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Gas liquid equilibrium in finite systems is studied by computer simulation using molecular dynamics and
Monte Carlo techniques. In overexpanded liquids, cavitation is observed. At some point in the expansion
the system undergoes a transition from a liquid with cavities to a droplet in equilibrium with vapor. This
transition is observed in the pV diagram of the system. A method is devised for counting the number of
atoms in a cluster and thereby determining the cluster distribution function. The interface of a
microcluster is compared to that of a planar sheet. The two are found to be very similar in density profile.
In the course of this study homogeneous nucleation in a supersaturated gas is observed for the first time in
a molecular dynamics study. Simple theories of nucleation in a finite system are considered. The free
energy of formation of a droplet is found to have a maximum—a barrier to nucleation—and a
minimum—stable equilibrium between a droplet and liquid. When gas imperfection is included, the barrier

increases, and the stable cluster is destabilized.

I. INTRODUCTION

Since the advent of high speed computers our knowl-
edge of the liquid state has been greatly advanced using
molecular dynamics and Monte Carlo techniques. Be-
sides giving experimental data on well-defined models,
these techniques are useful in obtaining information on
various theoretical quantities that cannot easily be mea-
sured in the laboratory (if at all!). Currently attention
is being focused on employing these techniques to study
more complex problems related to interfaces, phase
segregation, nucleation, etc. It is well known that a
liguid coexists with its vapor in equilibrium below its
critical temperature T,. To simulate this well-defined
phase separation using Monte Carlo or molecular dy-
namics, special boundary conditions are employed that
allow one to study the asymmetry of the physical surface.
Using .special schemes several investigators!™" have
succeeded in simulating the two phase systems, and
these experiments have already shed a considerable
amount of light on the transition zone between the two
phases.

When the geometry of the interface is planar the lig-
uid and vapor coexist in equilibrium at a pressure
P (T)(T< T,) called the vapor pressure. Such an in-
terface can support capillary waves of long wavelength
created by surface tension forces in the direction par-
allel to the surface. Recent computer experiments’
have demonstrated the existence of these waves and pro-
vided a suitable framework for the microscopic phenom-
enology of two-phase fluid interfaces, together with a
determination of the surface tension, o and P.(T).

Homogeneous nucleation in supersaturated gases de-
pends on an interplay between the surface and bulk
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properties of microclusters. Although a slightly super-
saturated vapor has a higher chemical potential than
bulk liquid and is thereby thermodynamically unstable,
this vapor can exist indefinitely in a metastable state.
When the supersaturation exceeds a certain critical
value, the vapor condenses spontaneously.

For vapor to condense, clusters of microscopic size
must first form. In conventional nucleation theory,®
the free energy of formation of a spherical droplet of
radius 7 from an infinite supersaturated gas of pressure
P is found to be

AG =4m20 ~nrin kT 1nS , (1)

where o is the surface tension, 7n; is the bulk density of
the liquid droplet, S=P/P_(T)>1 is the supersaturation,
and P_(T) is the equilibrium vapor pressure of bulk lig-
uid at the temperature 7. The basic assumptions that
go into the derivation of Eq. (1) are (a) the vapor is an
ideal gas, (b) the surface free energy 4m% of a micro-
cluster can be computed using the surface tension of a
macroscopic sample of liquid with a planar surface, (c)
macroscopic thermodynamics can be applied to the study
of microclusters, and (d) the formation of a micro-
cluster in an infinite system does not reduce the vapor
pressure.

The first term in Eg. (1) represents the work re-
quired to create a spherical surface of surface area
4m? and the second represents the lowering of the free
energy due to the fact that the atoms in the bulk liquid
have a lower free energy than in the supersaturated
vapor.

It follows from Eq. (1) that as a cluster grows, AG
first must increase because at small » the surface
term dominates, then reaches a maximum AG*= 16703/
[3(2,2T1nS)?] at the radius 7* = (20/n,k T1nS), and for
¥ >7* decreases without bound. In fact only in infinite
systems does AG decrease without bound as 7+, In
finite systems a cluster does not grow without bound
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and AG is expected to have a local minimum at some
r=7y,>r*, This is shown in Sec. IIl, where classical
nucleation theory is developed for finite systems taking
into account vapor imperfection and the excluded vol-
ume of the cluster.

The foregoing suggests that there is an activation free
energy barrier of high AG* preventing a cluster from
growing to a certain “critical cluster size,” *. How-
ever, if the cluster grows to r*, it has a high probabil-
ity of condensing. Obviously the higher the supersatu-
ration S, the smaller 7* and AG* and the faster will
liquid condense. These parameters are of fundamental
importance in classical nucleation theory, where they
then can be used to compute the flux of clusters over the
barrier, i.e., the condensation rate. The theory has
been developed only for isothermal infinite supersatu-
rated gases.

