentioned at the end of Sec. V all terms involving &,
should be ignored. In addition, there is no relaxation
involving w,. Equations (6.8a)~(6.9b) change only in
that ¥ must be replaced by Eq. (6.7). Equations (5. 8¢)
and (5. 8d) however become

(;1:>"50 ) (6.10a)
(F) 1% rnota . (6.100)

For a linear molecule with f =1, A,(0)=2/3. If k,=«},
Eq. (6.9b) reduces to the value used by Chandler in his
computations on liquid Nitrogen, ®

In the case of symmetric top molecules the Il and L
components are generally different. The parameters 8,
and B; given in Eqs. (2.19) and (2. 20) will therefore be
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different,

In general whendealingwith f# 1, the results will de-
pend on the precise geometrical distributions of the
rough domains.

Vil. A KINETIC MODEL FOR CHIRAL MOLECULES-
THE ROUGH SCREWBALL

In this section we present a very simple dynamical
model for the interaction between a chiral molecule and
a nonchiral solvent, a model that we call the rough
screwball model. This model possesses a parameter
A, whichvaries between Oand 1, which we call the screw
coefficient. When A is zero the model reduces to the
rough sphere model, but when X #0 the molecular inter-
action possesses chirality.

The relative velocity vector g,, can be resolved into
a vector parallel to n denoted by g, and a vector perpen-
dicular to n denoted by g;. Because the two rigid
spheres are completely impenetrable g, is always in-
verted by a collision. Energy conservation requires
that the magnitude of g, must remain unchanged by a
collision, The most general dynamical law consistent
with energy conservation is that one in which g, is ro-
tated through an angle v, that is, ‘

g.=[cosp g, +sinpnxg,)} . (7.1)

In this section we explore the consequences of this dy-
namical law when g8 varies between 0 rad, where it
gives the smooth sphere results, and 7 rad, where it
gives the rough sphere result,

B should be regarded as a parameter in this model.
When 0 <8 <, the dynamical law has a right hand
screw sense, whereas when — 7 < <0 it has a left hand
screw sense, Obviously, the dynamical law has chiral-
ity.

It is convenient to define two parameters A and u for
the collision such that

(7.2a)
(7.2b)

r=%(1+cosp) ,
W= |sing| =2[xM(1 - W)]'/2

A is a parameter that measures the strength of the
chirality. The smaller the parameter the weaker the
effects. In terms of these parameters Eq, (7.1) be-
comes

g =(1-2)g.+uhxg) , (7.3)

where the + and - sign defines the chirality, This re-
sult reduces to a smooth sphere when A=0 and to a
rough sphere when A=1.

Substitution of Eq. (7.3) into Eq. (3.4) then gives

- 2mm
Lk Wik o
3=l e Mg wmx )]}

(7.4)

New features appear in translational and rotational
relaxation due to chirality. For simplicity, in this sec-
tion attention is restricted to one dextrorotory or levo-
rotary molecule in a solvent consisting of rough
spheres. The various couplings are computed in the
approximation defined in Sec, II.

The properties of interest are A;=c¢, and A, = w,,
where ¢, and w, are the center of mass velocity and the
angular velocity, respectively, of the chiral sphere in
a solvent consisting of rough spheres,

We now define a scalar product as
(Ai, Aj):<Ai "A;> ) (7.5)

where { - - . ) denotes an ensemble average and the * de-
notes a complex conjugate. Given the definitions of A,
and A, the various scalar products are (%, (w?,

(¢, wy), {w;-¢,). The first two are given by equiparti-
tion as (c?) =3k T/m,, {(wd) =3kT/I, =(c%)/4k,0% whereas
the last two are zero because the linear and angular mo-
mentum are independent in an equilibrium ensemble.
The quantity (4;, A,) forms a 2X 2 matrix which we de-
note

i7j=l’ 2’

(7.6)

2
A, N)=<<€l> 0 >

0 (b

There is a corresponding matrix of equilibrium time
correlation functions (A(f), A*(0)), whose components
are the velocity correlation function (c,(¢) - ¢,(0)), the
angular velocity correlation function (w,(#) - ,(0)), and
the two cross correlation function {(c,(¢) - w,(0)) and
(w, () - ¢,(0)). The cross correlation functions are rig-
orously zero only for nonchiral interactions. The ma-
trix

C(t)=(A(#), A*(0))- (A, AN

is the normalized correlation matrix [C(0) =1, where |
is the 2x 2 identity matrix]. Explicitly,

{cy(8) - ¢, (0]

(7.7a)

(e, () - w,(0)

2 2
c(t)= e (o . (7.7b)
{w () - ¢, 0))  {w(8)+ w (0D
) (w?)

