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We discuss several aspects of the problem of modeling the effect of collisions on isomerization reactions.
We show how to generate stochastic dynamics for systems which suffer more than one type of collision,
and derive the appropriate master equation for the phase space distribution function. We discuss a
variety of different collision models and sketch how one might deduce the form and parameters of the
model from experiment and molecular dynamics. Finally, we examine a one-dimensional model of an
isomerization reaction in the presence of two types of collisions, finding that the reaction rate varies

nonlinearly with the various collision rates.

INTRODUCTION

Isomerization dynamics can often be described by a
single reaction coordinate. It is then equivalent to the
motion of a particle in a multistable potential. When
the energy barriers of this potential are large com-
pared to thermal energies, passage over the barriers
is infrequent. Several studies!™* indicate that the sol-
vent plays a fundamental role in the dynamics. The
packing of solvent molecules can drastically affect the
potential energy associated with the reaction coordinate,
and “collisions” with the solvent enable the system to
gain sufficient energy to traverse the energy barriers,
and to lose energy and relax into one of the potential
wells, In addition, at high collision rates, the Newto-
nian motion of the system can be so strongly perturbed
as to make the motion Brownian,

The complicated many-body dynamics encourages one
to invoke a stochastic model. Kramers was the first to
do this.* Implicit in his model was the notion that the
momentum conjugate to the reaction coordinate could
change only by very small increments, and furthermore
that these small increments occurred very frequently.
This model is thus very specific about the dynamics and
leads to a definite prediction about the dependence of the
rate constants on the “momentum correlation time, ”

T,, or friction constant. This model has provided great
insight into the underlying reaction dynamics, and its
high friction limit (small step diffusion model) is often
adopted as the canonical model for the process.

It is important to determine to what degree the results
of stochastic modeling are dependent on the particular
stochastic model. If there is great sensitivity to the
model one must be careful to define a stochastic model
appropriate to the particular system. Skinner and
Wolynes® and Montgomery et al.* have studied a sto-
chastic model in which large impulsive momentum
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changes are involved. The dependence of rate constants
on 7, for this BGK model® is significantly different from
that exhibited by Kramers’ model. Skinner and Wolynes,
and Berne have independently discussed even more gen-
eral stochastic models for which the differences are
still more marked.® All of these models predict that
the rate constant first rises linearly with ;! (with a
model dependent slope), reaches a maximum, and then
falls off at high collision rates, eventually reaching the
same asymptotic small step behavior proportional to 7,.
The maximum value of the rate constant falls well be-
low the transition state theory prediction.

The above comparisons were made for stochastic mo-
tion in one dimension, These models can be generalized
to higher dimensionality. Analytic approaches become
progressively more cumbersome as the dimensionality
increases, Here the simulation of stochastic dynamics
on a computer has significant advantages., The work of
Montgomery ef al, ¢ shows how impulsive stochastic
models can be simulated. The simulation of such mod-
els requires far less computer time than does full mo-
lecular dynamics. The rich variety of stochastic mod-
els (and the sensitivity of the results to the model)
makes it necessary to examine carefully the correspon-
dence between any particular system and a model. The
parameters describing a model must be independently
determined. The kinetic theory of dense polyatomic
fluids, still in its infancy, might eventually be used to
determine appropriate stochastic models. Nevertheless,
at this stage, we must depend on experiment or molecu-
lar dynamics for this information.