There is much controversy surrounding this theory.
One question that is often debated is whether Eq. (1) is
wrong because it ignores the translational and rotational
degrees of freedom of the microclusters. Another
question obviously concerns the use of macroscopic ther-
modynamics to characterize the droplet. Even then
should there not be a radius dependence in ¢? We might
ask yet another question: does nucleation occur in nature
as an adiabatic or an isothermal process? Clearly, as
particles condense the latent heat should give rise to an
increase in temperature. If the supersaturated vapor
is dense enough then collisions might thermostat the
droplet, but is this the case? As we shall see, moléc-
ular dynamics gives evidence that gas collisions are not
frequent enough to prevent the heating process in the
system studied here.

Given the many questions that still exist concerning
condensation—questions that are not easily answered by
experiment—it would be of considerable interest to sim-
ulate these processes on a computer. To this end, we
present a study of microclusters using Monte Carlo and
molecular dynamics. Employing new boundary con-
ditions we “prepare” small “physical clusters” in equi-
librium with vapor and then study the structure of the
gas-liquid interface, the thermodynamic properties of
the system, such as how the equilibrium cluster size
depends on pressure, and certain dynamic properties.
In this connection we have observed the nucleation of a
liquid droplet from a supersaturated gas. Our boundary
conditions are different from the “constraining volume”
method employed by previous® investigators and avoids
various criticisms leveled®!? against their work.

This paper represents the first in a series of papers
exploring condensation. In order to obtain some in-
sight to guide us in our quest, we present, in Sec. II,

a simple classical theory of nucleation in finite systems.
In Sec. III, the novel boundary conditions are discussed
as well as various details of the molecular dynamics
and Monte Carlo techniques used. Section IV is devoted
to the results.

This paper demonstrates the feasibility of simulating
inhomogeneous systems consisting of droplets in equi-
librium with vapor. Future studies will make use of
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the tools developed here with respect to boundary con-
ditions and cluster definition. Two studies are already
in progress. In the first the radial dependence of the
surface tension is being studied and in the second the
dynamics of droplet growth and of evaporation and con-
densation kinetics is probed. To understand the results
in this paper an accurate thermodynamics of small sys-
tems must be developed.

. BARRIER TO NUCLEATION IN A FINITE SYSTEM

In classical nucleation theory®!! one considers a uni-

form drop of liquid in equilibrium with an ideal gas at
constant pressure P(T) and temperature 7. In a com-
puter simulation the number of particles N and volume
V are usually fixed so that the average density is given
by N/V. In such a simulation the variation of cluster
or droplet size causes a variation in the pressure of
the system and this leads to a completely different pic-
ture from the classical nucleation picture. In the fol-
lowing we shall consider a simple model and show that
in a simulation we can still identify a “critical droplet”
which is appropriate to the finite system and in addition
there exists a “stable droplet” whose size depends on
N, V, and T. If the total free energy of the system con-
taining a stable droplet is lower than the uniform phase,
it is possible to simulate the droplet in equilibrium with
its vapor and study the corresponding thermodynamics.

Let us consider a simple model in which N particles
are constrained to a volume V at a temperature T< 7.
For large values of V if the configuration is uniform
{gas phase) the pressure is given by

P:ﬁkT(1+ZB,,1(T)F"), (2)
w1
where n=N/V, and B,,,(7T) is the 2+ 1 virial coefficient.
In writing Eq. (2) it is assumed that the volume is suf-
ficiently large that the cluster integrals are volume in-
dependent. The chemical potential u,(7, T) (per atom)
is given by

pe(nm, T)= ug(T)+kT[1n(WeT) +i:(k
w1

) B, ®

and the Gibbs free energy of the gas G, (7, T)=Ngp @, T).
Let us consider now a simple model consisting of a
spherical droplet of radius » containing N particles at
the liquid density n; [n; is not the density at which an
infinite sheet of liquid will be at equilibrium with its va-
por at a pressure P,(7)] in equilibrium with N, atoms
constituting the vapor phase. Clearly,

Ny +Ng=N. (4)
Let the droplet be situated in-the middle of the box so
that we can neglect boundary effects. The N, gas atoms
are constrained to move in the volume V - V, (r) where
V. (r) =347(r + 3a)® is the excluded volume due to the

droplet and a/2 is the radius of a gas atom. Given Eq.
(4) it is clear that the vapor density is

_N=N(») _<N— %41r7’3nJL>
Ty IV, ) \V-v,(r)

The total Gibbs free energy is made up of three
parts:

(5)
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FIG. 1. Plot of excess free energy [AGp(»)] as a function
of » as given by Eq, (12), assuming the vapor is an ideal
gas.

