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A theory of coupled translational and rotational relaxation in solution including the effects of
hydrodynamic interaction is presented. The translational, translational-rotational, and rotational
diffusion tensors are computed using the method of hydrodynamic reflections. The correlation functions
Cin (1) =LY}, *[0(0)] Y, [w(8)]> and C,,(q.t) =<expiq[r(t)—r(0)] Y;,*[u(0)] Y,[u(t)}) are found

from a coupled translational-rotational diffusion equation. C,,(¢) is shown to reduce to the Debye result
under conditions relevant to magnetic resonance experiments. The concentration dependence of the
rotational diffusion coefficient is calculated and compared with experiment. The failure of the results to
account for the dynamical correlations seen in recent NMR studies of protein solutions by Koenig and co-

workers is discussed.

INTRODUCTION

The use of hydrodynamic methods to theoretically de-
scribe dynamical and frictional properties of polymer
solutions has been very fruitful. The methods of Kirk-
wood and Rieseman’ for treating the hydrodynamic in-
teractions between particles in solution using the Oseen
tensor have become standard techniques in polymer
theory. Their approach is based on the solution of the
Navier-Stokes equation for point particles having no
volume,

The calculation of hydrodynamic interactions between
particles of finite size is much more difficult, but some
progress has been made. Stimson and Jeffrey? have
given an exact solution for two particles approaching
each other along their line of centers, with stick bound-
ary conditions. Translations along other directions as
well as rotations have been considered by other au-
thors.** Another approach is to construct approximate
solutions in series, by a method of reflections. The
translational seli- and cross diffusion tensors have been
found in this manner by Aguirre and Murphy,® Batchelor,
Mou and Chang, " and Felderhof.® An approximate re-
sult for the translational cross-diffusion tensor has been
found from a variational principle by Rotne and Prager.®

In this paper the translational, translational-rotation-
al, and rotational diffusion tensors for two spherical
particles of unequal size are found by extension of the
treatments of Aguirre and Murphy® and Felderhof, ® and
compared with previous results. An N-particle coupled
translational-rotational diffusion equation embodying
our results can be applied to many problems. We apply
these results in particular to find time correlation
functions of interest in NMR and incoherent neutron
scattering.

These results are compared with the experimental
results of Koenig and co-workers, 19 who have observed
dynamical correlations between the tumbling of protein
and solvent molecules in NMR experiments on solutions
of globular proteins. The reorientational correlation
function of water molecules is found to decay on two
vastly different time scales. The long time decay is
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characterized by the reorientational time of the protein
molecules, whereas the short decay typifies the usual
time scale for water. We might ask why the water mole-
cules retain memory of how the solute protein molecule
reorients. Koenig ef al. are able to exclude experimen-
tally any mechanism which involves binding of solvent to
protein molecules and suggest their results are due to
long range hydrodynamic interactions. We find, how-
ever, only slight corrections to the usual Debye model
results for the orientational correlation function. Some
of our results are very similar to those recently given
by Wolynes and Deutch!! in another theoretical treat-
ment of this problem.

HYDRODYNAMIC INTERACTIONS

We consider a model system consisting of N spherical
Brownian particles executing translations and rotations
in a viscous fluid. Our interest is in rotational relaxa-
tion, but the translational and rotational problems can-
not be decoupled at the outset due to the existence of
hydrodynamic translation-rotation coupling (which exists
even between spheres when stick boundary conditions
are applied), i.e., a sphere translating and rotating in
a viscous fluid exerts both a force and a torque on a sec-
ond sphere placed in its velocity field. Similarly, a ro-
tating sphere exerts both a force and a torque on another
particle. This point is discussed at greater length by
Happel and Brenner.* The difficulties that appear when
translational motion is completely disregarded will be
discussed in a forthcoming note. 1z

In the limit that inertial effects may be neglected the
translational and rotational relaxation of a system of N
spherical Brownian particles is described by a coupled
translational-rotational diffusion equation. The condi-
tional probability distribution P{r, }, {u,}, ¢; {r;}, {ujp
of the positions r; and orientations u; satisfies

%) = kzl[vk * (DT)u ¢ (V,P —BPV,U) +Vk ‘ (Drn)u
(L P - iBPL,U) +iLy * (Dgr)y; - (V4P — BPVU)
+iLy - (Dg)y; « GL,P ~ ifPL,U)] . (1)

