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Two recently devised Monte Carlo schemes, the force bias method and the smart Monte Carlo method are 
compared using a simple Lennard-lones fluid as an example. Using diffusion in the configuration space as 
a criterion, the efficiencies of the two methods are evaluated. When the diffusion is optimized the FB 
method is found to be more efficient. 

I. INTRODUCTION 

The Monte Carlo procedure of MetropOliS et al. 1,2 is 
widely used to determine the equilibrium structural and 
ther:modynamic properties of gases, liquids, solids, 
and mesophases. In a previous paper3 we introduced a 
modification of the usual Metropolis procedure that gives 
more rapid convergence and thereby much more effi
cient Monte Carlo runs. In this new procedure each 
particle move is chosen with greater probability in the 
direction of the instantaneous force on the particle than 
in other directions. The particle moves therefore 
usually lead to a lowering of the overall potential energy 
and thereby to a higher acceptance probability than in 
the usual MetropoliS procedure. The new procedure, 
appropriately called the force bias method, was then 
applied to a study of ST-2 water to very good effect. 

It was clear at the outset that there were no objective 
criteria for comparing the efficacy of two different 
Monte Carlo procedures or for optimizing any given pro
cedure. Thus, in a follow-up publication' we argued 
that a good measure is the diffusion in configuration 
space. It is clear that if the Monte Carlo procedure 
does not involve the exchange of particles, then the step 
sizes, etc., for the procedure should be chosen in such 
a way as to optimize the diffusion coefficient. 

Moreover, that procedure is best which for optimized 
step sizes gives the largest diffusion coefficients. This 
will guarantee that more independent configurations are 
sampled in a given number of moves. An exhaustive 
study was made' of diffusion in the Metroplis scheme 
and in the force bias scheme and it was shown that for 
ST-2 water the force bias scheme gave a substantial 
improvement in convergence over the Monte C_rlo 
scheme. 

Recently a seemingly different Monte Carlo proce
dure 5 has been suggested. This method is based on 
Brownian dynamics, and is referred to by its inventors 
as the smart Monte Carlo method (SMC). This method 
also generates moves biased in the direction of the 
force, and is in many ways similar to the force bias 
(FB) procedure. 

In this paper we compare these two methods. It is 
found that the force bias scheme gives larger acceptance 
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probabilities and diffusion than the Brownian dynamic 
smart Monte Carlo scheme. In our view these two pres
ent algorithms represent only the beginning in the search 
for more rapidly convergent schemes, and smarter 
algorithms should soon be in the offing. 

II. METHODOLOGY 

In both the force bias (FB) and the Brownian dynamiC 
smart Monte Carlo method (SMC), a new configuration 
of the N particle system R'= (R;, ... ,R~) is generated 
from an old configuration R = (Rt> ... , RN ) by sampling 
R' from a transition probability T(R'I R). The transition 
probability is chosen such that it is normalized and such 
that if a state R' is accessible from R, then the state R 
is accessible from R'. The new state R' is then accepted 
with probability, 

p=min{1, q(R'IR)} (2.1) 

or the old state R is kept with probability (1 - p) where 

q(R' I R) "" T(R I R')P(R')/T(R' I R)P(R) (2.2) 

and 

(2.3) 

is the Boltzmann distribution. The sequence of configu
rations so generated will then be distributed according 
to the Boltzmann distribution, Eq. (2.3). 

The choice of the transition probability is what dis
tinguishes the various methods. In all of the methods 
discussed here, only one particle is moved at a time; 
so that R' differs from R only with respect to the posi
tion of a particular particle. 

In the force bias (FB) method the transition probabil
ity is taken as 3" 

C(F(R), ~)exp[X{3F(R)' (r' -r)]; r' -r ED 

TFB(R'IR) =0; r' -r ~D (2.4) 

where r' - r stands for the displacement of the particle 
being moved, F(R) is the force acting on the particle 
before it is moved (when the whole system has the old 
configuration, R), X is a parameter to be discussed be
low, (3=(kB Tr1, and C(F(R),~) is a normalization con
stant. From Eq. (2.4) we note that the transition proba
bility is zero if the particle displacement ~r =r' - r 
falls outside of a certain domain D defined such that; 
- ~/2:S ~x, ~y, ~z:S ~/2. This means that the maximum 
step size allowed is (~/2)~_ Clearly the normalization 
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constant C depends both on the instantaneous force on the 
particle and on the value of A. As we have shown else
where' for each system there is an optimum choice 
for A. 

