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Molecular hydrodynamics is used to theoretically describe recent computer experiments on rough and
partially rough sphere fluids. Agreement with the experimental translational and rotational diffusion
coefficients may be obtained when the macroscopic boundary conditions of the hydrodynamics are made to
depend on the microscopic boundary conditions of the collision dynamics. An attempt to extend the
treatment to a self-consistent theory of the linear and angular velocity correlation functions (VCF and
AVCF) fails, due to the unphysical short time behavior of the hydrodynamic VCF. The hydrodynamic
AVCF appears to reproduce the structure due to changes in microscopic roughness, although quantitative
agreement is not found at all densities. The long time behavior of the hydrodynamic AVCF is discussed.

I. INTRODUCTION

Hydrodynamics has been resurrected to explain vari-
ous molecular relaxation processes in liquids ranging
from translational diffusion coefficients to the full time
dependence of the velocity autocorrelation functions—
including long time tails. It is remarkable that hydro-
dynamic models can be applied with great accuracy to
problems involving molecular motion. It is impossible
to ignore the evidence for this—evidence that comes
from several quarters.

Several years ago Alder ef al.,! using computer ex-
periments, have shown that the translational friction co-
efficient ¢, of a sphere in a one component smooth hard
sphere fluid is ¢, =47, where 7 is the shear viscosity
and ¢a is the radius of the sphere. This result is identi-
cal to Stokes’ calculation of ¢, for a sphere with slip
boundary conditions in a continuum fluid. More recent-
ly, Levesque et al.? have shown that this hydrodynamic
model with slip boundary conditions also describes their
computer experiments on Lennard-Jones fluids.

The success of hydrodynamics does not stop with the
determination of static friction constants. Several
years ago Zwanzig and Bixon® calculated the normalized
velocity correlation function

C,()=¢v(t) - v(o)/w?

by solving the Navier—Stokes equation in the low Reyn-
olds number limit for a particle executing nenuniform
translatory motion in a compressible viscoelastic con-
tinuum fluid with boundary conditions intermediate be-
tween pure stick and pure slip boundary conditions.
This model has the characteristic that at long times the

(1.1)

correlation function C,(¢) decays asymptotically as %2 —

a result in general agreement with the long time tails
observed by Alder et al.! in their studies of the smooth
hard sphere fluid. Recently, Levesque et al.? have
shown that this hydrodynamic model gives very good
agreement with their computer experiments on Lennard-
Jones fluids only if two conditions are met. Slip bound-
ary conditions must be used. More importantly, simple
viscoelastic models do not suffice, Instead, it was nec-
essary to determine the frequency dependence of the
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shear and bulk viscosity from computer experiments and
to use these in the Zwanzig—Bixon theory.

it would appear from the foregoing that the details of
the intermolecular potential are not important, except
insofar as these details effect the value of the viscosity.

Given the success of molecular hydrodynamics when
applied to translatory motions it is interesting to test
its usefulness when applied to rotational motions. A
variation principle has been used by Zwanzig and Hu® to
calculate the rotational friction coefficient of a uniformly
rotating slippery spheroid and have shown that this can
differ from the friction coefficient of a sticky spheroid
by as much as an order of magnitude or more. These
calculations are in excellent agreement with rotational
diffusion coefficients determined in recent depolarized
light scattering experiments.’ Thus, it would appear
that simple hydrodynamic models give an accurate de-
scription of the rotational reorientations of structured
molecules.

Several questions remain unanswered. Can molecular
hydrodynamics simultaneously give correct translational
and rotational correlation functions for the same sys-
tem? How are the hydrodynamic boundary conditions
related to the intermolecular potential? Why are small
polyatomic molecules best described by hydrodynamic
models with slip boundary conditions ?

The simplest fluid that has translational and rotational
degrees of freedom is the rough sphere fluid. In recent
years we have extensively studied this fluid by computer
experiment.® A collision between two rough spheres
gives rise to a very strong interchange between transla-
tional and rotational energy. In grazing collisions be-
tween two smooth spheres there is no scattering, where-
as in grazing collisions between two rough spheres there
can be a large deflection angle. In kinetic theory rough
spheres are the “roughest” possible objects with spheri-
cal symmetry. In this paper we show that despite their
microscopic roughness these spheres are best described
by a hydrodynamic model in which the boundary condi-
tions are much closer to pure slip than pure stick bound-
ary conditions.