In this paper we address several issues relating to
the stochastic modeling of real systems, We show how
to modet systems in which there are several different
kinds of collisions. For example, we have in mind the
case of molecules like the n-alkanes where the atoms
can each experience a collision with a solvent molecule.
Some parts of the molecule will be shielded from colli-
sions with the solvent by other parts of the molecule,
and this will lead to different collision frequencies, or
indeed, models for the various atomic sites. Still an-
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other example is that of a fluid, where the forces on the
reaction coordinate can often be decomposed into a long
range soft force and a short range repulsive force. The
reaction coordinate can then be thought to suffer two
kinds of collisions (hard and soft) with different colli-
sion frequencies. Rice and Allnatt! used a similar
model to describe transport in simple fluids, finding
that the hard forces were the main contribution to the
friction constant. In charged systems, soft forces can
be a major contributor to friction.® In addition, long
range forces can provide coupling to high frequency mo-
tions in the solvent which can compete as an effective
energy loss channel. One might also imagine modeling
the interaction of the reaction coordinate with other de-
grees of freedom in the same molecule, by an effective
collisional picture distinct from collisions with the bath.
Below we show how such a variety of models can be
simulated by effective dynamics. We then study a par-
ticular example in some detail. An interesting result is
that the addition of only a small fraction of collisions of
one kind can perturb the rate constant dramatically.
Finally we suggest ways to parametrize collision models
using molecular dynamics information.

. IMPULSIVE STOCHASTIC DYNAMICS

As an alternative to Langevin dynamics in which the
molecules experience continuous dissipative terms
(frictional forces), one can consider impulsive stochastic
schemes in which particles follow ordinary classical tra-
jectories on a potential energy surface (Hamiltonian
flow) except for certain instants when they suffer colli-
sions of zero duration.

In this scheme it is necessary to specify the times at
which the impulsive collisions take place. For sim-
plicity we assume that the collisions are statistically in-
dependent events of zero duration. In any real dense
system the collisions are correlated, but such correla-
tions are at the present time rather difficult to model.
Let us assume that the molecule can experience several
different kinds of impulsive collisions, and let a}‘:'r,
be the mean time between collisions of type j. Given
the statistical independence of the collisions, it follows
that the probability of a molecule experiencing »; colli-
sions of type j in the time ¢ is

PP (#)= L (a,p)s e3¢, 2.1
E ny !
It follows from this that the probability of a molecule
experiencing ny, ny, n3, . . . collisions of types 1,2,3, ...
in the time ¢ is
Pryngseensn(B) = I;[P,‘,j’(z) . 2. 2)
The Hamiltonian flow of the molecule between these

collisions of zero duration can be described by the prop-
agator

Gy(t)=ethot 2.3)
where the Liouville operator L; is given by
9 ]
iLy= (-&--—+F—) 2.4
0 zk: m, Or, *oop, @.4)
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where {rk,p,} are the positions and momenta specifying
the state I of the free molecule, and {F,} are the forces
arising from the intramolecular potential {(as well as any
external forces present).

When a collision occurs the state of the molecule I
={r;, p;} changes instantaneously to a new state I'={r,,
p.;. The precise outcome of the collision depends not
only on the initial state of the molecule, but also on the
state of the bath particle with which it collides. Since
we are not concerned with a complete specification of
the bath, we must provide a statistical definition of the
collision process. To this end we define a conditional
probability distribution T (I'| I), such that
T (DI I’)dI” gives the probability that a molecule in
state I’ {in dT”) prior to collision of type j will be found
in state I" after collision, Thus the effect of a collision

is represented as an integral operator
FHAr) = far' TV (0| AT) . 2.5)

A typical stochastic trajectory can be represented
schematically by

,Pé r, r,
T I O | T4 '
Iy—Ij Lp— = T
f f t t, t

Here the molecule initially in state I, evolves freely
(collisionlessly) on its potential surface until at time %,
when it is in state I{, it suffers a collision of type 2 and
then instantaneously changes state to I'; whereupon it
evolves freely to state I'; at time t,, suffers a collision
of type 1, etc.

The propagator for this particular trajectory is

é(t):éo (- t,)f(Z) tee Go(t3 — 1) T“)éo(lz - t1)i(2)éo () .
(2.6)

Starting from I'), there are many trajectories each hav-
ing quite different sequences of collisions, and different
collision times. Let us define {G(¢)) n) as the “average”
propagator characterizing all those trajectories in which
there is a given number of collisions of each type {n,}

in the time ¢ irrespective of the precise times of these
collisions. Simple considerations enable us to derive
an expression for this average propagator. Suppose
that at time 7, we know the quantity (G(r)),, n..... 0 -1-
Now a collision of type j can occur between 7 and T +dT7
with probability a;dT. Suppose no other collision occurs
between 7 and ¢ so that the system propagates freely.
This will occur with probability Py, (2 - 7).

