On determining conditions for RRKM behavior in

conservative dynamical systems?®

Nelson De Leon® and Bruce J. Berne

Department of Chemistry, Columbia University, New York, New York 10027

(Received 5 August 1981; accepted 24 February 1982)

It is shown that a simple linear analysis on certain elliptic fixed points can be used to determine when a
system will not exhibit a rate constant that is well approximated by RRKM theory. This method is used to
locate those regions in parameter space where RRKM theory is expected to be valid.

. INTRODUCTION

Recently, there has been considerable interest in the
reaction dynamics governing isomerization reactions.!~®
In particular, interest has focused not only on the ex-
traction of rate constants, but also on their relation to
the nonlinear dynamical aspects of the problem, e.g.,
the KAM theorem, invariant tori, etc. We have re-
cently completed a study of a two degree of freedom
system capable of undergoing isomerization.? Attention
was focused on the conditions necessary for a pheno-
menological rate constant to exist. Several qualitative
conclusions were arrived at in that study. Of particular
interest, we found that in order for a rate constant to
exist, the energy must be close to the energy of the
barrier, and, moreover, a significant measure of the
invariant tori must be destroyed. In fact, when all of
the invariant tori are destroyed, then the rate constant
for the reaction agrees well with the RRKM rate con-
stant prediction, 73

In this paper, we study a similar double well system,
but with the added feature that, for this system, it is
analytically possible to predict, with some accuracy,
when one can expect the system to be an RRKM system.
This analyticity is, of course, desirable, since it al-
lows us to investigate and qualitatively predict the sta-
tistical behavior of the rate constants as a function of
the parameters in the Hamiltonian.

Il. RATE CONSTANTS

Consider an isomerization reaction of the kind

Ata-B B | 1)
kA-B
It is assumed that along the reaction coordinate one has
a double well potential. The left-hand well is labeled
“A” and the right-hand well is labeled “B.” For iso-
lated molecules, the reactive flux across the barrier
K(t) is given by!s2:45

K(t)=(q(0)5[ ¢(0) - grgr] Hs[ ¢ (1)) . ()

In the above equation, g is the reaction coordinate, g g
is the value of g at the transition state, and Hg[ ¢(¢)] is
the characteristic function which is unity if ¢(#) =B and
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0 otherwise. The brackets (...) denote a canonical or
microcanonical ensemble average. In this paper, we
will be dealing with the microcanonical ensemble, If
after a sufficiently long time K(¢) decays as an expon-
ential K(f) ~exp(-¢/7,,,) then the decay constant 1/7,,, is
related to the rate constants k. and 2,.p by
kA-B =xB/Trxn > ( )
3
kA*B =xA/Trxn ’
where x, and xg are the equilibrium mole fractions of
A and B, respectively.

The RRKM value for the rate constant is easily cal-

culated by evaluating K(¢#) in the limit #=0+. The re-~
sult is
ky.p=limK(t)/x, . (4)

=0+

In the next section, we briefly discuss some of the re-
sults from Ref. 2 that are pertinent to this paper.

1il. BISTABLE-MORSE SYSTEM

In Ref. 2, a detailed study was made of a dynamical
system of two degrees of freedom consisting of a quartic
bistable oscillator coupled to a Morse oscillator., Tra-
jectories, fluxes, and rate constants were computed and
compared. The analysis was based upon the variation
of two parameters, a perturbation strength Z and a
Morse parameter A, Figure 1 displays some typical
results. In the first column, we plot the Configura-
tional Surface of Section (CSS). The CSS is defined to
be the mapping of all trajectories of energy E on to the
configurational plane (X, ¥). It is generated by plotting
the values X, ¥ whenever X=0and ¥>0 (see Ref.
2 for details), The outer curve is the equipotential at
the energy of interest. All of the CSS in Fig. 1 were
taken at a dimensionless energy of 1.02 units (0. 02
units above the barrier). A regular trajectory is char-
acterized by a pair of (parallel) curves, whereas an
irregular trajectory is characterized by a set of ran-
dom points in the CSS. The CSS depicts those parts of
the configurational plane where a given trajectory is at
a turning point along the X mode. It should be pointed
out that the CSS is not, in contrast to the usual Poincare
surface of section in g, P space,? an area preserving
mapping. Its utility does not lie in this feature, but
rather on the qualitative aspects of the dynamics that
it clarifies, e.g., one can readily note where in con-
figuration space an irregular (or regular) trajectory
may or may not visit, The hatched regions of the CSS
depict those regions where “irregular” trajectories
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FIG, 1. In this figure, a brief comparison is made between
the dynamical structure and the corresponding microcanonical
reactive flux K(¢) for the system of Ref, 2, All three of these
systems are at a total energy of 1, 02 units (0, 02 units above
the barrier). The mapping of the invariant tori in the configura-
tional plane; i.e., the CSS (see the text) are given in the first
column, Thehatched regions correspond to regions accessible
by irregular trajectories. The bottom two systems allow for
a high degree of irregularity, whereas the top system allows
for very little or none. Note the dramatic difference in the
behavior of the corresponding fluxes., The values of Z and A
are taken from Ref, 2.