Recently, we have generalized the rough sphere model
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TABLE I.
tion of roughness.
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Comparison of theory and experiment for the translational and rotational diffusion coefficients as a func-

A Dr(exp) DR(eXD) B Ny flE n"/ng n Uy/n DT,E DT/DT,E‘ ) DR,E DR/DR,B‘
1.0 0,686 7.18 0.0175 0.113 0. 0603 1,87 0,113 1,0 1.17 0,59 5.25 1,37
0.75 0,822 9.27 0.0135 0. 0946 0, 0559 1.69 0.101 0.94 1,24 0,67 7.00 1,32
0.5 0.903 13.3 0.00930 0,0867 0,0515 1,68 0, 0884 0,98 1.32 0.69 10.5 1.26
0.25 1.04 26,1 0,00467 0,0759 0,0471 1.61 0.0760 0.99 1.40 0,74 21,0 1,24
0.1 1,12 58.1 0.00207 0,0702 0.0445 1.59 0.0686 1,03 1.46 0,77 52.5 1,11

0 1.25 © 0 0. 0637 0, 0427 1.49 0. 0637 1.0 1.50 0,83 ©

Mg (M) =Ang(rough) +(1 — A)ng(smooth)
T(A) =M {rough) + {1 — A7 {smooth)

The results of Table I are in the units m =R =¢; =1 used in the molecular dynamics calculations, where m is the particle

mass, R is the particle radius, and ¢, is the mean collision time,

to cases intermediate between smooth and rough
spheres.” In this generalization there is a natural pa-
rameter 0 <A <1 that emerges, where A =0 corresponds
to smooth spheres whereas A =1 corresponds to rough
spheres. Pangali and Berne® have recently reported
molecular dynamics calculations of the translational and
rotational diffusion coefficients and time correlation
functions in partially rough fluids.

Using molecular hydrodynamics we find these diffu-
sion coefficients and correlation functions theoretically
for spheres which are hydrodynamically partially slip-
pery and compare these results with the molecular dy-
namics data.

An attempt to apply hydrodynamics to a self-consistent
calculation of the linear and angular velocity correlation
function fails, due to the unphysical initial decay of the
hydrodynamic velocity correlation function. The hydro-
dynamic angular velocity function is compared with the
molecular dynamics data with partial success.

. GENERALIZED STOKES EINSTEIN RELATIONS

Using the rough domain model of partially rough
spheres Pangali and Berne® have found the translational
and rotational diffusion coefficients for different values
of the roughness parameter A from molecular dynamics.
From hydrodynamics the diffusion coefficients may be
calculated theoretically as a function of the degree of
slip the fluid experiences tangential to the surface of the
test particle. The hydrodynamic theory will now be
compared with experiment, paying particular attention
to the correspondence between the microscopic bound-
ary conditions of the molecular dynamics experiment
and the macroscopic boundary conditions of the hydro-
dynamics,

As discussed in previous work® 2 the static friction
coefficients for rotation and translation in a viscous
fluid with arbitrary slip boundary conditions on the sur-
face of the sphere may be found by a standard hydrody-
namic calculation. Using the well-known Einstein rela-
tions the translational diffusion coefficient D, and rota-
tional diffusion coefficient Dy for a spherical test parti-
cle are found to be

__kT <1+3n/6)
T emR\1+2n/8/)’

(2.1)

where T is the absolute temperature, % is Boltzmann’s
constant, 7 is the shear viscosity, and R is the radius
of the test particle. B, the hydrodynamic slip coeffi-
cient, is defined by the boundary condition

Fl = (ﬁ/R)(‘Uf_l"‘d - ’Uf”t icle) (2. 2)

relating the tangential component of the drag force ex-
erted on the test particle by the fluid to the relative tan-
gential velocity of the fluid with respect to the particle.
The limits 8— = and g~ 0 correspond to perfect stick
and slip, respectively. Note that Eq. (2.2) is applied
to both the translational and rotational problems.