G=G gas + G surface + G liquid, (6)
where

G gas=Ngugng(r), T), 7)

G liquid =y (ny, T)n 4m3/3 , (8)

G surface = 417% , (9)

where ¢ is the surface tension of the droplet. Strictly
speaking this should be a function of . Note that

e, )= (75, T) 4 [PO) = Pu(T)] (10
L

where 77 is the density of an infinite liquid sheet under
its vapor pressure and P(r) is the vapor pressure in a
system with a droplet of radius . Equation (10) is
found by integrating (8, /8P)z=1/n; over pressure
from P.(T) to P and assuming for this purpose that the
liquid is incompressible. Now noting from the equi-
librium condition that u; (3, T)=pu, (3, T), and substi-
tuting Eqs. (7), (8), (9), and (10) into Eq. (6) we obtain

G('r) = (N—' NL)“G(nG(r)’ T)
+Nppglng, T) +%[P('r) ~P. (T)]+4m? . (11)
L

The free energy of the system in the absence of a
droplet (=0, Ny =0, V;=0)is G(0)=Np,(n, T). The
property of interest is the free energy of formation
AGp(r)=Glr) - G,(0) of a droplet from the supersatu-
rated gas. Substitution of Eqs. (3) into Eq. (11) then
gives

8Grtn)= (v-4rtm, ) k7 (25). 5L 5, (a0

3 ng

_ n;k)]+ 43—”r3k T [nc(r) —n2 +§BM(T)[nG () n;"]} )
(12)

If we knew all the virial coefficients we could obtain the
equilibrium configuration by minimizing AG,(r) subject
to Eq. (5).

It is of interest to study AG,(r) as a function of 7 for
fixed N, V, T. First we assume that the vapor is an
ideal gas [ B,,,(T) =0 for all £] and furthermore we use
o and ng obtained from a molecular dynamics experi-
ment on an infinite sheet (see Ref. 7). In Fig. 1 a plot
is given of AG=(7) as a function of 7 for three values of
V/N with N=128 and T=0,7. TFor the purposes of dis~
cussion we define

S' =n/ng=N/Vng . (13)

If the gas were ideal this would tell us the initial super-
saturation, that is, the supersaturation in the system
before a droplet forms. The three values of V/N=40,
60, 150 correspond to supersaturations of S’ ="7.58,
5.05, 2.02, respectively. For small values of V/N or
equivalently for large values of S/, there is a minimum
in the free energy corresponding to a “stable cluster
size.” As V/N increases (or S’ decreases), the
stable cluster size decreases and the depth of the mini-
mum decreases until at sufficiently small S/, the uni-
form gas is more stable than a droplet and the system
will not condense. In addition to the stable minimum
Fig. 1 also shows that there is a maximum in the free
energy. This maximum is the barrier to nucleation and
its position defines the “critical cluster radius,” »*, It
should be noted that as V/N increases, (S’ decreases)
the barrier to nucleation increases and 7* increases.
This is analogous to the well-known increase of the bar-
rier height with decreasing supersaturation in classical
nucleation theory (see Sec. I). In one of the simulations
reported here a gas at relatively large $’ (=9.7) was ob-
served to nucleate rapidly. This was undoubtedly due
to the very small barrier to nucleation for small V/N
(high supersaturation). Were we to repeat the experi-
ment for much larger V/N, the barrier to nucleation
might be high enough to preclude nucleation on any real-
istic simulation time scale even though the stable state is
a droplet in equilibrium with vapor. It is important to
note in this connection that for finite systems the drop-
let radius is finite and the equilibrium vapor pressure
must perforce be greater than P_(T). This means that
even for supersaturations greater than unity the stable
state of the finite system may be a pure gas rather than
a liquid drop in equilibrium with its vapor.

What happens when gas imperfection is included? For
simplicity we include only the second virial coefficient

By(T) =21 f 0 y2(eBN _1)ar (14)
0

which is computed using the same potential used in our
simulations (see Sec. III). Equation (15) can then be
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FIG. 2. Plot of excess free energy [AGg(r)}] for a 128
particle system T=0.7 at V/N=40.0. Curve A is given by
classical nucleation theory with pressure held constant.

Curve B is given by theory in Sec. II without virial correction.
Curve C includes virial correction.

used to calculate AGx(r). The equation again has a
maximum and a minimum. In Fig. 2 AGy(7) is plotted
as a function of . Line (A4) indicates the free energy of
formation in an infinite system where P is held counstant.
Line (B) gives the result for a perfect gas and Line (C)
indicates what happens when non ideality is considered
up to the second virial coefficient. At the low tempera-
tures considered here intermolecular attractions make
B,(T) strongly negative. From Fig. 2 we see that at-
tractions between the gas molecules helps to destabilize
the cluster by shifting »* and AG¥ to higher values and
increasing the free energy of formation of the stable
cluster. To be self-consistent, attractions between the
cluster and the gas atoms should be included. Similar
calculations give the stable cluster size as a function of
V/N.

Here we have been considering the formation of drop~
lets in supersaturated gases. At the opposite extreme
there is the metastability associated with the over ex-
pansion of a liquid. If a liquid is initially at a pressure
P>P.(T), no vapor will exist. Reversible expansion of
the liquid reduces the pressure to P.(T), at which point
vapor should form. Actually the liquid can be expanded
(overexpanded) to a metastable state with P< P.(7). In
this gtate cavities form in the liquid, but before vapori-
zation can occur gas bubbles must form. Again there
is a barrier to the nucleation of these bubbles. At low
enough temperatures, the pressure of an overexpanded
liquid can be negative. In the computer simulations to
be described this behavior is observed.