It is clear that Eq. (2.4) giv-es rise to a biased sam
pling of Ar in the direction of the force F. If A = 0, the 
transition probability gives uniform sampling in the do
main D and reduces to the usual Metropolis scheme. 

In the Brownian dynamic smart Monte Carlo scheme, 5 

, 1 ( [(r' - r) - /3AF(R) F) 
TSMC(R IR)= (41TA)312 exp - 4A ' (2.5) 

where A is a parameter that must be chosen. Here too 
the sampled particle displacement is biased in the di
rection of the instantaneous force. 

Explicit evaluation of the exponent allows us to write 
Eq. (2.5) in the form 

, B(F,A) (r' _ r)2) 
TSMC(R IR)= (41TA)3/2 exp - 4A 

xexp[ + ti3F(R) 0 (r' - r») , (2.6) 

where B=e-B2AF2(R)I4. Thus, in reality the TSMC is very 
similar to T FB with one major difference and one minor 
difference. The major difference is that in the FB 
method there is an upper bound on the displacement 
whereas in the SMC there is no upper bound. For ex
'ample, if in a certain initial configuration, F(R) = 0, 
then T FB would sample Ar uniformly whereas T SMC 

would sample Ar from a normalized Gaussian whose 
width is specified by the parameter A. From the prop
erties of the Gaussian we note that in this case the mean 
square displacement on a move would be (Ar2) = 6A. 
Clearly then .fA gives a measure of the kind of displace
ment generated in this methods, and is thus analogous 
to the parameter A in the FB. In applying the SMC 
method one should choose a value of A that optimizes 
the method. 

The minor difference is the parameter A. If this pa
rameter A in Eq. (2. 4) is adjusted to be A = t, then the 
force bias part of the sampling is the same for the two 
methods. The FB however allows freedom in the choice 
of A whereas in the SMC it is fixed at t. When we pro
posed the force bias method we set A = 1, but in our sub
sequent work we varied A to study its effect. 

Let us compare the acceptance probabilities in the 
FB and SMC methods. Substitution of Eq. (2.4) into 
Eq. (2.1) gives 

P FB =min[l, exp(- 13 {AWFB + VCR') - VCR) 

+ A[F(R') + F(R») • Ar})] (2. 7) 

whereas substitution of Eq. (2.6) into Eq. (2.1) gives 

P SMc=min[l, exp(- 13 {AWBMC + VCR') - VCR) 

+ HF(R') + F(R)}' Ar)] (2.8) 

where 

_ {C(F(R'), A)} _ , 
A WFB = - kT In C(F(R), A) = WFB (R ) - WFB(R) (2.9) 

and 

_ {B(F(R'), A)} 
A WSMC = - kT In B(F(R), A) 

;: WsMc(R') - WSMc(R) , (2.10) 

where C and B are defined in Eqs. (2.4) and (2.6). It 
follows from an explicit evaluation that 

(2.11) 

and 

( exp(aF,.)- exp(- aF ,J \1 
x \exp[a(F I< + AF 1<)] - exp[ - a(F I< + AF 1<)]Jj , 

(2.12) 
where a;: Ai3A/2, F;: F(R), AF;: F(R') - F(R), and the 
subscript jJ. denote the x, y, z components of the force. 

For small step sizes (A, small) Eq. (2.12) reduces to 
the form 

A2i3A2 2 
AWFB c:: ~{2F' AF + (AF) } . (2.13) 

Comparing Eqs. (2.11) and (2.13) we see that for the 
particular choice of A = t, the only difference between 
P FB and PSMC springs from the difference between AWFB 
and A W SMC' For small step sizes these two quantities 
will be identical if A is adjusted to 

(2.14) 

Thus we conclude that for sufficiently small step sizes 
(A small) and for A = t, the FB and SMC methods give 
identical acceptance probabilities. 