are found and the curves made up of dots depict peri-
adic or quasiperiodic trajectories. In the bottom two
sections of Fig. 1, trajectories of the latter type lie on
invariant tori located inside one well, A torus of this
type has been labeled a “trapping torus.” For instance,
if an irregular trajectory is superimposed on the
CSS, one will find that the trajectory is bounded by
these curves (tori). As clearly seen for the system at
the top, a typical reactive trajectory (a trajectory cap-
able of crossing the barrier) only visits a restricted
region of configuration space; moreover, it tends to
recross the barrier quite frequently and sometimes
periodically. For this system, the amount of time a
typical trajectory spends in a well is not long (relative
to the period of oscillation across the well); there-
fore, “trapping” for long periods of time does not oc-
cur, and a phenomenological rate constant does not
exist for this system. The corresponding reactive flux
in the second column indeed confirms this notion. It
is oscillatory about 0 with nonexponential long time de-
cay, In the middle system of Fig. 1, a much wider
area of configuration space is sampled by a typical
trajectory. It is now possible for a trajectory to be-
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come trapped for long periods of time, Nevertheless,
note that a trajectory cannot cover all of the available
configuration space. The corresponding reactive flux
in the second column approximately decays at long
times with only one decay constant. If one now assumes
that this long time decay is exponential, then a rate
constant may be extracted. This decay rate turns out
to be significantly smaller than the value predicted by
RRKM theory. Consider the final system at the bottom
of Fig. 1. A typical reactive trajectory tends to fill

all of the available configuration space, Trapping times
are very long (on the order of 100 vibrational periods).
Not only does one obtain a reactive flux that is almost

a pure exponential, but one also finds that the decay is
given, within error, by the RRKM vaiue [cf. Eq. (4}].
As expected, a necessary condition for RRKM theory

to be valid is that the entire energy hypersurface must
be irregular and furthermore, that it not be decompos-
able,

Upon close examination, one finds that the primary
difference between the three systems is that the mea-
sure of the regular region of phase space (tori) de~
creases from the first to last system. For the last
system, no integrable regions were found at an energy
of 1.02. In particular, it was found that if tori still
existed at the emergy of interest, then one could obtain
long-lived correlations within a trajectory due to rem-
nants of the destroyed tori—or so-called vague tori. !f

Clearly then, it would be valuable if there were some
method by which one could predict when the last vestige
of integrability vanished. Should this happen for an en-
ergy lower than the barrier, the system will be com-
pletely irregular above the barrier, and RRKM theory
is expected to be valid. Such a method would then allow
one to predict when RRKM theory is applicable. For a
given system, we will be interested in determining that

energy at which all regularity disappears. This en-
ergy will be labeled Egpk,. Clearly,
Eppxu”Ecrit » (5)

where Eg; is the energy at which nonintegrability (ir-
regularity) first appears macroscopically. In the next
section, we study a simple method by which we can ob-
tain a lower bound on Eggxy; a lower bound that is still
greater than E_ g, ,. Let this lower bound be labeled
Egys, then

(6)

in the next section, we use linear stability analysis to
determine Eg;.

ERRKH>ESU >ECRIT .

In closing this section, it should be mentioned that
microcanonical rate constants in general and the RRKM
rate constant in particular can exist only for energies
close to the barrier. This is a necessary condition,
since, at higher energies, the transition state will usu-
ally be much too wide for a sufficient separation in time
scales to occur, and there will then be rapid recross-
ings of the energy barrier (cf. Ref. 2). In other words,
one must have an efficient bottleneck to reaction.
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1IV. LINEAR ANALYSIS
Consider the classical Hamiltonian
H=4(x2+ 3+ 4*(»2 = 1)F (x) + 4ufx %+ 1 . (7

This Hamiltonian represents a quartic bistable oscil-
lator coupled to a harmonic oscillator via the function
F(x). This Hamiltonian has been expressed in dimen-
sionless units, so that the unperturbed barrier height
is 1.0. The frequency factor w, is actually the ratio of
the unperturbed frequency of motion in the harmonic
mode to the harmonic frequency of the unperturbed bi-
stable mode.