Using the well-known Kubo relations for the transla-
tional and rotational diffusion coefficients

Dy =?13-J: dtv(0) - v(t), @.3)
Dy =§J0‘ at{w(0) - w(t))

we have obtained Dy and Dy from the molecular dynam-
ics data. These results are given in Table I. Note that
no tail or 1/N corrections have been applied to the data.

Equations (2. 1) were used to extract n and 8 from the
experimental diffusion coefficients and these are re-
ported in Table I as a function of the roughness param-
eter . While we have no theory of the slip coefficient
B, Pangali and Berne® have found the Enskog shear vis-
cosity for the rough domain model to be

ne(}) =Ang(rough) + (1 — A\)nz(smooth) . (2.4)

This result follows directly from the assumption of un-
correlated binary collisions in the Enskog theory. The
Enskog results for rough and smooth spheres are well
known' and Eq. (2.4) may be compared with the values
1y obtained from the hydrodynamic theory as done in
Table I. For smooth spheres n/n; has been found by
Alder, Gass, and Wainwright! and our result for A =1

is in excellent agreement with theirs. Since the Enskog
viscosity ng deviates rather significantly from the true
viscosity 7 at the density considered here, we have also
compared the viscosity 74, calculated from hydrody-
namics, with
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TABLE II,
for mixture,

Analysis of diffusion coefficients

Test Bath
particles particles
Dr 0.299 0,737
Dy 0.341 5.58
0,104 0,104
0.051 0.023

Mieat = 8Myapm, R ygat = 2Ry

The results of Table Il are in the units

Mpatn = Rpatn = fc =1 used in the molecular
dynamics calculations, where my,,, is the
bath particle mass, Ry, is the bath parti-
cle radius, and ¢, here is the mean collision
time between bath particles.

n(\) =, (rough) + (1 = ), (smooth) (2.5)

for intermediate values of A. Table I shows excellent
agreement in this case, supporting our argument that
the translational and rotational diffusion coefficients in
the partially rough sphere fluid are well described by a
hydrodynamic theory with slip boundary conditions.

This point could be further clarified by a nonequilibrium
molecular dynamics calculation of the shear viscosity
such as those recently done by Ashurst and Hoover!! and
Gosling et al.'®

It is clear that the hydrodynamic slip boundary condi-
tion corresponds to perfect smoothness dynamically, as
in this limit the angular velocity of the test particle is
conserved and thus the rotational diffusion coefficient
is infinite. It was, however, quite unexpected to find
that a completely rough sphere is hydrodynamically very
slippery (see Table I), with $=0.0175. An explanation
of this has been recently offered by Hynes, Kapral, and
Weinberg.!* They suggest that even a completely rough
sphere will be surrounded by a hydrodynamic boundary
layer and the presence of this boundary layer will make
the particle hydrodynamically slippery.

It is now clear that neat fluids of hard spheres (rough
and smooth) are hydrodynamically slippery (8<< =),
This raises the interesting question of when, if ever,
stick boundary conditions are appropriate in molecular
hydrodynamics. It is well known that the diffusion of
macromolecules obeys Stokes’ law with stick boundary
conditions. This and other considerations led Pangali
and Berne to perform molecular dynamics experiments
on binary mixtures of large and small rough spheres.
Their results for the translational and rotational diffu-
sion coefficients of the large (test) and small (bath)
particles are given in Table II, along with the values of
1 and B found from the data using Eqs. (2.1). We have
used the bath particle viscosity to find the test particle
slip coefficient, as suggested by Brownian motion the-
ory. Note that the value of the slip parameter is about
twice that of the bath particle, supporting the conjecture
that stick hydrodynamics is approached in the Brownian
motion limit of a very large test particle, 4

J. A. Montgomery Jr. and B. J. Berne: Partially rough sphere fluid

We close our discussion of diffusion coefficients with
a brief comparison of the molecular dynamics results
with the Enskog theory, It is well known that the Enskog
diffusion coefficients may be expressed in terms of the
correlation times (usually referred to as the Enskog
correlation times) found from the exact collision dynam-
ics, making the Enskog assumption of uncorrelated
binary collisions. Using the results of Berne and Mont-
gomery’ for the Enskog correlation times in a fluid of
partially rough spheres we find

kT
Dy g :Tn— TV,E(K)

kT k+1 3

" A+ k+12 e (2.6)

T
DR,Ez TQ,E(A‘)

T
kT k+1
I X

Do o

tc,

where m is the mass, I is the moment of inertia, and

t, is the mean time between collisions. The loading pa~
rameter x is given by « =I/mR?, where R is the particle
radius.