L,=~iuyXV,, is the dimensionless angular momentum
operator in the space of the kth particle, U is the inter-
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molecular potential, and 8= (2T)™. A derivation of this
equation is given by Condiff and Dahler, 13 who prove that
the matrix D of diffusion tensors is related to the matrix
of friction tensors § (the “grand resistance matrix” of
Happel and Brenner) by a generalized Einstein relation

D=T C'l, 2)
where
D, D ¢r ¢
D= T TR , ¢ T TR ) 3)
Drr Dg Err 62

The submatrices Dy, Dz, Drg, and Dgr are explicitly
given in terms of the friction submatrices by

Dy =kT (67 — Erp Eiltrr)?,
Dr =.kT(CR ~Erréitrr)?,
Drgr =kT(§rr - Erb7rér)™,
Drr=kT({rr-brbirbr)™ .

The friction tensors relate the hydrodynamic forces
and torques F and N to the particle velocities and angular
velocities u and by

(0 6 -

Note that F, N, u, and &, are column vectors containing
N components and the matrices §r, g, £rr, and gy
contain N2 friction tensors. Happel and Brenner show
Err =t%r and consequently Drg =Dy (also shown by
Condiff and Dahler). The operation { indicates trans-
position of both the matrix and the tensors which are

its elements.

“)

To proceed further the hydrodynamic friction tensors
must be calculated for a system of N particles, This
may in principle be obtained from a solution of the
Navier-Stokes equation in the presence of N spheres.
This has not yet proved possible in practice.

Our procedure will be to calculate the matrix of fric-
tion tensors for two particles in a viscous fluid from a
solution of the Navier—Stokes equation. The two body
results will then be generalized to the N body case by
assuming the hydrodynamic interactions to be pairwise
additive.

The two particle friction tensors may be obtained from
the solution of the Navier-Stokes equation

v =Vp 6)

for an incompressible, viscous fluid in the presence of
two particles simultaneously translating and rotating.
The solution is found in series, using a method of re-
flections. We use the method and notation of Aguirre
and Murphy, * who have solved this problem for pure
translational motion.

The velocity field v in the presence of two spheres,
moving with velocities u; and u, and angular velocities
@ and £, , is constructed as

V=V +Va+Vg+-er (7)

Each term in this expansion is required to satisfy the
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Navier-Stokes equation. Stick boundary conditions are
used, as they are appropriate for the description of
Brownian motion of macromolecules. The total velocity
field v must satisfy

v=u;+8;Xr;, onS,

®

=Uy +anr2 , On S, ,
where r, is the radius vector of particle k and S, is the
surface of particle k. v, is chosen to satisfy
v1=u1+ﬂl><r1, onS;. 9)

Note that while v; satisfies the boundary conditions on
S,, it does not on S,. Therefore, V; is required to
satisfy

Vo =u2+ﬂz><rz—vl, on Sz . (10)
Higher terms are required to satisfy
V3=-Vz, Onsly (11)

Vy==V3 , On Sg N

and so on. It is clear that by this method one can con-
struct successive approximations to the desired solution
of the Navier-Stokes equation.

The problem has now been reduced to one of solving
the Navier-Stokes equation for one spherical particle

with arbitrary boundary conditions on the surface. This
problem has been solved by Brenner, ** who finds
== 2 "™V +1)(V"ug) , (12)

n=0
with
v=uy(r), onS.

The tensor "2V contain the effects of spherical sym-
metry and stick boundary conditions; 2y gives the usual
Stokes solution. The tensors (V"Uy)e contain the bound-
ary values on the surface of the sphere. The subscript

( )o means that the enclosed quantity is evaluated at the
center of the sphere. This result may be used to con-
struct the approximation v, to the solution of the Navier—
Stokes equation in the presence of two translating and
rotating particles. Note that (V"u,)o=0 unless #=0, in
which case we get u,. Also (V"Q,Xr,)o=0 unless n=1,
in which case (VA X1,),=€-8,, where € is the complete-
ly antisymmetric triadic formed from the Levi-Civita
tensor. However, (V™,), is nonvanishing to all orders
(unless, of course, #=1). Using Eqs. (9), (10), and (12)
we may write

Vy=—2Vy-u -V ey (13)
and
Vg =— ZV2 e Uy = 3V2 €. ng - Zo sz2[n + 1](V"2V1) <
n=
=Y ™V, 419"V €0y . (14)

n=0

vy, V4, etc. may be constructed in an analogous manner,
Explicit results for the ™2V, are given by Brenner and
by Aguirre and Murphy.®