Then we have a contribution

Pygy (¢ = T)Go(t - ), d7) TV NG (7)), .. 2.7)

cng=less

If this result is summed over all kinds of collisions j
and integrated over all times 7= (0, ¢) for this last colli-
sion we arrive at the result

t
(G(t)),,,...,,!..zzj:a,fo dtP, ¢ -1)

xGo(t = DTG pyoenp -y - (2.8)

sngel
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The propagator

(G(t))E(E)(G(t))(..,) 2.9)
ny
represents the effect of all possible sequences of colli-
sions occurring between 0 and ¢, properly weighted by
the frequency of these collisions. Remembering that
(G#)0; = Pro) )Gy (£) we can sum the terms in Eq. (2.9)
and by taking the derivative show that
8 -
(a—t +iL0) GWy=~ 20,0 -FO)NGW) . (2.10)
]

This is readily turned into an equation for f(I, 1), the

probability distribution of the state I', at time £. Since

FT, 0=(G@)f(r,0), (2.11)
operation on (I, 0) from the left with Eq. (2.11) gives

(a% +iL0)f(f', f)=+ ;"‘:f"r'{T"’(Plf")f(F', f)

-TY( | DA, 0y, (2.12)
where we have inserted Eq. (2.5) into Eq. {2.10) and
used the property of the conditional probability that
far' @ |m)=1. (2.13)

The preceding approach shows how the underlying im-
pulsive stochastic dynamics leads to the master equa-
tion. If the transition probability for each collision sat-
isfies detailed balance, that is, if

T(“(I"]I") e-snou'): T(J)(rlr/) e—BHO(I") , (2- 14)

then, as is well known, an H theorem can be demon-
strated and the distribution function will approach the
equilibrium distribution function, e T Therefore
we require that the {TY’(T'II")} satisfy Eq. (2.14).

To solve Eq. (2.12) subject to an initial distribution
f(T", 0) we merely have to simulate an effective dynamics
in the following way:

{(a) Sample a set of initial states from f(I", 0).

(b) For each initial state sample a sequence of colli-
sion times. This is done by sampling a set of times for
each kind of collision j from

Py, ()=e4t, {2.15)

and then ordering these times. Thus each initial state
will have a sequence of collisions each at a stated time.

(¢) For each initial state (together with its set of
collision times) we generate an effective trajectory by
the following method. Solve the Hamiitonian equations
for Hy until the first collision occurs. At the instant of
this collision which is of known kind (say, j), sample
a new state from TY ) then continue the free motion sub-
ject to this new state until the next collision occurs.

This is repeated until time £,

{d) Step (c) generates an ensemble of trdjectories.
We can thus determine the distribution of states at any
time ¢ given the initial distribution. This distribution is
the solution of Eq. (2.12).

Berne, Skinner, and Wolynes: Molecular relaxation and isomerization

In the case of a molecule containing multiple collision
sites there are several kinds of models. We mention
one in particular., Suppose each site can experience only
one kind of collision. Then the index j designates the
jth site and T (I'|T’) designates the collision dynamics
for this site and can be taken as

T(”(I‘| )= t(”(r,,p, [r;, p))

XH 5, -r)5(p, -py) .

i#4

(2.16)

This simply means that during a collision with site j only
the state (position and momentum) of site j changes, and
this kind of collision occurs with frequency «;. If the
collisions are instantaneous, then during a collision of
type j only the momentum of this site can change and we
can express

£, py |0 pp =7 (p; |p)o @, - 1)) . (2.17)

For T'(T IT') to be normalized and to satisfy detailed
balance it follows that

fd{); T(“(p,ip;)zl , (2.18)

T (psIp))  $olpy)
T (p;ip;) ~ do(p))’

(2.19)

where ¢,(p,) is the Maxwell distribution function.