Rao, Berne, and Kalos: Nucleation and thermodynamics of microclusters

This simple model gives us an insight into what hap-
pens in a simulation. For given values of N, V, and
T, it is possible to simulate a stable cluster in equi-
librium with its vapor and study its thermodynamics.
As long as the cluster is far away from the boundaries
the thermodynamics of the cluster are unchanged whether
hard walls or periodic boundary conditions are used.
However, using periodic boundary conditions one has
the added advantage of studying the uniform liquid phase
and cavitation for small volumes (see Fig. 3). The
major defect of the simple model is the use of the mac-
roscopic properties of a liquid and the omission of rel-
ative interactions between the droplet and the vapor.

{il. METHODOLOGY

Molecular dynamics (M.D.) and Monte Carlo (M.C.)
simulations have been carried out on systems containing
128 and 256 particles interacting via a truncated Len-
nard-Jones (12, 6) potential

(r)=Vr)-Vlr) 07 <7,

=0 7’>7’0, (15)

where

V(r)= de [(g)lz - ( g)s] , (16)

and the cutoff distance v,=2.50¢. In addition o, €, and
T, [= im0 2/48€)!?] are chosen as length, energy, and
time units (for liquid argon o =3.405 A, €=119. 4 °K,
and 7,=3.11x10"" gec).

In the M.D. studies the particles are placed in a fully
periodic box of size LXLXL [ see Fig. 4(a)], with a
Maxwellian distribution of velocities corresponding to
a mean temperature of 0.7 (84 °K). This temperature
is chosen because the density profile, surface tension,
P,(T), etc., in the case of a flat interface are already
known from M. D. simulations for the potential given in
Eq. (11). The integration time step is chosen to be

Liquid Liquid Liquid

0,

Vapor Vapor

N
AN
A%

Liquid Liquid Liquid

N
L/

Vapor Vapor

C I TN

N
N

Liquid Liquid Liquid

FIG. 3. Example of cavitation. The bubble shown can either
be a vacuum or contain vapor. Using the periodic boundary
conditions the cavitation is caused by the attraction of the
image droplets.
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FIG. 4. (a) Periodic cells of size L containing liquid after
equilibrium has been established. (b) Size L is changed to L’
without changing the coordinates of the liquid particles, thus
creating a vacuum. The evolution is continued until equilib-
rium is established. (c) Liquid droplet coexisting with vapor
after equilibrium is established.

0.032r,. Starting from a fcc lattice configuration, the
system is allowed to age to an equilibrium configuration
in the periodic box. Next the sides of the periodic cube
are increased from L to L' [as shown in Fig. 4(b)] with-
out changing the particle coordinates in any way. This
generates an infinite array of cubic droplets, The aver-
age density 7 thus changes from N/L% to N/L'S. Time
evolution is then continued until equilibrium is re-es-
tablished [see Fig. 4(c)]. During the initial phases of
this time evolution particles evaporate from the cubical

1329

droplets. The temperature of the system decreases
during the evolution due to evaporation and the kinetic
energy is adjusted periodically (every ~2000 time steps)
to maintain a constant temperature of 0.7 at equilibrium.
After equilibrium is established (showing constant tem-
perature and pressure within statistical error over

4000 time steps) the evolution is continued further to
obtain the density profile n{(r) and the energy profile
e{r). These profiles are defined as follows: n(r)4nr2Ar
gives the number of particles within a shell of width

Ar at a distance of » from the center of gravity. n(r)

is obtained by counting the number of particles in a
given shell and dividing by the volume of the shell. The
shell thickness is taken to be A7 =0.4. e(») is the av-
erage potential energy of a particle within this shell due
to all other particles that are within the cut off distance
%o. These profiles show the existence of a stable cluster
of liquid at the center of gravity surrounded by mon-
omers, dimers, etc., constituting the vapor.

The procedure outlined above is also followed using
the Monte Carlo method to make sure that what we are
observing is indeed an equilibrium state. The usual
Metropolis e? al.'? scheme is used with a step size of
0.2 for the random walk. Within statistical errors the
results obtained by both methods are identical. How-
ever, for large volumes corresponding to small average
density the Monte Carlo method is more efficient since
molecular dynamics takes more computer time to sta-
bilize the temperature fluctuations due to evaporation
and condensation. On the other hand, molecular dy-
namics gives the time evolution of the system which is
essential in understanding the kinetic processes. Thus
both methods are used here to complement each other.

It is important to devise a method for counting clus-
ters. Originally we identified a cluster as an assembly
of particles such that each particle in the assembly has
a potential energy lower than a certain value, say,
eo(<0). Since vapor particles have potential energies
close to zero, judicious choices of ¢, could be made such
that the resulting cluster distribution are invariant to a
fairly wide range of choices for e;. Although the ap-
proach is useful, we finally adopted Stillinger’s def-
initions® of a cluster: if any particle lies within a cut
off distance 7, of another particle, the two particles are
said to belong to the same cluster. This is described
in Fig. 5. It is also possible to give a graphical de-
scription of this definition. To this end consider each
pair of atoms in a particular configuration of the N par-
ticle system. If two atoms of a pair lie within 7, of each
other a line is drawn between them. A cluster is then
defined as a set of atoms that is at least singly connected
by such lines. Thus within a cluster there will be at
least one connected path between any two particles. The
N-particle configuration can then be naturally subdivided
into distinct clusters—clusters that are not connected by
any lines—and the numbers of monomers, dimers, etc.,
can be counted. With this definition it is possible to
study not only the dynamics of “physical clusters” but
also the kinetics of recombination, dissociation, etc.