To obtain the friction tensors the forces and torques
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on the two particles must be found. This is conveniently
done using Faxén’s theorems*¥

2
F1=€Tl[<1+%lA>V] —§T1U1, CTD=67TT]Rk
0

== (Er) v - Er)z - - Err) 81— Err) Q2 ,
Ni=-28r1 €: (VW)= Erify , &pp=871R}
== (Er)11 Q1 - (€r)e - ¥ — €rr)1s U1 — Err) 02 .
|

(tT)u =tT1(I +2V2 . 2V1 +3Vz H Va V1 +4Vz : Vz 2V1 +2V . 2V1

4591

Note that 4 is the scalar Laplacian operator, a different
quantity than v? , a dyadic operator. It is straightfor-
ward, although tedious, to obtain expressions for the
frzlctlon tensors in terms of the polyadic velocity fields
g Vk

As is shownlater, the lowest order term of (Dr)y; ex-
plicitly involving vy, is of fourth order, while for (Dg),,
it is of sixth order. Therefore, we give the friction
tensors &7 and €75 to fourth order, and £y to sixth or-
der. Our results are

'ZVz . 2V1 +%‘R§A 2V2 ‘2V1)

2 2 4 2 p2 -
e [1(3) B o+ § BELRD o) (3 B 157+ 3 2 qai) o0,

€r)e =Er (V2 +7Ve - Vl-zvz+§-R€A2vz)
== 51'1[ 2 I+

R} .
(tTR)u =§T1 Va . V1:€ =z'1f77R1R2 171?2 Ty - € +O(’I’125) s

R2
(:TR)IZ =CT1(3V2 : ( +2V2 '2V1 '2Vz :‘ +%‘R A SVz t) 67”7R1R2[ <

€r)1y=—28ri€ : [€+ V2V, . V1 €490V, 0

e 1 500 -2+ (3) B 0o 2 0o

Wi €4V, VEW, €4 VY, 2V, Y,

£+ BB i) () R riy)] w00,

(16)

9 R85, o0,
712

'3V1:€]

)] +06D),

R} - 3\ R,R: A .
(€r)z=-3Lr €:[V3V,: €+ 92V, -ZV,."’vz:c]:cm[—z-;%fz(1_3r§2)+(z) —;112—2 a-rﬁz)J +0(ry;

Although Aguirre and Murphy5 ignore rotational con-
tributions, our result for £ is the same as theirs, as
expected. Our lowest order terms for (§z);; and &rp
give the “rotation—rotation” and “translation—rotation”
Oseen tensors of Wolynes and Deutch.”

Using the explicit expressions for "™V, given by
Aguirre and Murphy® the diffusion tensors Dz, Drr, and
Dr may be found from the generalized Stokes—Einstein
relations of Eq. (4). After a lengthy calculation we find

Oru= o (1- BEE 33) 00,
Ol = [ 55 038 BB g3ty o0

(Drr)y; =0+0(r33) , (17)

T .
(Dzrr)yz = - sy g, Tz € +0(rg) ,

3
(Da)yy = kT[ —flf—a a-

iz~ Fo [y (- 35500

These are the unique components of D; the full matrix
may be obtained by application of the symmetry relation
Dgr =D;R and by complete interchange of the labels 1 and
2 where appropriate.

]+0& ),

Felderhof® has recently shown how the translational
diffusion tensors may be calculated directly, rather than
by inversion of the grand resistance matrix. In Ap-
pendix A this method is extended to the rotational prob-
lem and the expressions found for Dg and Drx by this
method are in agreement with Eq. (17) above. This
method was used to determine the order of the neglected
terms in Eq. (17).

It is of interest to note that our result for (Dr),; does
not agree with Eq. (21) of Aguirre and Murphy, ° the rea-
son being that they have used Dr = ETE7 instead of our
Eq. (4). This points out an inconsistancy in their work.
In a preceeding paper Murphy and Aguirre'® derived
their Einstein relation from a Fokker—Planck equation
for translational motion only. A hydrodynamic ealcula-
tion of Dr consistent with their derivation of the Einstein
relation would therefore require slip boundary condi-
tions, rather than stick, as in that case there are no
hydrodynamic torques. Our result for (Dr);; agrees with
results given by Batchelor,® Felderhof,® and Mou and
Chang.” All authors agree that (Dr),, is given by Eq.
(17) to third order.