There are clearly many possible models, and we list
only a few below:

™ (p,|p))=dolp,) , (2. 20)
™ (p, o)) =6(p,| - |} )/ 41}, (2.21)
T (p, |p)) = [2nm kT (1 - DT>

xexp - [(p, - ¥, p)¥/2m kT - y})] . (2.22)

In the first model [Eq. (2.20)], the collision thermal-
izes the momentum, that is, the new momentum p; is
totally uncorrelated with the old momentum p;, and is
sampled from a Maxwell distribution. This is the BKG
model.’ In the second model [Eq. (2.21)], the collision
does not change the magnitude of the momentum, but
randomizes its direction. These two models are simi-
lar in spirit to the J and M diffusion models used to de-
scribe rotational diffusion.? The third, more general,
model contains a parameter ), which specifies how the
momentum p, after a collision is correlated with the old
momentum p;,

IS 723 ) N

S1=TG swEh
¥, is just the value of the average velocity correlation
function after one impulsive event. Three limiting
cases of interest are as follows: when ;= 1, only small
momentum changes of the test particle can occur and
the Brownian motion limit of Kramers is recovered;
when §,=0, there is no correlation and the situation is
described by Eqs. (2.20) and (2. 21); and when §,~ -1,
the momentum is nearly reversed upon collision. In one
dimension, an approximate treatment® of hard sphere
scattering!® leads to a transition probability of the form,

(2.23)
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Eq. (2.22), with
Py =0 -v,)/A+yy),

where v, (in the exact theory') is the mass ratio

(2.24)

Y= msolnnt/mj . (2' 25)

In this one-dimensional approximation, the three limits
discussed above occur respectively when ¥, 0 (Rayleigh
limit), y,=1 (BGK), and y,=« (Lorentz limit). This
one-dimensional kernel was first used by Widom in a
study of the rough circle model. !

Another kind of model that should not be difficult to
develop is one in which a collision affects the different
components of the momentum of particle j differently.
For example, if u;, denotes the direction of a chemical
bond pointing from atom i to atom j and p, and p, denote
the components of the momentum of j parallel and per-
pendicular to this bond, then it is possible to define a
collision model

™ p, ey =1 (pu | pT(BL|BD)

where 7, T, define the outcome of the collisions.

(2.26)

A quite different collisional model is one in which
during a collision all the atoms suffer changes in the

momenta, albeit with different outcomes. Then the
sum over j reduces to one term, but
n
r(r|r)=I1+2 @, p) st - 1) , (2.27)
i=

where each T(‘”(p‘ Ip;) can be different. For example,
atoms buried on the inside of molecules may feel only
the long range forces and may thus experience only
small momentum changes, whereas those on the surface
may experience strong momentum changes. One can be
more general and again have the molecule suffer differ-
ent kinds of collisions as a whole. For example, one
can imagine a collision as occurring now near one side
of the molecule and then near another. Then atoms near
the collision sites suffer different momentum changes
than those far from it. Each T“’(I'IT’) corresponds to
a collision site on the surface of the molecular. It is
clear that one can invent many imaginative models for
impulsive stochastic trajectories.

To see how one might estimate the parameters of a
particular model from, for example, an experimental
knowledge of the diffusion constant, let us first inspect
the momentum relaxation in the various models. Letting

(P = f dr'p (T, t) (2. 28)
be the average momentum of particle ¢ given that the
initial distribution is f(I', 0), we can easily derive an
equation of motion for these averages. The results are

]

a(Pi(t»o =(F;(the - BKp, )y , (2. 29)
where (F,(#)), is the average intramolecular force acting
on particle 7 at time ¢ given that the initial distribution
is f(T', 0) and where 8, has different definitions depending

on whether each collision affects one and only one site at
a time (the first class of collision models) or each col-
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lision affects all the sites at the same time. In the one
site models

Bi=ay(1-9,), (2.30a)
whereas in the many site models

Bi=all-y,) . (2.300)

Here a; is the collision rate for site {, whereas « is the
collision rate for the whole molecule, Of course, y; can
still be different for the different sites.