Table I shows systematic deviations of the molecular
dynamics results from the Enskog theory. D;/Dg, g de-
creases monotonically with increasing X, whereas D,/
Dy, ¢ is monotonically increasing. That D/Dy changes
with X in both cases indicates that the deviations from
the Enskog theory are not due entirely to the structure
of the fluid at high densities, as all our models have the
same structure at a given density.

These results indicate the hydrodynamics can suc-
cessfully describe the diffusion coefficients observed in
rough, partially rough, and smooth spheres when the
hydrodynamic boundary conditions are appropriately
chosen. The usual Stokes law results (pure stick) will
be in poor agreement, especially for the rotational dif-
fusion coefficient.

Hil. TIME CORRELATION FUNCTIONS

In this section we return to the question of how the
hydrodynamic boundary conditions depend on the micro-~
scopic surface roughness. Encouraged by the success
of the hydrodynamic theory of the diffusion coefficients
we turn to a consideration of the linear and angular ve-
locity correlation functions (VCF and AVCF, respec-
tively). Theoretical calculation of the VCF and AVCF
from hydrodynamics requires knowledge of the frequency
dependent translational and rotational friction coeffi-
cients for the motion of a spherical test particle in a
viscoelastic, compressible fluid with arbitrary slip
boundary conditions. The rotational friction coefficient
is taken from our own work.? For translational motion
the result of Zwanzig and Bixon'® is used here. In our
reduced units of the hydrodynamic penetration time
(psR 2/n) the Laplace transform of the Zwanzig-~Bixon
friction coefficient is

£2(p) = 3 nRx* [(140Q +2(1+2)P],
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Q=(3/a)3+3x+x%+x%(L+x)/(2+8/7)], (3.1)
P=(3/8)(3+3y+9),
A=2x%(3+3y+93)+y2(3+3x+x?)

+3[x2Q +x)(p2+2y+2))/(2+B/n,),

) [[pscRY 4\
5 s3]

The Laplace transform of the rotational friction coeffi-
cient is

LeVp+sp ] . (3.2

1+Vp +(30/AA+Vp +5p)

These results are valid for a testparticleinacompress-
ible, viscous fluid with arbitrary slip boundaries. Vis-
coelasticity may be introduced by substituting the de-
sired frequency dependent visocisities into the above
results.

The normalized VCF and AVCF, denoted C,(t) and
C, (), respectively, are found making the usual hydro-
dynamic approximation to their Laplace transforms

§R(P) = 87”7R3[

&.(s) = jo " dte™c, ()

=[s+g4(s)/ml?, (3.3)

Cols)=[s+Lgls)/I T,

In these expressions m is the test particle mass, [ is
the test particle moment of inertia, and s is the La-
place variable in units of frequency. The dimensionless
Laplace variable p used above is related to s by p
=p,R%s/n.

The analytical calculation of the Laplace inverses of
the VCF and AVCF is made very difficult by the com-
plex branch point structure of Egs. (3.1) and (3.2). It
is, however, possible to examine analytically the limit-
ing cases when -0 and ==, The latter case will be
dealt with first as the result is independent of the slip,
compressibility, and viscoelasticity, By standard tech~-
niques one finds

C. )~ 97%5(%:-)”

cut~ 58— ()"
@ 24vmp \ vt

If one replaces v by v+D,, the above results are in
agreement with the predictions of generalized hydrody-
namics'® and kinetic theory'” for the long time tails.

The translational diffusion coefficient does not appear

in our result because we have used the hydrodynamic
friction on a stationary test particle rather than a trans-
lationally diffusing one.