Assuming the hydrodynamic interactions to be pair-
wise additive we suggest that the appropriate generaliza-
tion of our self-diffusion tensors to the N-body case is
given by

J. Chem. Phys., Vol. 67, No. 10, 15 November 1977

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4592

kT 15R,RS .
(DT)u:_ (I_ Z _—"Z@kr%k> ’
Ery 24 4

kT 15R3R? -
(DR)u =Z; [I‘ E "E‘?;‘k (I- ru)] .

k¥

(18)

Alternatively, one might generalize the friction ten-
sors to the N-body case by assuming pairwise additivity
and obtain D from the Einstein relation. This procedure
also gives Eqs. (18). These approximations should be
good for dilute solutions (low concentrations of Brownian
particles).

These results enable us to find the dependence of the
rotational diffusion constant on the Brownian particle.
concentration, a result which will subsequently be com-
pared with Koenig’s measurements. For an isotropic
solution of N identical Brownian particles of radius R,

kT 3 B, 15RS Az]
®o) < T 7 aran(t-n B a-s9] 0o

kT 3 (%, 5N R‘})
b wl’rd'r(-z—;-gl. (20)
Keeping only the largest terms as R~
ET 5N R}
(D>_?(1_—i-§ E&)I (21)
kT 5
(1)1 (22)

where ¢ =N% 1rR§ /Vis the volume fraction of Brownian
particles,

We note that higher order approximations to (Dg)y
will give corrections to the numerical coefficient of ¢
in Eq. (22). As we have shown the neglected term in
(Dr)y; to be of order 772, the corrections are expected
to be small,

‘ORIENTATION CORRELATIONS

The coupled diffusion equation (1) may be used to cal-
culate time correlation functions of position and orienta-
tion. In this section we consider the orientational cor-
relation functions

clm(t) =<Y‘:m[u(0)] Y!m [u(t)]> (23)

of interest in NMR. Appendix B discusses the related
function

Cinlg, t) =(expiq - [r¢) - 1(0)] Y1, [0(0)] Y, [u®)]) . (24)
of interest in incoherent neutron scattering. If the dif-
fusion equation (1) is written as

8P/8t =LP = (LT +LTR +LR)P > (25)

then the correlation function C,,() may be written as
t
Clm(t) =(Y?m(u) eLR(r'“" Ylm(u» ’ (26)

where the average is over an equilibrium distribution of
orientations and, where necessary, an isotropic dis-
tribution of configurations, The operator L} is the ad-
joint of the rotational diffusion operator and is given ex-
plicitly by
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Lh=- ; L,-D;,-L,-8 »_ (LU)-D;;°L,. (27)
17
Here, and in the remainder of this section, D is taken to
mean Dz, and we drop explicit use of the subscript R,
Wolynes and Deutch'! have shown that the Debye result
Clm(t) =e-1(1*1)Dt (28)

is obtained from this analysis when the rotational self-
diffusion tensor is given by the Stokes—Einstein result

D,, =1 %T/8mIR} . (29)

We show below that our result (18) for D,, gives non-
exponential corrections to the Debye result.

The diffusion operator L} is decomposed into a sum
of one and two particle operators

LL=LY+L!, (30)
where
Ly=- ; L, Dy Ly,
(31)

Li=- Z L;'Dy L, .
1#]

Here we have neglected the possible effects of the po-
tential U, The correlation function C,,(¢) may now be
found using perturbation theory.

The Laplace transform of C,,(f) defined by

élm(p) = J;)m dt e? Clm(t) (32)
is given by
élm(p)= th(u) S—%—_LT th(u)> . (33)

This result is expanded by perturbation theory to give

5 o 1 1,1
me(P)-<Yxm(u) (m - p—;—fglq P4

1 .+ 1 y 1 )
7 87 Sy 2 B sl Y,,,,(u)>. (34)

Borrowing the language of quantum mechanics it is clear
that C,,(p) is a one-particle matrix element and there-
fore all terms in the expansion involving the two particle
operator L must vanish. Therefore,

Cunt) = (¥ 1) L T1n0)

Cmlt) =(¥ () 50 ¥ 0)) (35)

1t is clear from the form of the self-diffusion tensor
D,; given in Eq. (18) that C,,(f) is no longer exponential.