In the simplest models all sites are assumed to have
the same value 8;=8;. The relaxation of the COM mo-
mentum, p=3, p, can then be found by summing Eq.

(2. 29) over ¢ and noting that (J; F;({))y=0. Then

a
Y P (B =—Bo(P () , (2.31)
and the COM momentum correlation function is
P(t)- PO))= (3 Zm‘kT> et (2.32)
i

Thus from the Kubo relation one finds that the diffusion
coefficient is

D=kT/MBy, M=J.m,, (2.33)
i

where of course B, will be different for the different
models. Nevertheless, experimental values for D en-
able us to choose B;. When the B,’s are different this is
no longer possible.

i1l. ONE-DIMENSIONAL MODEL

As an example of a simple system which undergoes
complex interactions with the solvent, we explore the
reaction dynamics of a one-dimensional model in which
a particle of mass m moves on the potential energy
curve presented in Fig. 1. It is assumed that the par-
ticle can experience two different kinds of collisions
(j=1,2) described by the transition probabilities given
by the one-dimensional analogues of Eq. (2.22):

_ 1)2
2mkT(1 - zp})) '

TU)(P |P')= [20kTm (1 - z/)f)]'“z exp _( (
3.1)

V(x)

-4 -3 -2 -1

FIG. 1. The symmetric pieéewise quadratic potential for which
the calculations are carried in Sec. IIl. Energy is measured in
units of 2T, and distance in units of (267/m)!/ 2wil,
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The kinetic equation for the one-dimensional system
[obtained from Eq. (2.12)] is

8l o

(“a—"}'l}'i ———)f(x,[),t):—ch(x,p, t), (3-2)

8t m dx 8x 9p

where
Lofte, b, 0= dp'x (5" | ) o, , 1)

—-xlp|p)fle, 0", O], 3.3)

and
k(p|p) =V (p|p) + 0P (p|p") . (3.4)

The collision operator L, is characterized by its eigen-
functions and eigenvalues®?

- 2.
=€+, where €’ =0a,(1-y)), (3.6)

and H, are the Hermite polynomials. The first nonzero
eigenvalue €, is simply the reciprocal momentum cor-
relation time 73!, Similarly, ¢, is related to the kinetic
energy correlation time.

In the absence of external forces, the total diffusion
constant would be

D=kT/{, L=me=mle{V+¢€?). 3.7
From Eq. (3.6) we can write
1/D=1/Dy+1/D, , (3.8)

that is, the reciprocal diffusion constant is the sum of
the reciprocal diffusion constants for the individual col-
lision processes (D} =me{"’/kT).

We are interested in calculating the rate constants
which occur in the phenomenological rate equation

ON,/8t= =k N, + ky, Ny , 3.9)
da*'h

where N, and N, are the populations of the left and right
wells, respectively. The most useful quantity to ex-
amine is the kinetic relaxation rate of the system

T =kt Bya - (3.10)

The form of Eq. (3.8) raises an important question:
To what extent does such a behavior hold for the chemi-
cal relaxation rate 7-1? For very high collisions rates,
7-! is proportional to D, so

i/ =1/ +1/73 (3.11)

that is, the reciprocal rate constant is the sum of the
reciprocal rate constants, 7"1' and 1-5‘, corresponding to
the individual collision processes. On the other hand,
for small collision rates we would expect simply to add
the rates for each process, leaving

PR SLES L (3.12)
Thus in general we expect that there is no simple rela-
tion for calculating the rate when there are several col-

lision channels for relaxation.

To study the effect of two different kinds of collisions
on the relaxation rate for the reaction in which the par-

Berne, Skinner, and Wolynes: Molecular relaxation and isomerization

ticle moves from the left well to the right well in Fig. 1,
it is possible to simulate the effective dynamics of the
last section much as was done by Montgomery et al. for
the BGK model.* In one dimension, Skinner and Wolynes
have found the relaxation rate from the kinetic equation
analytically, using the method of Pade approximants,
and numerically, with a close coupling scheme. 8 Since
the generalization to a one-dimensional system with two
types of collisions is straightforward, we use that meth-
od here.