The decay of the partially rough sphere VCF and
AVCF at very short times can be calculated from binary
collision dynamics’ and is given by

g[(1+h)x+1]i
3 k+1 t,

(3.4)

ast=-o,

Cy(t)=1- +0(t?),
(3.5)

2/ x \t
c, =1 —g(m)z +0(t?).
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TABLE III. Initial decay of various hydrodynamic models of
the VCF and AVCF,
Model VCF AVCF
Incompressible: fluid
Viscous, stick ( 2¢ )( 18 \/’_t'*) 1 7T
B=w) 2¢+1/\ T26+1 7 keVT
Viscous, slip ( 2€ )[ 9 i) ] 28
(0B <o) zexi) |l T 2e 41 (2+n t* l_xsn £
Compressible fluid
Viscous, stick 1 (Za +\/'E) 2 4 o
=) Ll e VA6 oy
Viscous, slip 1‘1( 2\Vi* L 28 "
(0 =B <) e\vT/Va Ken
Viscoelastic, stick 1 0+2 2
1—= * - *
(Maxwell) < vy ¢ 1 KeVy ¢
Viscoelastic, slip 1 _i( g, 1 )t* 1- 2 -
(Maxwell) e\Vy Vr+n/8 KEWY +1/B)
Viscoelastic, stick 12 (_Zb +/B ) Y 4 -
(Dabler) -z \Ts t ! kel vy G
Viscoelastic, slip | 1 2 /& 12,
(Dahler) € Y1 Vb k€N
ot I [
* = = € = =
t pRY K7 mRY 2

Following the approach of our previous work the short
time expansions of the hydrodynamic VCF and AVCF
were calculated for different boundary conditions and
viscoelastic models. These results are given in Table
III where the dependence of the initial decay on the de-
tails of the hydrodynamic description is clearly shown.

For completeness Table III includes the results ob-
tained for the VCF in an incompressible fluid (infinite
sound speed). As noted previously compressibility ef-
fects are unimportant for a sphere rotating in its own
volume. In contrast, the initial value of the normalized
VCF in an incompressible fluid is not unity; this point
has been noted previously and is discussed at some
length by Zwanzig and Bixon.!®

To properly treat the high frequency response of the
fluid the frequency dependence of the viscosity must be
adequately described. The simplest viscoelastic model
is the single relaxation time approximation due to Max-
well

n(p) =—1—

s (3.6).

Tlu(P) _i%:u_'; s
where 7 and 7, are the shear and bulk viscosities, re-
spectively. This model has been successfully used by
Zwanzig and Bixon® to account for the negative region
found in the VCF of liquid argon at high density. Note
that in this model the viscosity goes to zero as frequen-
cy goes to infinity, indicating that the fluid cannot re-
spond to a shear at infinite frequency. However, this
is not so for a hard fluid, due to the impulsive nature of
the forces. Binary collisions of hard spheres occur in-
stantaneously. Wainwright!® has shown in this case that
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7(¢) has a term proportional to 5(¢), which gives a finite
viscosity at infinite frequency. Using a generalized mo-
ment expansion, Theodosopulu and Dahler® have found
the frequency dependent shear and bulk viscosities in a
rough sphere fluid from kinetic theory. Their results
are

n(p) =7 (1—”—‘2) s D) =m<m> , (3.7)

1+}/1p 1+YIUP

with microscopic expressions for n, 71,, ¥1, Y2s 71, and
Y2y» We have calculated the initial decay of the VCF
and AVCF using both viscoelastic models discussed
above (see Table III),

It is, of course, true that at times shorter than sever-
al mean collision times the decay of the VCF and AVCF
may not be hydrodynamic; it is due to uncorrelated bi-
nary collisions. Nevertheless, we felt it might be
worthwhile to see if the entire time dependence of the
VCF and AVCF could be described by a hydrodynamic
theory with suitable parameter choices. Note that this
would eliminate the Theodosopulu and Dahler viscoelas-
tic model, as it does not give the correct functional form
for the initial decay of the VCF. Indeed, any viscoelas-
tic model which approaches a constant value as frequen-
cy tends to infinity as required in hard systems will
give a functionally incorrect initial decay for the VCF.
Thus, a rather fundamental inconsistency appears in
the theory if hydrodynamics is required to be correct at
short times.