For N identical isotropic Brownian particles of radius
R the averages over angles and configurations may be
performed analytically, giving a divergent result, 17

This divergent behavior likely results from neglect of
many-body hydrodynamic interactions. Summation of
these terms in analogy to the summation of ring diagrams
in kinetic theory would most likely remove the divergence
and would probably introduce a term of order ¢"ln¢ in
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Eq. (22)—much like the terms found by Kawasaki and
Oppenheim18 in their study of the density expansion of
transport coefficients. We have been able to evaluate
the lowest order three-body hydrodynamic interactions
and find that for some geometries they oppose the two-
body interactions. These results are summarized in
Appendix C.

At the short times probed by relaxation experiments
(« finite) the Debye result is recovered. It is, there-
fore, of interest in connection with the magnetic relaxa-
tion experiments mentioned earlier to investigate the
possibility of intermolecular coupling via long range po-
tentials.

The effect of intermolecular potential may be con-
veniently examined by making a cumulant expansion of
the correlation function

Clm(t)=exp Z Kn WY
n=1 n

K =(Y @) Ly Y, @),
Ky =(¥ 1L Y, ) — (Y T,@)L} ¥, (),

(36)

ete.

It is easy to establish that the contribution to the first
cumulant of C,,(f) due to the effects of an intermolecular
potential U vanishes. In this case

K=~ <th(“) (L{ "Dy Ly—iB Zk: N, + Dy Lt) Y,,,,(u)> s

(37
where the torque is N, =¢{L, U in terms of the potential
U. Breaking the average into an average (- - -)g over
configurations and an average (.. .)g Over orientations
this becomes

Ky =- <th(u) (Li -{Dypr-L;-iB

zk: (Np Dy dn L;) Y:m(“)>n . (38)

Note that N, - D,, is a pseudovector function of position
and, therefore, its average over an isotropic distribu-
tion of positions is zero

(Nk Dy, )r=0 (39)

and there is no contribution to K; from the intermolecular
potential U.

DISCUSSION

Recently, Koenig and co-workers!® have studied the
magnetic relaxation of aqueous protons in biopolymer
solutions, finding that the tumbling of the solvent ap-
parently has a component due to interactions with the
macromolecular solute particles. Their data is well
described by a correlation function of the form

Cinlt) = (1 - @) e FDPat 4 omitbOgE 40)

where Dy is the rotational diffusion coefficient of the
Brownian (polymer) molecules, D, the rotational dif-
fusion coefficient of the solvent, and @ a small positive
coefficient of order 10™. They are also able to mea-

Berne: Rotational relaxation 4593

sure the dependence of the diffusion coefficient Dy on
polymer concentration. 1

Wolynes and Deutch show that no deviation from the
Debye result is obtained treating the hydrodynamic in-
teractions to lowest order. Using a higher order result
for the self-diffusion tensor we have obtained a small
deviation from the Debye result, but our result is not
of the form observed by Koenig et al.

We assume the polymer particles form cages about
each other of radius R~0(n"'/%) expressed in terms of
the number density n. The Stokes friction on a spheri-
cal particle in a spherical cavity of fluid has been given
by Landau and Lifshitz.% It is

RiR}

M RCR

(41)

where R, is the radius of the test particle and R; is the
radius of the cavity. The rotational diffusion coefficient
is, therefore,

po kT (1 R}
“8mR; \" ~ R;

8mR3 Ve

in terms of the particle volume V,; and cage volume V.
The cage volume is taken to be V, =2/n, where 7 is the
protein number density. Therefore,

(“2)

BT (. &
D=— - =
& ( 2) 43)
in terms of the volume fraction ¢ =3 7R3x. This argu-

ment gives a result of the same order of magnitude as
our more detailed calculation, and again in serious dis-
agreement with the observed data.

It is possible that our inability to account for Koenig’s
observations is an artifact of the perfect spherical sym-
metry of our model., Vastly enhanced effects in this
case would likely require large geometric anisotropy.
Since the proteins studied by Koenig are well known to be
roughly spherical, it does not appear that hydrodynamic
interactions are responsible for Koenig’s observations
and we suggest a review of the experimental data with
this in mind.
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APPENDIX A: DIRECT HYDRODYNAMIC
CALCULATION OF THE DIFFUSION TENSORS

Recently, Felderhof® has shown how the translational
diffusion tensors may be directly calculated from hy-
drodynamics (i.e., without prior calculation of the fric-
tion matrix). In this Appendix the rotational and rota-
tional-translational diffusion tensors are found by a
similar calculation.

Rather than calculate the drag forces and torques on
particles with specified velocities and angular velocities
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Felderhof suggests the calculation of the velocities and
angular velocities of particles subject to fixed forces and

torques. It is convenient for our purpose to require
Fi1=0, Ni=8p04%#0, (A1)
Fy=N;=0.