For large step sizes (A, large) on the other hand, 
AWFB, as given by Eq. (2.12) differs considerably from 
AWSMC with the consequence that even for A=t, P FB and 
PBMC are considerably different. Analysis of Eq. (2.12) 
shows that the FB method should give larger acceptance 
probabilities than the SMC-an observation that is con
firmed in the next section where comparison of the two 
methods when applied to Lennard-Jonesium shows that 
the FB procedure is superior to the SMC scheme. 

Comparison of the two methods for the case when A 
= 1 is more subtle. First we note that expansion of Eq. 
(2.7) to second order in the step size gives 

P FB = min{l, exp{- i3[(2A -1)F - FFB) 0 Ar + tAr 

• [(2A-l)VF-VFFB )' Ar}, (2.15) 

where VF is the gradient of the force and F FB 
= - V A W FB' Now for A = 1 we note that terms involving 
F and VF survive unlike what happens at A=t. Never
theless, the terms FFB and AFFB depend nonlinearly on 
A, and might well neutralize the effect of these surviv
ing terms. Thus it is not clear what the situation is 
with respect to these terms. For small step sizes it is 
clear that these terms will generate a smaller accep
tance probability than does the choice A = t . This is 
precisely what is claimed in Ref. 5. For large step 
sizes, however, it is not clear at this point whether the 
FB with A = 1 should be more or less efficient than either 
the SMC or the FB with A = t . In this paper we show that 
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FIG. 1. The mean acceptance ratio during the Monte Carl<f 
simulation of 200 passes as a function of the step size. The 
dots denote FB with A=!. The circles denote FB with A= 1. 
The crosses denote SMC. 

for large step sizes, where the diffusion is optimum, 
the FB with A = 1 is as good as the SMC and the FB with 
A = t is better yet. 

In the FB method there are two freely adjustable pa
rameters, namely, A and the "step size" 1::., whereas in 
the SMC method there is only one parameter, namely A. 
Until recently such parameters were chosen in accor
dance with the rule of thumb: choose the parameters so 
that the mean acceptance probability is close to 0.5. 
Recently we have shown' that this criterion does not give 
the optimum choice for the parameters. Instead we have 
suggested' that a good measure of the method is the dif
fusion of the particles. Thus the parameters I::. (or A) 
can be optimized to give the largest possible diffusion in 
a given number of passes. When this is done it is found 
that the optimum parameters with respect to diffusion 
give mean acceptance probabilities considerably smaller 
than 0.5. This is discussed in great detail in Ref. 4. 
A measure of diffusion is the mean square displacement, 

1 N / T /2 (I::.r2(T»:; -N L L6rJ " 
J.1 ,,·1 

(2.16) 

where orJ" is the displacement of particle j during the 
ath pass, and the sum gives the total displacement of 
particle j in T passes. A pass is by definition one cycle 
of moves in which a move is attempted on each of the N 
particles. It can be shown that for large T, 

(1::.r2(T»- 6 rT , (2.17) 

where r is a diffusion coefficient. Thus we must choose 
I::. (or A) to give either the largest possible (1::.r2(T» for 
a preselected or, or equivalently to give the largest pos
sible diffusion coefficient. 

If each particle move is uncorrelated then it is easy 

to show that 

r~~(or2)p , (2.18) 

where (oyZ) is the mean square displacement of a par
ticle in one move and p is the mean acceptance proba
bility. Then it is clear that the method which generates 
large moves with small acceptance ratio may well win 
out over a method that generates small moves with large 
acceptance ratio. Unfortunately, in condensed systems 
the displacements are highly correlated (see Ref. 4) so 
that the diffusion coefficient is much more complex than 
Eq. (2.18) and we cannot fully analyze it . 

The point of view taken in the next section is to com
pare various features of the FB and SMC Monte Carlo 
walk using diffusion as a measure of their efficiencies. 

III. RESULTS 

Both FB and SMC methods are used to study a Len
nard-Jones liquid at 84 OK. It is assumed that all atoms 
interact via a pairwise potential, 

cp(r) =v(r) - v(~o) , 

where 

(3.1) 
=0 r~ro. 