In Fig. 5, we show a two-dimensional schematic of
this cluster definition. Of course, this choice becomes
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FIG. 5. Schematic illustration
of the cluster definition (two
dimensional !).

useless if the observed cluster distributions averaged
over a number of configurations is very sensitive to 7.
Fortunately, it is experimentally observed that the
cluster size and the distribution do not depend very sen-
sitively on the choice of .. In fact, little change is
observed when 7, is varied from 1. 70 to 2.50. We have
chosen 7= 2, 0o with ,=2. 50. With this choice of clus-
ter definition each configuration is analyzed to obtain a
cluster distribution.

An average cluster distribution is obtained by an
ensemble average over many configurations, If N() is
the number of clusters of size /, then for a fixed num-
ber of atoms in the system

> INO)=N. (17)
]
The probability of finding a cluster of size / is obviously
NQ7)
P(l)=c— 18
W50 as)

To obtain meaningful cluster distributions large sam-
pling times are required. The binding energies of var-
ious /-mers are studied by computing the potential en-
ergy of each particle in an /-mer due to all other par-
ticles within the cut off distance 7, (not 7.). The co-
hesive energy e(!) of the I-mer is defined as the sum of
these potential energies. The virial pressure of the
system is defined as

N 1 do(lr 1)
P=kT —6—‘-,<; 7“.——71;:;'—>. (19)
This definition includes the contributions from both the
liquid and vapor phases. However, in the situations
where a stable cluster is in equilibrium with vapor the
contribution of the cluster to the virial pressure comes
from the center of gravity motion of the cluster as a
whole which is quite small. Hence to a good approxi-
mation virial pressure can be taken as a measure of
the vapor pressure Pg.

Physical cluster theory gives an alternative expres-
sion for the total pressure

BTSN (20)
V 1

in terms of N(I), the number of clusters of size I. This
expression also contains a contribution from the center
of mass motion of the droplet, so that Po=P -kT/V.

Yet another measure of the vapor pressure can be ob-
tained by substituting Eq. (5) for the vapor density into
the virial expansion Eq. (2). If terms beyond the second
virial coefficient are dropped,

P, =ngkT[1 +B,(Tng,], (21)
where B,(T) is given by Eq. (14).

All three definitions of the pressure give the same
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TAPE  T714 IM 0 2 LIMITS -4.31 y.31

FIG. 6.
tablished showing the stable cluster and vapor.
N=128, T=0.7.

128 CONF

Typical configuration after equilibrium has been es-
V/N=5,

value to within the statistical error of our simulations
in the M. D. studies.

To insure that the apparent equilibrium state observed
for a particular value of N, V, and T does not depend
on the initial configuration we have also carried out a
simulation starting from a low density uniform gas
using both M.C. and M.D. After equilibration we ob-
serve essentially the same sized droplet and the same
thermodynamic properties, n(r), e(r), and P(l), indi-

TRPE  T714 IM 128 CONF 0 Z LIMITS -6.21 6.21

FIG. 7. Typical configuration after equilibrium has been es-
tablished showing stable cluster and vapor V/N=10, N=128,
T=0.7.

O

TAPE  T714 IM 128 CONF 0 2 LIMITS -6.84  6.84

FIG. 8. Typical configuration after equilibrium has been es-
tablished showing stable cluster and vapor. V/N=20, N=128,
T=0.7.

cating that we are observing a reproducible equilibrium
state. To our knowledge this represents the first homo-
geneous nucleation in the gas phase generated on a com-
puter. For higher values of V/N the barrier to nuclea-
tion may be sufficiently high that homogeneous nucleation
would not be observed (see end of Sec. II). Then there
would be hysteresis effects: that is, the final state
starting from a saturated gas will be different from the
final state starting from a critical liquid droplet.

We must point out that care must be exercised in
preparing the equilibrium stable cluster configurations
in employing molecular dynamics. In molecular dy-
namics the total energy E is constant and this gives rise
to different metastable cluster distributions with dif-
ferent potential energy configurations for the same tem-
perature. However, the equilibrium state corresponds
to the lowest energy E for a particular temperature and
reaching this state can be a long process when one starts
out with uniform gas phase. Adjusting the temperature
to be constant over a reasonable period of time can also

- be very time consuming. Monte Carlo has the advantage

that temperature remains fixed and the lowest energy
state is obtained naturally. It has the disadvantage that
time dependent properties cannot be studied.

The experiment is repeated for various values of the
size of the periodic box L. For some values of L both
M.D. and M.C. simulations are compared to establish
that the same equilibrium state is observed, despite the
existence of temperature fluctuations.