The velocity field v is again found from a series expan-
sion
V=Vi+Vy+Vg+-+- (A2)

by a method of reflections. v, is required to produce a
constant torque Ny on particle 1, and therefore

vy =8Xry, onS , (A3)
and application of Eq. (12) gives
A2 =_3V1:€-Qm . (A4)

Particle 2 is assumed initially stationary, as required
by Eq. (Al). However, v, will exert both a force and
torque on particle 2, and we therefore require 2 to move
with velocity up; and angular velocity §,;, to be chosen
in such a way that there is no net force or torque on 2

due to v, . This requires
Foi=tr2{[1+ ®RE/68)A] vy -t }o=0,
Ab
Npy=— 3652 €: (VV3)g - €22 021 =0 . (A3)

Substituting Eq. (A4) into (A5) gives up; and £,y explicitly
as

1 -
Uy =— m rzl'i 'Nl
=B(Drr)ey - N1,
R} A
Q1= '2"‘}‘ I-3ry)-N;
7 12

=B(DR)21 * Nl' .

The generalized Einstein relation (2) allows us to identify
the diffusion coefficients (Drz); and (Dg)y .

Now the reflection back to particle 1 is made. Vv, is
required to satisfy

onS,, (A8)

Vo =Upy + 803 XXy -V,
and
Vy = 3V2 . (E . QZI - Vvl) +O(1’4) . (Ag)

As before uy; and §,; may be found from the requirement
that v, exert no force on particle 1. Application of
Faxen’s theorems, as in Eq. (A5), gives
1 15R}R}

Qp=— 7— Trel;z—(l-f'?z)'Nl , Up=0.

A10

The diffusion tensors found from these terms are

15R3R]

(Dr)yy = Tm [I - "m;“ a- 1'12)] s (A11)

(Drr)1 =0 . (A12)

Equations (A6), (A7), (Al1), and (A12) are in agreement
with Eqs. (17) of the main text, as expected.
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APPENDIX B: TIME CORRELATIONS OF
POSITION AND ORIENTATION

The coupled translational-rotational diffusion equation
(1) may be used to calculate the self-spacetime correla-
tion function

Cinlg, 1) =(e! e Oy L Tu(0)] ¥y lul®)])

relevant to incoherent neutron scattering. In terms of
the adjoint diffusion operator LY, C,,(q, ) may be writ-
ten as

Cinla, 1) =™ VE, () ' S eber y, [ug)]), (B2)

(B1)

where the average is over an isotropic distribution of
positions and orientations. Neglecting the potential
U the adjoint diffusion operator A may be written as

L'=3,

ki

+7:Lk ‘ (DRT)M V- Lk * (DR)kt : Lz] .

[ V- (Dr)p,x Vi +iV,. (DTR)M ‘L
(B3)

There is considerable simplification due to the sym-
metries of the hydrodynamic diffusion tensor matrices.
From the symmetry of the grand resistance matrix we
have found that Dp; =Dy . Note that the adjoint of each
matrix element is taken, as well as the adjoint of the
matrix itself. Because Drg couples vectors and pseudo-
vectors (velocities and torques), each element (Drg),,
must be a second rank pseudotensor. Its Cartesian com-
ponents therefore obey

[(DTR)kl]zb =[(DTR)u]ba
= - [(DTR)M]ab
2[(DRT)U2 ]ab .

Note that the indices kI label a particular element of
Dyp and the indices ab label the Cartesian components
of (Drg),; . From Eq. (B4) it follows that

iLk : (DRT));I *Vy=- iLk : (DTR)tk *V,

== iV, - (Drp)py- Ly +iV, > D) - Ly,
(B5)
as, in general, Drp need not have zero divergence.
Therefore, by symmetry arguments alone L' may be
written as

L= ; {Vk : (DT)M V- Lk : (DR)kl - Ll

+1 [‘71 *(Drr)ie ] Lx} .

Suppose only pairwise (two particle) hydrodynamic
interactions are considered. Then, (Drg),,; depends only
on the vector r,; and, by symmetry, must be of the form
Draas =fr)€ -1y . It is clear that in this case
V » (Drg)g; =0. In general, however, each element of
D,y will depend on all N(N - 1) interparticle distances,
and it is not clear that V . Dy will still be zero.