The particles are placed in a periodic box of size (6.54 
x 6. 54 x 6.54)<73 corresponding to a liquid density of P<73 

= O. 77 . The starting configuration was obtained from a 
previous equilibrated liquid simulation at this density 
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FIG. 2. The mean square displacement (1::.,.z(T» after 60 passes 
as a function of the step size I::. obtained from two MC simula-
tions of length 200 passes each. The symbols used are the 
same as in Fig. 1. 
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(~= 1) from the SMC. A quick glance at the figures 
shows that when the diffusion is optimized the accep
tance probability is less than 0.5 . 

These results show that even in a system as simple 
as the Lennard-Jones on the FB (~=t) method generates 
a more efficient Monte Carlo walk than any method yet 
devised, including the SMC. What is meant by this is 
that for a given amount of computer time the FB walk 
covers a larger region of the accessible configuration 
space and thereby generates more statistically uncor-
related configurations than the other method. It is im
portant to note that the diffusion is maximized for fairly 
large values of the step size and hence the gradient 
terms in Eqs. (2.11) and (2.12) cannot be neglected. 
Further improvements may be attainable by including 
higher derivatives of the potential in the sampling 

20 40 60 80 100 120 scheme. 

NUMBER OF PASSES, T 

FIG. 3. The mean square displacement <t:.r2(r» as a function 
of the number of passes r. The symbols are the same as in 
Fig. 1. 

and temperature. starting from the same configuration 
each time, various Monte Carlo walks were carried out 
using the prescriptions given in Eqs. (2. 4) and (2. 5) for 
various values of the parameters ~, t:. and A. One par
ticle was moved at a time. Each run consisted of 200 
passes and in each run the average acceptance ratio and 
the mean square displacement (t:.,-2(,.» defined in Eq. 
(2.16) were monitored. 

Figure 1 shows the mean acceptance ratio PFB and 
P IIMC as functions of t:. for the two methods where in the 
SMC we take A =t:.2/24 in accordance with Eq. (2.14). 
The circles denote FB with ~ = 1, crosses denote SMC 
and the dots denote FB with ~ = t. The acceptance ratio 
is larger for the FB method with ~ = t as discussed in 
the last section. However, the acceptance ratios for 
larger values of t:. (and thereby A) are not dramatically 
different for FB with ~ = 1 and SMC. All distances are 
measured in units of the Lennard-Jones parameter (J. 

In Fig. 2 we present (t:.r2(,.» as a function of t:. (or A) 
for,. = 60, averaged over 60 origins. Indeed the trend 
is the same for all values of,., though we chose to pre
sent only values for,. = 60. The diffusion in all cases 
passes through a maximum, and optimal diffusion oc
curs for different values of t:. or A with different meth
ods. A step size of t:.=0.35 and ~=t with FBMC is 
found to be the most efficient method for this example. 
For the optimal values of t:. (and A) for the three meth
ods, the mean square displacement is plotted in Fig. 3 
as a function of ,.. Again it is clear that asymptotically 
the FB walk with ~ = t wins over the other two methods. 
For the optimum walks, it is hard to distinguish the FB 

In more complex systems like aqueous media, the 
efficiency achieved by the FB method, in comparison to 
the Metropolis method, has been demonstrated. For 
such systems where molecules must be translated and 
reol'iented Brownian dynamics has not yet been cast in 
an applicable form. The comparison presented here for 
simpler systems leads us to believe that further efforts 
to apply SMC to more complex systems may not be worth 
the extra work. 

In conclusion we note that any comparison of different 
Monte Carlo schemes is system dependent. We have 
shown in this and preceding papers3,4 that the FB scheme 
has certain advantages over other schemes for aqueous 
solutions and for simple fluids. An important aspect of 
this work is the suggestion that diffusion can be used to 
optimize the choice of the step size. This enables us to 
use larger step sizes and to generate more efficient 
walks than in the past. It may well be that other criteria 
will prove to be even better. Unfortunately these do not 
yet exist. 
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