IV. RESULTS

The results of our simulation completely support the
feasibility of studying stable “physical clusters” using
both Monte Carlo and molecular dynamics. Figures
6~10 represent typical configurations of a 128 particle
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system corresponding to various values of the average
density N/V. When periodic boundary conditions are
used we simulate a uniform one phase system for small
values of V/N. As V/N increases the system commences
to evolve into the two phase region. The binding attrac-
tion of the liquid phase in the primary cell is cancelled
by the attraction of the image droplets thus giving rise

to “cavitation. ” If there is enough free volume in the
cavity (depending on V/N) vapor is trapped in the cavity
and vapor bubbles are formed. For large values of V/N
the liquid phase in the primary cell ceases to interact
with its images due to the finite range of the cutoff poten-
tial and we have a well-defined liquid droplet in equi-
librium with its own vapor. In this regime the main com-
peting events in the formation of the droplet are the
evaporation and condensation. Figures 11(a) and 11(b)
represent a typical number distribution of clusters of
size ! for a given value of V/N in a 128 particle system
averaged over seven independent simulations each with
512 128 Monte Carlo moves after equilibrium has been
established.

In Figs. 12(a) and 12(b) the corresponding values of
n(r) and e(r) are plotted as a function of 7, the distance
from the center of gravity of the stable cluster. Within
statistical errors the liquid phase has the same density
as that of the bulk liquid in equilibrium with vapor. For
a comparison the density and energy profile found by
M.D. for a infinite planar interface is also indicated on
Figs. 12(a) and 12(b). It is important to note that the
droplet interface looks much like the planar interface.
Thus we would not be surprised if further analysis in-
dicated that the capilarity waves observed in the planar
case also characterize the surface of a spherical drop-
let. Because the vapor pressure of a spherical droplet

TAPE T714 IM 128 CONF 0 2 LIMITS -B.62 8.62

FIG. 9. Typical configuration after equilibrium has been es-
tablished showing stable cluster and vapor. V/N=40.0,
N=128, T=0.7.
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FIG. 10.
tablished showing stable cluster and vapor.

N=128, T'=0.7.

Typical configuration after equilibrium has been es-
V/N=90.0,

must be larger than that of a plane sheet, the vapor den-
sity of the droplet must also be higher than the sheets.
This is also clearly indicated in Fig. 12(a).

The vapor phase consists of monomers, dimers,
trimers, etc. [Fig. 11(a)]. The peaks in the two dis-
tributions correspond to the energy minima in Fig. 1
indicating the vapor phase and the stable cluster. It is
important to note that in none of these seven independent
runs did we ever observe a cluster of size greater than
10 and less than 89 after equilibrium has been estab-
lished. This shows that it is energetically unfavorable
to form a cluster in the steeply descending portion of
the curve in Fig. 1.

In Figs. 13(a), 13(b), and 13(c) the virial pressure of
the total system is plotted as a function of V/N for N
=128 and N=256. This pressure corresponds to the
interaction potential given in Eq. (15). In a homogeneous
system it is straightforward to apply the usual tail cor-
rections to thermodynamic properties like pressure,
energy, etc., obtained from the truncated potential to
compare with those values corresponding to a liquid with
an infinite range potential. In a nonuniform system
where the distribution functions change significantly in
the interface region such a posteriori corrections are
complicated, if possible at all, and consequently are
not attempted here. The dots denote M.D. results and
crosses denote M.C. results. For small values of V/N,
the pressure is greater than P.(7) and the system cor-
responds to a one phase liquid region. When P<P_(T)
cavitation starts to take the system into a two phase re-
gion. However, until the cavities formed reach a crit-
ical size to support vapor bubbles the pressure de-
creases as a function of V/N. When vapor bubbles form,
the pressure increases with volume. For large values
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of V/N the droplet ceases to interact with its images 14
and a stable cluster in equilibrium with its own vapor is 1.2+ =7 o
created. The pressure is larger than P, (7) and de- eeecce Spherical interface {NL: 102 )
creases with V/N. As the volume increases the free 1o Planar interface (N = 1728)
energy corresponding to the stable cluster reaches a val- —~ 08 L——w§*u
ue larger than that of the uniform gas phase. If the min- T g} 2 .
imum is still pronounced a metastable state is reached s
and the simulation of this state depends on the choice of 04r .
the initial configuration. Lifetimes and kinetics of such o2r ® .,
states can be studied using molecular dynamics to under- o) , . . S ——
stand the approach to equilibrium. FEventually for a very 10 20 3.0 . 40 5.0 6.0 7.0
large value of V/N supersaturated vapor phase is estab- (a)

lished with only a distribution of small clusters. The
near cancellation of the kinetic and potential contribution
to the virial pressure makes the error in the determina-
tion of pressure quite large.