In the following we investigate a model in which colli-
sions of type 2 represent very hard collisions in which
p is almost always reversed, thatis, yy—= [see Eq.

(2. 25)], ¥, - —1, and collisions of type 1 are due to
rapidly fluctuating weak soft forces, arising from the
long range part of the heat bath force, or from coupling
of the reaction coordinate to internal molecular degrees
of freedom. These type 1 collisions are characterized
by the parameter ¥, that differs very little from 1 (y;
—~0) so that [cf. Eq. (3.6)]

eV~ 20,y \n=nty/m . (3.13)

gy = 2ayyym is the friction constant resulting from type
1 collisions. It is worth noting that in the limit {y;~0
such that ay, is constant), a;7"’(P|P’) reduces to the
Fokker-Planck kernel of Brownian motion theory.

To characterize the effect of the two types of colli-
sions it is useful to define a parameter x which is the
fraction of the total drag on the particle resulting from
type 1 collisions

E{i)

X= T

i (3.14)

The effect on the relaxation rate of mixing together dif -
ferent “amounts” of collisions of types 1 and 2 are shown
in Figs. 2 and 3, respectively, for y,=128 and v, = 14.
In these figures the ordinate is the ratio of the kinetic
relaxation rate 7°! to the transition state theory rate

- Wy .
TTlst ;0' eEO/kT ,

(3.15)
where E, is the barrier height and wy is the harmonic
frequency of either well (and in this case, the imaginary
frequency at the barrier as well). The abscissa is €/
wy, where € is, as before, the total momentum relaxa-
tion rate. We show both the analytical and the numerical
results for different values of x. The curve for x=1
corresponds to pure Brownian motion (the Kramers—
Fokker-Planck model), whereas the curve for x=0 cor-
responds to the pure hard collision model (for yo=128
and 14, respectively, in Figs. 2 and 3). Both values of
¥, give almost complete momentum reversal, but v,
=14 corresponds to what would be expected to happen in
a collision between a CH; group in butane and a CCl,
molecule. *

Figure 2 shows clearly that when only 5% of the drag
results from weak collisions (Fokker—Planck), the rate
constant is drastically changed from the pure Lorentz
case (momentum reversal, x=0). When 20% of the drag
is due to the weak collisions the results are much closer
to the pure Fokker —Planck model than to the Lorentz
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10
72 =128
[oX ]
06 X s
-1
st X= 0.20
04}F
X=0.05
| u] X=0
0.2
o
o 1 i 1 ' 1 1 L I
o} 1 2 3 4 5 6 7 8 9
LA
Wo

FIG. 2. The relaxation rate as a function €; for y,=128, and
different mixtures of the two kinds of collisions [cf. Eq. 3.14].
, (6,5) Padé approximant; o, 4, 0, numerical results,

model. The effects are somewhat weaker for y, =14,
Thus we see that for a given drag €, the rate constant
is a highly nonlinear function of .

These results can be explained on the basis of the
eigenvalue spectrum of the different collision operators.
First we remember that €}’ and €}’ respectively give
the contribution to the momentum relaxation and the
energy relaxation for collisions of type j. Table I gives

these values for small y; and for large v,.

From Table I we see that in the Fokker-Planck model
both momentum and energy relax on the same time
scale, whereas in the Lorentz model, as y, - ~, energy
relaxation becomes much less efficient than momentum
relaxation. Therefore incorporating an amount of type
1 collisions which increases the drag only slightly can
increase the rate of energy relaxation substantially. In
a chemical relaxation process, for small €;, energy
activation is the rate limiting mechanism. Therefore
it is no surprise that the relaxation rate is such a highly
nonlinear function of x, particularly for small €,.