A slightly different point of view has been taken by
Hynes, Kapral, and Weinberg.2® They consider only the
stick boundary condition (8~ «) to be purely hydrody-
namic, in contrast to the slip condition which they con-
sider to be due to microscopic effects. In support of
this point of view they cite the extensive kinetic litera-
ture on the slip boundary condition. They also suggest
that for a consideration of translational motion the
boundary condition on the normal component of the ve-
locity field

vltlluid_lelmrtlcle:o (3.8)

at the surface of the test particle (macroscopic impene-
trability) must be generalized to account for micro-
scopic effects. Presumably, if this is appropriately
done, the VCF so found will have a linear initial decay.

Some light is shed on this question by an examination
of the Zwanzig—Bixon theory. In the limit of an incom-
pressible fluid (c — <) one finds a VCF which has linear
initial decay with partial slip (see Table II), indicating
that the unphysical decay of the full Zwanzig-Bixon VCF
is due to the longitudinal component of the velocity field,
which is likely more profoundly affected by the boundary
condition of Eq. (3.8) than the transverse component.

IV. COMPARISON WITH MOLECULAR DYNAMICS

We now make a comparison of the hydrodynamic AVCF
with the molecular dynamics results of O’Dell and
Berne® for rough spheres and of Pangali and Berne® for
partially rough spheres. The expressions for the La-
place transforms of the VCF and AVCF are inverted

J. A. Montgomery Jr. and B. J. Berne: Partially rough sphere fluid

ROUGH SPHERE AVCF

ENSKOG VISCOSITY, SLIP TO FIT EXACT
INITIAL SLOPE

7:0.625

08

04

08

o
IS

o

ANGULAR VELOCITY CORRELATION FUNCTION
o
@

o4

/1,

Comparison of hydrodynamic theory and molecular
The viscoelastic
model of Eq. (3.7) and slip parameter 8 of Eq. (4.3) are used,

FIG. 1.
dynamics for the rough sphere AVCF (A=1),

numerically using a fast Fourier transform computer
program. Using Eq. (3.7) for the frequency dependent
viscosity and taking the slip coefficient 8 to give the
exact initial decay an ab initio calculation of the AVCF
may be performed, as suggested previously.? For com-
pletely rough spheres (A =1) the results are shown in
Figs. 1 and 2, along with the molecular dynamics re-
sults of O’Dell and Berne, for densities p=0.1, 0.333,
and 0. 625 (relative to closest packed). The agreement
is seen to be quite good at the lowest density, but
worsens considerably as density increases. Similar re-
sults for low densities have been reported by Hynes,
Kapral, and Weinberg.2°

It is well known that Enskog transport coefficients
have systematic errors at high densities.! We there-
fore made an exploration of the parameter space for the
highest density case p=0.625 to check the dependence
of our theory on the Enskog transport coefficients.
Order of magnitude changes in the viscoelastic relaxa-
tion times produced no significant change in the agree-
ment. A 50% decrease in the Enskog viscosity notice-
ably improved the agreement, whereas doubling the
Enskog viscosity worsened agreement, This behavior
seems anomalous to us as the Enskog viscosity in dense
fluids of smooth spheres is known experimentally to be
too small.! Our findings for the diffusion coefficients
discussed above strongly suggest the same is true of the
rough sphere fluid.

An examination of the AVCF on a logarithmic scale
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ROUGH SPHERE
AVCF

02 (A=1)

p=08625

DEVIATION FROM ENSKOG THEORY

0.2" A
$=0.100
ouF
hd 1 1 [ ] y 3
% 2 4 6 8 10

FIG. 2. The deviations of the hydrodynamic and molecular
dynamics AVCF from the Enskog exponential are shown for
rough spheres. The deviation plotted is defined as C,(t) — Cﬁ(t),
where the Enskog exponential CE(t) is defined by CE(t)

=exp —t/t, . t, g i8 given in Eq, (2, 6) of the text.

suggests that the functional form of the hydrodynamic
theory is incorrect at high densities, The experimental
data strongly suggest the short time behavior is given
by a sum of two exponentials (see Fig. 3). Theoretical-
ly, such a result has been recently found by Yip21 for
the hard sphere VCF. The hydrodynamic theory, while
showing deviations from exponential decay in Fig. 2,
seems to have a dominant single exponential behavior at
short times as shown in Fig. 3. One possibility is that
a more general boundary condition than the slip condi-
tion of Eq. (2.2) is required at high densities. It is also
possible that it is fundamentally incorrect to expect a
hydrodynamic theory to be valid at short times.