We define {1) =3, ;510 N)/3, 1510 N(I), which yields a
measure of the “stable cluster” size corresponding to
this average density. Figures 14(a) and 14(b) show the
variation of {(I)/N with V/N. The decrease in the stable
cluster size with increasing V/N is qualitatively con-
sistent with the simple picture presented in Sec. II. The
stable cluster size as a function of V/N using the second
virial correction is shown in Fig. 14(a) with a solid line.
Theory gives a value of ({)/N that is too large. Inclu-
sion of higher virial coefficients should destabilize the
droplet and lead to lower values of {(I)/N. However,
because the values of By(7) were not calculated we can-
not give any quantitative statement of this. Another
improvement would be to use the surface tension for a
droplet of radius 7 in place of the surface tension of a
planar interface. We note in passing that an attempt to
improve the simple model using Tolman’s correction

e(r)

-5.0

- (b)

FIG. 12.
same system as in 10 (a).
circles are for droplet.
v for the same system as in 10 (a).

(a) Density profile n{») as a function of » for the
Solid line is for planar interface,
(b) Energy/particle as a function of
Solid line is for planar

interface, circles are for droplet.
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FIG. 13. (a) Virial pressure as a function of V/N for a 128 particle system 7'=0.7. Monte Carlo results (small values of V/N).

(b) Virial pressure as a function of V/N for a 128 particle system T=0.7. Monte Carlo results (large values of V/N).

pressure as a function of V/N for a 256 particle system T=0.7.
ular dynamics results.

for surface tension was unseccessful. Probably any
theory that tries to explain quantitatively properties of
small finite systems on the basis of macroscopic ther-
modynamics is destined to fail.

We have also measured the structure factor S(&) for
the whole system,

S(k) :%(Z . mr,--,,)> ,

i, 4

(17)

for the smallest wave vector allowed by the periodic
boundary conditions. This gives a measure of the stable
cluster size and is in quite good agreement with that
obtained from our cluster definition. In the case of
large clusters one can study this quantity as a function
of the distance from center of gravity and study the cor-
relations that exist in the surface. It will be useful to
understand the effect of curvature on the long range cor-
relations that exist in the case of a flat interface.

V. CONCLUSION

This is the first of a series of papers that will be de-
voted to understanding the thermodynamics, kinetics,
and structure of the liquid-vapor interface in droplets
of liquid, using computer simulation. These studies
are important not only for their own merit but also in
understanding nucleation phenomena. In the present
paper we have demonstrated the feasibility of preparing
small stable droplets in equilibrium with vapor, and
have studied their thermodynamics and structure. We
have shown that using the usual periodic boundary con-
ditions we can indeed study not only the uniform phase
but also stable clusters of any size. Employing this
scheme we avoid the objections raised against other
methods like the one employing a constraining volume.
Our definition of the cluster ensures that all atoms are
actually bound to the cluster by the binding forces and
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FIG. 14. (a) Average stable cluster size (§)/N as a function of
V/N for a 256 particle system T=0.7. The line denotes the
theory discussed in Sec. II with second virial correction. (b)
Average stable cluster size {I)/N as a function of V/N for a

128 particle system. T=0.7.
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that the motion of the cluster occurs as a whole. Em-
ploying molecular dynamics we can also study kinetic

processes like evaporation, condensation dissociation, ,

recombination, diffusion, etc., of these clusters which
are of great importance in understanding the nucleation
phenomena.

This study has been restricted to the study of small
droplets. However, we are at present extending these
methods to the study of big droplets. When the droplet
size is large enough so that there is an appreciable
amount of liquid phase in the interior, surface tension
remains a valid concept and it will be interesting to study
the surface tension obtained from the one particle and
the two particle distribution functions P({v|) and
P(r,7,) which can be measured readily from simulation.
These studies will give a better understanding of how
surface tension depends on radius. These corrections
also might play an important role in understanding the
variation of cluster size with V/N.

The feasibility of simulating inhomogeneous systems
consisting of droplets in equilibrium with vapor sets the
stage for several interesting studies of microclusters.
The theoretical model presented here is clearly overly
simplistic;, nevertheless, it suggests that in finite sys-
tems there is still a barrier to nucleation, and that in
addition there exists a stable equilibrium state con-
sisting of a microcluster in equilibrium with vapor. The
theoretical model is entirely thermodynamic and there-
fore fails to account for the large fluctuations present
in small systems. Obviously the theory can be im-
proved by following the approach outlined by Hill. !