The independent binary collision (IBC) limit must be
generalized to the multivariate case. In the IBC limit
the correlation matrix must have the form

C() =exp(-y) , (7.8)

where ¥ is a 2X 2 matrix of damping rates. v can be de-
termined from the initial time derivative of C(¢) so that

y=-C(0)=(TA, A*)- (A, AN | (7.9)
where T is the total “7” operator
T=2 T, , (7.10)
]

where T, is the T operator for the collision between
sphere (i, ) and the sum is over all collision pairs.
Thus, the damping matrix is explicitly
€, aT<=,> (w, » Tep)
(ch [,
Y= . (7.11)
¢, - Tw,) {w, - Twy
€ 2 1 1
(cD) (wi)
It is a simple matter to compute the individual matrix

elements given that the equations of change are explicitly
given by Eq. (3.3a)-(3.3d) and Eq. (7.4). For the case
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where m, =m, and K, =K,,

1 kKo u 1
— i — —— —
Ty 2 Kk+l7g
y= s (7.12)
2 u 1 1
;_ — —
o kK+1 T1g T

where A and p and « have been defined, the + sign cor-
responds to + enantiomers and the — sign corresponds
to — enantiomers. The correlation times 7, and 7, are
the velocity and angular velocity relaxation times and
can be expressed in terms of the Enskog correlation
time 75 given by Eq. (4.8¢) as

i:[1+(1+A)K]1 , (7.13,‘1)
T, 1+« Tg

L=[ A L], (7.13b)
Te K+l 7&

Let us now explicitly evaluate the correlation matrix
C(t). From Eq. (7.8) it immediately follows that the
Laplace transform of C(¢) is

Cls)=(st+n)? | (7.14)
where 1 is the 2X 2 indentity matrix, The reciprocal of
the matrix sl +y is

1 S +)’22
lIst+l

-T2

Cis)= {7.15)

=Y S+hn

To Laplace invert Eq. (7.15) it is necessary to de-
termine the roots of the dispersion equation

sk+¥ll =(s +¥1) (s +¥20) — Y15 V2 =0 (7.16)

which are

(v1y + 7o)
s, ==~y 4 (y,, - Ya2) +471, 721]1/2 ’

2 (7.17)

a straightforward inversion gives

1 [Usampde ™ (sormer?] -yl - e’-‘])
el

(S‘ -s.) [ - YZI[es’t' es_t] ][(S» ""Vu)e&"'I - (s. +7u)e"t]
(7.18)

Substitution of the explicit forms of 7;; from Eq.
(7.12) into Eq. (7.17) gives the various correlation
functions. It is clear from this that chirality introduces
couplings between the linear and angular velocity in such
a way that the velocity and angular velocity autocorrela-
tion functions are not single exponentials but both decay
on two different time scales determined by the parame-
ters in Eq. (7.12). In addition, the cross correlation
functions are nonzero, so that there is a direct coupling
between linear and angular velocity.

An alternative point of view that is consistent with the
foregoing is that ¢,, w, evolve according to the Langevin
equation

a; +

d Ci\ _ . Cy my
ala) =7 () ’

N
=1
al+11

(7.19)

where 2, and &, are random accelerations and F, and

2829

N, are applied forces and torques, In steady flow these

reduce to
o
(& (7.20)
Iy w,/) "’
A
from which we find that
¢ mylly i F Iyl N, , (7.21a)
== Va1 _ Y11
@1 mlly =1 Ly N, . (7.21b)

In the absence of applied torques we see that a particle
acted upon by an external torque is induced to rotate,
whereas in the absence of forces we see that a particle
acted upon by an external torque is induced to translate.
These are phenomena that occur when particles have a
particular screw sense. I A=1, ¥ becomes diagonal
and these cross effects disappear.

Although the model introduced here has chirality we
have not been entirely successful in satisfying ourselves
that it satisfies all symmetries. In this context it should
be noted that the various coupling tensors introduced in
the hydrodynamic treatment of isotropic helicoids may
have different symmetries than would be generated by
this model.

APPENDIX: ORIENTATIONAL DYNAMICS AND
IRREDUCIBLE TENSORS

The quantity [1;a’]o [7;a'"’] can be evaluated as
follows. This has the explicit form

(e W)ell,ew)]

+l

B 2;17:- 1 m:-,[Ii Yim WL, Vi (w)].

(Al)

Since the sum goes over all projections m, it follows
that this must transform like a second rank Cartesian
tensor, that is,

La(woLaV(u)=ad,; +bu;u, . (A2)
Contraction gives

b+3a=LaPwola®(u). (A3)
Contraction with u;u, together with u- Ia‘? =0 gives

b+a=0 (A4)

To continue we note that because a‘”’(w)oa'(u) is a
“sealar”

la®@oea@]=0 (A5)
Applying the operator serially then gives
2ffa o(a) = (i) e tath o 12aW) . (A6)

Now since we are using the Einstein summation conven-
tion I%2=1. I, and it follows from the properties of irre-
ducible tensorial sets that 72a‘® =/(I +1)a‘”’, Equation

(A6) thus becomes

La"o (e M) =10 +1). (AT)

J. Chem. Phys., Vaol. 66, No. 7, 1 April 1977

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2830 Bruce J. Berne: Molecular dynamics of the rough sphere fluid. 11

Combining Eqs. (A2)-(A4) and (A8) then gives

_ W{+1)

Iia”’(g)olja‘”(g) 5

(6 -] . (A8)

This is identical to Eq. (2.17).
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