To explore this latter possibility an attempt was made
to fit the rough sphere AVCF at intermediate times
(postinitial decay region) rather than the initial decay.
In this calculation 8 and C(0) were taken as adjustable
parameters. Figure 4 shows that improved agreement
can be obtained by this procedure.

It is of interest in connection with recent a.ttemptszz
to observe the long time tail of the AVCF to determine
at what times the hydrodynamic theor& becomes asymp-
totic. Figure 5 shows C,(t) (calculated from param-
eters numerically optimized to fit the rough sphere
AVCF at a density p=0.333) at long times plotted

4585

against ¢"*%. While a linear region is seen at relatively

short times (¢~ 10t,), the correct asymptote of Eq. (3.4)
is not approached until ¢ > 50¢f,, as shown in the inset.
This suggests that detection of the asymptotic region ex-
perimentally will be extremely difficult.

Pangali and Berne® have reported molecular dynamics
results for partially rough (rough domain) spheres at a
density of 5=0.625. They have found that to a good ap-
proximation they scale on t/7,(2), i.e., C, (A, t)=C,[t/
7,(M)]. Recall that

1 21
7,00 3k+1) 7,

_ 1

1
_XW*‘(I—AW- (4.1)

We note that 1/7,(smooth) =0 as angular velocity is con-
served in completely smooth spheres. The hydrodynam-
ic AVCF may be written as C (A, 8, 1) =C,[B(), t/tx(M)].
ty() is the hydrodynamic penetration time p,R2/n(A) and
depends on A as

1 __, nismooth)

n(rougﬁ)
tﬂ(k) pst +(1 —X) psR .

This has the same functional dependence on as A as Eq.
(4. 1) above, but does not go to zero at A=0. It is, of

(4.2)

|
£=0.625
i ENSKOG FREQUENCY DEPENDENT
VISCOSITY, SLIP TO FIT ENSKOG
r INITAL SLOPE
Ol
r STOKES LAW VISCOSITY
R AND SLIP, ENSKOG VISCO-
L ELASTIC RELAXATION TIMES
W L
(S
> L
<t
EXPONENT
1AL
0.0l
L
L 1 { 1 1 1 1 | L
0 4 8 2 16
1/t

FIG. 3. A logarithmic plot of theory and experiment for the
rough sphere AVCF, The molecular dynamics results are
shown as data points connected by a smooth curve to emphasize
the approximate separation of the data into two exponentials.
Two hydrodynamic caiculations are shown, one with the vis-
cosity of Eq. (3.7) and the slip of Eq. (4, 3) and the other using
the Stokes law parameters given in Table I. The exact initial
decay is given by the Enskog exponential,
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FIG. 4. A comparison of theory and experiment for the rough
sphere AVCF when C,(0) and 8 are chosen to fit the post initial
decay region,

30 t IN MEAN COLLISION TIMES

20
ol 1310 7

0.08-

0.06-
W commeo so 0
0.04+
1 L
0.02l 0.00G)(I)\ 000005 0.000I

Il

okl 11 | [
0 0.005 00I0

£¥2 IN MEAN COLLISION TIMES
FIG. 5. The long time behavior of the hydrodynamic AVCF is
shown, The theoretical AVCF was fit numerically to the ex-
perimental data (open circles) at a density p=0. 333 relative to
closest packed, The inset shows the region in the vicinity of the
origin where the true asymptotic behavior is observed.
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HYDRODYNAMIC SLIP COEFFICIENT 8 AS
A FUNCTION OF THE ROUGHNESS X
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FIG. 6. The hydrodynamic slip coefficient 8 is shown as a

function of the roughness parameter A, The dashed line is taken
from Eq. (4.3). The solid line is a fit to the data of Table I
obtained from Stokes’ law with slip, B is in the units m =R =,
=1 used in the molecular dynamics calculations, where m is the
particle mass, R is the particle radius, and ¢, is the mean col-
lision time, The density is 0, 625 relative to closest packed.

course, necessary for (1) to be zero to obtain the
smooth sphere limit. I () is chosen to give the exact
initial decay of Eq. (3.5), we find in terms of 7,(})
given above

_Kkp,R? 1
p= 2 1,0
2
_kpsR® A 1 (4.3)

3 k+lT1,°

This method of determining 8 is also used by Hynes,
Kapral, and Weinberg!*2? for completely rough spheres.