(B4)

(B8)

As this paper only considers pairwise interactions yAl
takes the form

L'=LL+L},

L}"—; Vo  Or)er Ve, LL"-; Li-Op) Ly,

(B7)
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and similarly for L. Therefore, the joint probability
distribution P({r,}, {u,}, £; {r}}, {u}}) takes the uncou-
pled form Pr({r}, t; {rj D Pr({u;}, t; {ui}). Cinq, 8),
however, is not uncoupled due to the position dependence

of Dr and Dr. Rather, it may be written as
t
Cyla, ) ={(e™e" PRAAC TR )[Y’:,,,(u) LRIy, ()]) .

(B8)

It is an interesting result that there are no explicit
translational-rotation coupling terms in Eq. (B7). The
weak coupling manifested in Eq. (B8) results from the
effect of hydrodynamic interactions on the translational
and rotational diffusion tensors. We note in passing
that Eq. (B6) does not depend on the spherical symmetry
of the particles; it is true for any system of orthotropic
bodies.

APPENDIX C: THREE PARTICLE HYDRODYNAMIC
INTERACTIONS

In general, the hydrodynamic diffusion tensors (trans-
lational and rotational) are of the form’

Du=D°I+ Z T}f’(r,,)+ Z Tﬁ’(r“, Tipy Ta)tove s
7 At
(039

D,,:Dfﬁ’(r“)+; D (rye, Ta) -+ (C2)

as a consequence of the nonadditivity of hydrodynamic
interactions. D{3’ and T{; are the two body terms de-
rived and discussed in the main text, D{}’ and T;} are
the terms involving the nonadditive interaction of three
particles, and so on. In this Appendix the lowest order
(in interparticle separation) contributions to the diffusion
tensors involving three particles are given and their ef-
fects discussed. A similar analysis could in principle
be performed for interactions of any order.

The computation of the three-body hydrodynamic in-
teractions is done by a straightforward extension of the
method of Appendix A. The calculation is lengthy and
will not be repeated here.?! The results are

3p3
kT 3R1R2R3 [A(p, r’ [J,)+A(— ‘J.’ _r, _p)] .

(3) il
(DT )11_ §T1 IJ-ETSPE
(C3)
T 15R.R3 .., ~ » an
D)y = = DB (3557 - 1], ()
CT1 80’}’

T 75R3R3RS
1(23))11= T _31_3__1_2 2 [B(P; T, b)+B(-p, -1, -p)],
Er1 8pr°m
(C5)

BT 15R3RS o av,ac sy ,a & n aran
O )gs == 7— Tl [EXP)PXF) + (5 - #V1- (6. F)pF] ,
Sr1 4077

(C6)
where the tensors A and B are defined by
Ak,y, 2)={8 @ §[25@ 57 - 1]

+15&-PI&E-§) - 5& - 2)5.8))-F [3(y -2 -1]}2 %,
)]

4595

B(, y,2)={x- )@ - ) & - 2)I - k8] +[(% - 2)°
- 10(x - 9)(y - 2)] BXHERXY) + & - )@ XTI (xx 2)
+@-PEXX)EXT)} . (C8)

In these expressions R, is the radius of particle &, ry,
=r;=r;, P=Ty, r=ry3, and 4 =ry . The translational
results (C3) and (C4) have been given in slightly dif-
ferent form by Kynch? in a discussion of sedimentation.
The rotational terms seem to be new.

Note that in the limit p=—r Egqs. (C4) and (C6) may
be identified with the terms (T$’),, and (T#’),, of the
self-diffusion tensors given in Eqs. (17). This provides
a useful check on the results.

While our results for D’ are exact (to the order cal-
culated), they are sufficiently complex that further cal-
culations with them are quite difficult. For example,
by a suitable averaging procedure correction terms to
the rotational (or translational) diffusion coefficient of
order ¢2 (where ¢ is the volume fraction of Brownian
particles) may be obtained. However, even in the dilute
hard sphere gas limit these calculations are very dif-
ficult due to the geometrical requirement that the three
spheres not overlap during the integration over con-
figurations. Therefore, we conclude with some qualita-
tive remarks about the effects of three-body interactions.