We conclude this section with a discussion of how one
might determine which sorts of collision models are
most appropriate for a particular site or particular co-
ordinate in a real molecule. A convenient way to char-
acterize a collision model is by examining the first few
eigenvalues. For example, in the Fokker-Planck model
€, is twice €;, in the BGK model € ;= €;, whereas in the
Lorentz model they may differ by an order of magnitude
or more. Below we sketch a method for deducing some
information about the eigenvalue spectrum from a full
molecular dynamics run. A simpler but similar scheme
has been used previously by McCammon et al. to find
collision rates. 2

4319

TABLE I.
Type 1 Type 2
(Fokker—Planck) (Lorentz)
€; (Momentum relax.) ty/m 2a,
€, (Energy relax.) 2t /m 4a,/v,

Suppose for instance that we are interested in idealiz-
ing a real system by a particle moving on a one-dimen-
sional potential curve, assuming that the phase space
distribution function obeys the kinetic equation Eq. (3.2)
with a single collision model, i.e., a;=0. A complete
specification of the model would then depend on the val-
ues of the parameters a; and y;. We focus our attention
on a local minimum in this one-dimensional potential of

mean force, where
U:%sz . (316)

Defining the averages for an arbitrary variable A as in
Eq. (2.28),

(A, :fdrAf(r, 1), 3.17)

we can derive the following equations of motion for these
averages:

2 (p(tho == Blx(ehy - €x(p(s , (3. 18a)
2 _{p()
at(x(t»o_ s (3.18b)

7-!

TST

we

FIG. 3. The relaxation rate as a function of €; for y,=14, and
different mixtures of the two kinds of collisions [cf. Eq. (3.14)].
, (6,5) Padé approximant; o, 4, o, numerical results.
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32 PO = kTm)o = - 2B p (A ey

- &(pt)f —kTmY, , (3.19a)
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D)y = LU =E Lo

_B<x(t)2 - %T>o —{pBOx @)y , (3.19b)

9 kT 2(p)x(t)
_a_z<x(t)2 _ _1—37>0= 2pE)x ) .

m

(3.19¢)

Each bracketed group of equations forms a coupled but
closed set, so we can solve for the time dependence of
any average in either set, for example, (x(f)), and
(x(t)* - kT/B),. From a full molecular dynamics run
we could easily find the correlation functions {x(0)x (2))
and ((x(0)? - T/B)(x (¢} — kT/B)) near the potential min-
imum. Since the time dependence of the equilibrium
correlation functions is identical to that of the nonequi-
librium averages, we can fit the former to the latter to
find €; and €,, which in turn uniquely determine a; and
$1. In conclusion, we envision using full molecular dy-
namics to find the potential of mean force and the nature
- of the appropriate stochastic kernel, at which point a
stochastic simulation or other method may be used to
probe the detailed reaction dynamics of the system.

IV. SUMMARY

~In this paper we discuss several aspects of the prob-
lem of modeling the effect of collisional contributions
from the solvent on isomerization reactions. Given the
assumptions of impulsive uncorrelated collisions we
show how to generate stochastic dynamics for systems
with more than one type of collision, each with its own
collision frequency. We then derive a master equation
for the phase space distribution function. We discuss
several different collision models which describe how a
single site in a molecule is affected by collisions. These
models range from one with weak but numerous colli-
sions leading to the Brownian motion picture, to one with
strong collisions which reverse the momentum of the
test particle. We then briefly discuss more elaborate
models for complex molecules. We also discuss how,
neglecting hydrodynamic interactions and assuming each
atom in a molecule feels the same type and number of

Berne, Skinner, and Wolynes: Molecular relaxation and isomerization

collisions, we can estimate the friction constant and
hence the collision frequency per site from the experi-
mental diffusion constant.

In Sec. III we discuss a one-dimensional model of an
isomerization reaction in which the particle suffers two
kinds of collisions: weak but numerous collisions
(Fokker-Planck), and strong collisions (Lorentz). We
calculate the chemical relaxation rate for this system
for various collision rates and “amounts” (measured in
the fraction of the total drag, x) of each type of colli-
sion. We find that the rate is a highly nonlinear func-
tion of x, and that the rate constant is very sensitive to
the collision model. Finally, we suggest how one might
deduce the form and parameters of the collision model
from a molecular dynamics simulation.
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