At fixed density B depends linearly on A. Equation

(4. 3) above gives f=0.0227) for k=0.4, 5=0.625, cor-
responding to the molecular dynamics experiment. The
B values of Table II, determined from the experimental
diffusion coefficients using Eq. (2.1), obey B=0.0175x,
in good agreement with Eq. (4.3). A plot of B as a func-
tion of A is given in Fig. 6. We now compare the theo-
retical AVCF with the molecular dynamics results as a
function of A.

B(x) is taken from Eq. (4.3) to give the correct initial
slope. Guided by Pangali and Berne, 8 the Enskog fre-
quency dependent viscosity is taken to be

n,p) =m0 1222,

Trm0p 4.4)
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n(A) =an(rough) + (1 = A)n(smooth),
¥(A) =xy(rough) + (1 — A)y(smooth) .

We note that although we have not proven y(}) is given
by Eq. (4.4), its exact functional form is of little nu-
merical significance at the density p =0.625 considered
here because ¥(rough) and y(smooth) are nearly equal.
Figure 7 gives the deviations from the Enskog theory as
a function of time for several values of A.

There is, as mentioned before, a systematic disagree-
ment between theory and experiment. Viewed on this
scale the experimental data exhibits some structure due
to changes in roughness (note, however, that we are
speaking of differences that are comparable with statis-
tical errors in the molecular dynamics data). A gener-
ally similar structure is exhibited by the theoretical
curves, although there is not quantitative agreement.

We suspect that better agreement would be found if mo-
lecular dynamics data were available at lower densities,

V. DISCUSSION

We have shown that the rotational and translational
diffusion coefficients of partially rough spheres may be
successfully described by a hydrodynamic theory with
partial slip boundary conditions. It is found empirically
that the slip parameter B of the hydrodynamic theory is
linearly related to the roughness parameter A of the col-
lision dynamics. Equal size spheres, rough and smooth,
are found to be hydrodynamically slippery, but it is sug-
gested that a large Brownian particle in a fluid of small-
er particles will approach hydrodynamic roughness.

We conclude that the effects of partial roughness can
successfully be incorporated into a hydrodynamic de-
scription of angular velocity correlations. In particu-

AVCF AS A FUNCTION OF ROUGHNESS

p = 0.625
& b
2
T 008 MOLECULAR DYNAMICS
o Y
g ° A=075
2] 0.06 o A=05
& o A=025
3 THEORY
i 0.04
zZ
Q
g 002
>
i
(=)
- . .
% 2 4 6 8 10

t/1, (X)

FIG. 7. The deviations of the hydrodynamic theory and molec-
ular dynamics AVCF' from the Enskog exponential are shown
as a function of A for partially rough spheres. The heavy
curves give the theoretical result, The data points are con-
nected by light curves for clarity.
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FIG. 8. A comparison of hydrodynamic theory and molecular
dynamics for the rough sphere VCF, The viscosities of Eq.
(3.7) are used and 8 =0,

lar, the linear relationship between g8 and X found em-
pirically from the diffusion coefficients emerges from
the theory if B8 is determined from the initial slope of
the hydrodynamic AVCF by requiring it to give the ini-
tial slope known from the collision dynamics. However,
we have shown that the resulting theory does not quanti-
tatively describe the AVCF at high densities, except at
very long times. If a better description of short time
effects as a function density is achieved, the methods of
the present paper would probably successfully extend
the resulting theory to partially rough fluids.

Molecular hydrodynamics is less successful at de-
scribing velocity correlations in hard particle fluids.
Due to the unphysical initial decay of the Zwanzig—
Bixon theory good agreement with the molecular dynam-
ics VCF cannot be obtained at any density for any value
of the slip parameter.

The VCF at high densities is well known to exhibit a
negative region at intermediate times (commonly
ascribed to rebounding collisions with the nearest neigh-
bor shell). This structure is obtained by Zwanzig and
Bixon® and by Levesque et al? in their calculations on
Lennard-Jones fluids, but not in our calculation of the
rough sphere VCF at 5 =0.625 as shown in Fig. 8.
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