It is important to recognize that when there is an
interface, the properties of the system depend strongly
on the attractive potential. Comparing the truncated
and full L-J (12-6) potential it is clear that the cohesive
energy e as well as the bulk fluid density »; are larger
for the full potential than for the truncated potential
whereas the equilibrium vapor pressure is smaller for
the full potential than for the truncated potential. It is
also possible to infer that the density gradient in the
interfacial region is greater for the full potential than
for the truncated potential. Recently, Miyazaki et al.®
has determined that the surface tension ¢ for the full
potential is ¢ = 18.2 dyn/cm (argonunits). This is
considerably larger than ¢ = 12 dyn/cm for the
truncated potential. Liquid argon has ¢ = 13 dyn/
cm, Thus the agreement between the truncated po-
tential and the real liquid must be regarded as fortu-
itous. This clearly indicates that simulations of systems
with interfaces provide a much more sensitive test of
the intermolecular potential than do simulations of uni-
form systems. It shows moreover that the Lennard-
Jones (12-6) potential, despite its success in accounting
for the bulk properties of uniform liquid argon, is a
poor potential for studies of phase equilibria. Given the
foregoing, we must regard this paper as a study of a
well-defined model fluid rather than of any real fluid.
Nevertheless, we expect that our discussion is still ap-
plicable in a qualitative sense to real fluids. When dis-
cussing surface properties it is important to be aware
of the fact that the interfacial profile is strongly depen-
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dent on the dimensions of the surface. In a recent paper
Weeks!® has shown that the thickness of the interfacial
region increases without bound as the surface area ap-
proaches infinity. Recently Rowlinson ef al. ! have per-
formed molecular dynamics studies on systems with dif-
ferent surface areas. Their results are consistent with
the view advanced by Weeks. Given this size dependence
it is important to ask why the surface profile of a drop-
let is so similar to that of a planar sheet—a similarity
clearly indicated in Fig. 12(a). Although it may not be
obvious, each edge of the planar surface is ~ 120,
whereas the circumference of the droplet is ~120, Thus
the longest wavelength capilarity waves that can be sup-
ported by the planar surface and by the droplet surface
have approximately the same wavelength. For this rea-
son we expect the interfacial profiles of these two differ-
ent systems to be quite similar despite the fact that the
planar sheet has 1728 particles whereas the droplet has
128 particles,

Several points worth noting in conclusion are as fol-
lows:

(a) The density profile in microclusters looks very
much as it does in the interfacial region of an infinite
sheet. It thus seems reasonable that the droplet inter-
face can also be described by capilary waves.

(b) At high supersaturation the barrier to nucleation is
sufficiently low that we are able to observe homogeneous
droplet nucleation in Monte Carlo and molecular dy-
namics simulations.

{(c) Nucleation takes place, and droplets grow under
essentially adiabatic conditions; that is, collisions of
the microcluster with vapor are sufficiently infrequent
that due to latent heat effects the temperature of the
droplet increases. In nucleation theory the process is
assumed to be isothermal—an assumption that should be
modified. This observation should apply to nucleation
in other systems only when the thermal contact between
the two phases is sufficiently weak that the latent heat
is not removed rapidly enough by thermal conduction.
There is evidence that this is the case in freezing in
argon.

(d) Cavitation processes in the overexpansion of a
liquid, at low enough temperatures gives rise to nega-
tive pressures. We have been able to observe the
transition between cavitation and droplet formation. The-
ory has yet to be developed to explain at what overex-
panded volume this will occur.

(e) Vapor imperfection increases both the barrier
height and the critical cluster size and destabilizes
equilibrium droplet formation.

(f) The P~V diagram has a loop that reflects the bar-
rier to cavitation or bubble formation and the barrier
to droplet formation. What in an infinite system would
be regarded as the unstable part of the loop is stabilized
in a finite system by surface energy effects.

J. Chem. Phys., Vol. 68, No. 4, 15 February 1978

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



1336 Rao, Berne, and Kalos: Nucleation and thermodynamics of microclusters

13, K. Lee, T. A. Barker, and F. F. Abraham, J. Chem.
Phys. 58, 3166 (1973); F. F. Abraham, J. Chem. Phys. 61,
1221 (1974).

2J. K. Lee, J. A. Barker, and G. M. Pound, J. Chem.
Phys. 60, 4226 (1974).

%K. S. Liu, J. Chem. Phys. 60, 1976 (1974).

4G. A. Chapela, G. Saville, and J. S. Rowlinson, Discuss.
Faraday Soc. 59, 22 (1975).

SF. T. Abraham, D. E. Schreiber, and J. A. Barker, J.
Chem. Phys. 62, 1958 (1975).

®M. Rao and D. Levesque, J. Chem. Phys. 65, 3233 (1976).

™. H. Kalos, J. K. Percus, and M. Rao, J. Stat. Phys. 17,
111 (1977) .

8F. F. Abraham, Homogeneous Nucleation Theory (Academic,
New York, 1974).

%. Binder, J. Chem. Phys. 63, 2265 (1975).

1OF. . Abraham and J. A. Barker, J. Chem. Phys. 63,
2266 (1975).

135, J. Burton, Statistical Mechanics Part A: Equilibrium
Techniques, edited by B. J. Berne (Plenum, New York,
1977), and references therein.

12, Metropolis, A. W. Metropolis, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

3%, H. Stillinger, Jr., J. Chem. Phys. 38, 1486 (1963).

Y, 1. Hill, Thermodynamics of Small Systems (Benjamin,
New York, 1963).

157, Miyazaki, J. A. Barker, and G. M. Pound, J. Chem.
Phys. 64, 3364 (1976).

185, D. Weeks, J. Chem. Phys. 7, 3106 (1977); also sec Ref. 7.

17G. A. Chapela, G. Saville, S. M. Thompson, and J. S.
Rowlinson, J. Chem. Soc. Faraday Trans. 2 73, 1133
(1977).

J. Chem. Phys., Vol. 68, No. 4, 15 February 1978

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