Due to the strong dependence of the three body terms
on interparticle separation, the most important contri-
butions to an average over positions will come from
configurations where U, p, and » are nearly equal and
not large compared with 2R, We therefore evaluate the
contribution to (D), from the configuration where the
three particles are at the vertices of an equilateral
triangle. The torque N; applied to particle 1 may be
decomposed into components N{' and Ni, which are, re-
spectively, parallel and perpendicular to the plane of the
three particles. Then it may be shown that

(D), - Njc[2x% +22%(104% +x)| N} ’ (C9)
(DF) - Njo< 26 NY -2 (3 +i25) - N, (€10)

where x =cos(27/3) and z =sin(27/3). From Eqs. (17)
we find

(ngz))., . Nf'OC _ 2N1l , (C11)
(TR, - Nf - 2N{ + (3% + 4%) - NY. . (€12)

It is clear that Eqs. (C9) and (C11) and the second terms
of Egs. (C10) and (C12) tend to cancel, as suggested in
the main text.

'A comprehensive treatment is given in H, Yamakawa, Modern
Theory of Polymer Solutions (Harper and Row, New York,
1971),

M. Stimson and G. B. Jeffery, Proc. R. Soc. (London) Ser.
A 111, 110 (1926).

3See, for example, H. Brenner, Chem. Eng. Sci. 16, 242
(1961); W. R. Dean and M. E. O’Neill, Mathematika 10, 13
(1963); M, E, O’Neill Mathematika 11, 67 (1964); A, J,
Goldman, R, G. Cox, and H., Brenner, Chem, Eng. Sci, 21,
1151 (1966); M. H. Davis, Chem. Eng. Sci. 24, 1769 (1969);
M. E. O’Neill and 8. R. Majumdu, Z, Angew, Math, Phys.
21, 164 (1970); E. Wachholder and D. Weihs, Chem. Eng.
Sci. 27, 1817 (1972),

J. Chem. Phys., Vol. 67, No. 10, 15 November 1977

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4596 J. A. Montgomery, Jr. and B. J. Berne: Rotationai relaxation

4J. Happel and H, Brenner, Low Reynolds Number Hydrody-
namics (Prentice~Hall, Englewood Cliffs, 1965),

5J. L. Aguirre and T. J. Murphy, J.Chem, Phys. 59, 1833
(1973),

G, K. Batchelor, J. Fluid Mech. 74, 1 (1976).

'C. Y. Mou and E. L. Chang, “Concentration Dependence of
Diffusion of Interacting Spherical Brownian Particles” (pre-
print},

8B, U. Felderhof, “Hydrodynamic Interaction Between Two
Spheres” (preprint).

%J. Rotne and S, Prager, J. Chem. Phys. 50, 4831 (1969).

g, H. Koenig, K, Hallenga, and M., Shporer, Proc., Natl.
Acad, Sci. USA 72, 2667 (1975); K. Hallenga and S. H,
Koenig, Biochem. 15, 4255 (1976).

Up g, Wolynes and J. M, Deutch, J, Chem, Phys., 67, 733
(1977).

125 A. Montgomery, Jr., B. J. Berne, P, G. Wolynes, and
J. M. Deutch, “On the Effects of Translation-Rotation Coup-
ling on Hydrodynamic Diffusion Tensgors,” (to be published),

3D, W. Condiff and J, S. Dahler, J. Chem. Phys, 44, 3988
(1966),

144 Brenner, Chem. Eng, Sci. 19, 703 (1964).

154, Faxén, Ark. Mat, Astron. Fys. 20, 8 (1927),

6, J. Murphy and J. L. Aguirre, J, Chem. Phys. 57, 2098
(1972).
"The integration may be performed by an expansion in series,
giving
Clm(t) :e-l(lol)Dt
M(=4%,3,0/B% — (2R/R )*M(~},%, a/(2R)*)},
a=8R%G+1)Dt, R,=(3V/4m/3,

in terms of the confluent hypergeometric function M(a, b, 2).
An asymptotic expansion yields the divergent result,

6
Ceml®) ~e"“"”‘”[1 +(2R/R)* ___(Z}‘:) o/ (R )“} )

in the limit @—, R,—w, a/R§«1,

18K, Kawasaki and I. Oppenheim, Phys, Rev. 138, 1763 (1965),

BT, R. Lindstom, S, H, Koenig, T. Boussios, and J. F,
Bertles, Biophys, J. 18, 679 (1976).

N1, D, Landau and E. M. Lifshitz, Fluid Mechanics (Perga-
mon, London, 1959),

23, A, Montgomery, Jr., Ph,D. Thesis, Columbia University,
1977,

%G, Y. Kynch, J. Fluid Mech, 5, 193 (1959).

J. Chem. Phys., Vol. 87, No. 10, 15 November 1977

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