In general, the phase space of the system can be de-
composed into irregular and regular regions {cf. Fig. 1).
As the eunergy is increased, the measure of the regular
region changes (usually decreases). The regular re-
gions are each nested about a single trajectory that de-
fines an elliptic fixed point. As long as a single elliptic
fixed point exists, there is at least a small measure of
nested tori about it. As the energy is increased, an en-
ergy is reached for each of these single elliptic points
at which they become hyperbolic fixed points. For each
such elliptic point, linear stability analysis can be used
to determine the energy at which this transition oc-
curs.!? It is important to note that at these energies,
the system may still be globally stable, i.e., quasi-
pericdic. It is reasonable to conjecture that for the en-
ergy Egy, at which the most stable elliptic point be-
comes linearly unstable, all the other elliptic fixed
points will also be unstable. A small increase in ener-
gy above Eg, will lead to global instability of this el-
liptic fixed point and consequently by the disappearance
of all regularity. Of course, the transition of an el-
liptic point to a hyperbolic point does not guarantee that
global chaos will in fact ensue. It is a simple matter to
vary theparameters of agiven Hamiltonian system until the
above transition does not represent forthcoming chaotic
behavior. What we would like to emphasize instead is
that, in general, it has been our experience that this
transition is a good indicator that the dynamical system
may be in the process of becoming highly unstable —it
certainly does not guarantee this, but it does give us an
important gauge. It is not a priori clear which elliptic
fixed point, for a given system, is the most stable,
Here, it will be assumed that the most stable el-
liptic point is generated by the trajectory which oscil-
lates in the X direction about the well with no motion of
the Y coordinate. The initial conditions for this tra-
jectory is (x, %, y=41/2, y=0). Under these initial
conditions, this trajectory is always stable, but small
perturbations about it may or may not be. Thus, the
question of when the two-dimensional motion becomes
totally stochastic is approximately reduced to the well-
studied problem of the analysis and prediction of stabil-
ity of one-dimensional motion. !2~!* Again it should be
emphasized that this condition is only necessary, but
not sufficient,

If we make the transformation from the (x, y) coordi-
nate system to the coordinate system (g, X), where
y=1/Y2+¢q, and then linearize the resulting differen-
tial equation in ¢, ? we obtain

IR
STABILITY GRAP!
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FIG. 2. This figure gives the stability graph for the
Mathieu equation [cf. Eq. (9)]. The hatched regions corre-
spond to stable regions, The line at the bottom is given by &
=1.5+0.5 8, It is the example cited in the text,

(8a)
(8b)

g=-2F[XW®)]q,
X =-wix+ @F(X)/dX)/8 ,

Note that Eq. (8b) is not coupled to Eq. (8a). If the
solution to Eq. (8b) is periodic, then Eq. (8a) is the
general form of Hill’s equation. Therefore, our task

is reasonably straightforward; we first solve Eq. 8(b),
use this to determine F(#) and then determine the stabil-
ity of Eq. {8a). Unfortunately, in general, it is not pos-
sible to analytically determine the stability of Hill’s
equation, ¥ Nevertheless, for certain forms of F(x)

we can obtain Mathieu’s equation, which is a particular
type of Hill’s equation, from Eq. (8a). The regions of
stability and instability for the Mathieu equation may be
obtained from

G+[b-Scos’(t)lg=0, ©)

where b and S are parameters. The stability graph of
Eq. (9) is usually displayed in a b versus S plane (cf.
Fig. 2).1'8

In the following model problem, we obtain the Mathieu
equation by letting the coupling function F(X) take on
the form

F(X)=1-2zx. (10)

This choice of F(X) has similar properties to the choice
of F(X) in Ref. 2. That is, the effective barrier height
decreases as the transverse degree of freedom X is
stretched. If we insert Eq. (10) into Eq. (8), one ob-
tains for the uncoupled solution

X(t)=Acos{wyt+06)—Z/Bw}) . (11)

J. Chem. Phys,, Vol. 77, No. 1, 1 July 1982

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



286

Here
— _1_. 2 2
A'—2w0 VE+Z%/(164})

and 6 is just a phase factor. Equation (11) allows us to
put Eq. (8a) in the form of a Mathieu equation. The
result leads to the following identification of the param-
eters b and S:

12)

b=by,+8/2, (13a)
by=8[1+1/(8p%)]/ut, (13b)
E=2'"p%5%/64 -1/(16p%) , (13¢)

where p=wy/Z. Can the linear analysis tell us any-
thing about the global dynamical behavior of this sys-
tem? In Fig. 2, we plot a typical stability line, given
by Eq. (13a) on the stability graph. The hatched re-
gions of the stability graph correspond to stable re-
gions. In the particular example presented, the b axis
intercept b, is 1.5 and the value of s at which the be-
havior goes from linear stability to linear instability
Sgy 18 2. 2. Note that all systems with the same value
of by will also have the same value of Sg;;. Therefore,
for a given b, it is the value of Eg; which changes as
the parameters Z and w; are varied. Since in the
Hamiltonian [Eq. (7)], the minimum in the barrier to
reaction is 1.0, if one is to destroy all tori at energies
close to the barrier, then it is required that Eg, <1.0.

In Fig. 3, we plot Eg, as a function of Z for the above
case of by=1.5 (solid curve)., Clearly, we cannot use
values of Z much less than about 6.0, otherwise, in-
stability does not occur at energies above the barrier
and the system is not expected to exhibit RRKM-like
behavior. As an example, for the case of by=1.5, we
pick the values of Z=16.0 and wy=4.0. The predicted
value of Egy is 0.21—an energy well below the barrier.
In Fig. 4, we plot the Poincare surface of section

FIG. 3. The curve Eg(Z; by) vs Z is plotted for two typical
values of bg. For the solid curve Sg; <2b, and hence no mini-
mum exists. Conversely, for the dashed curve Sgy >2b( and

a minimum must exist [cf. Eq. (15)]. Note that systems
described by the dashed curve cannot be RRKM systems; where-
as, according to the solid curve, RRKM systems should exist
for 22 9.0,

N. De Leon and B. J. Berne: RRKM behavior

E=0.15 E=0.25
.4":!
- § ‘;,"/l:”
E=040
E =0.60

FIG. 4. Poincare surface of sections in the Y, ¥ plane cor-
responding to the linear stability analysis. The parameters
for the Hamiltonian are Z=16.0, w;=4,0. The six sections
are taken at six different energies ranging from 0.15 to 1, 02,
The stability analysis predicts the elliptic fixed point to be-
come a hyperbolic fixed point at E =0, 21—as one indeed finds.
Note that chaos is attained at an energy less than 0.6, The
corresponding trajectories that generated this figure are dis-
played in Fig. 5.

through the plane Y, Y given X =X min, x> 0, (X min
== Z(8wk)). Xma is the x component of the minimum in
the potential energy surface. At an energy of 0.15, we
indeed have linear stability as the elliptic fixed point at
the center indicates. As the total energy is increased
to 0.25, the elliptic fixed point turns into a hyperbolic
fixed point, as predicted by the linear analysis. On
close examination, 0. 21 indeed turns out to be the tran-
sition energy. Note, however, that even though the
trajectory is linearly unstable it nevertheless is globally
stable. Indeed, the elliptic fixed point bifurcates into
two elliptic fixed points and it itself becomes the hyper-
bolic point between them. This kind of bifurcation of
elliptic fixed points seems to be a general phenomenon
in many dynamical systems. 17 Because of this inherent
stability, Egy is usually a good indicator of how close
we are to Eggyy. For example, in Fig. 4 at an energy
of 0.4, we see that the trajectory is still linearly un-
stable, but now somewhat globally unstable (stochasticity
in the surface of section is quite noticeable). Finally,
at an energy of 0.6, the trajectory is both linearly and
globally unstable. Thereafter, up to and beyond an en-
ergy of 1.02, all one obtains is a shotgun-like pattern
in the surface of section—one of the signatures of
chaos.!® Figure 4 indicates that if Egy occurs well be-
low the barrier, say <0.5, then we can in general ex-
pect Egggy to be less than 1, 0—a necessary condition
for the system to have an RRKM rate constant. It is
important to note that this is not generally a sufficient
condition, due to the existence of a few small parameter
ranges where it is possible that the hyperbolic point
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will again become an elliptic point at energies below the
barrier. We return to this possibility later.

In Fig. 5, we show the configurational trajectories
used to generate the surface of sections of Fig. 4. One
should compare the regularity (or lack thereof) of the
trajectory and the corresponding surface of section.
Note that the linear analysis allows us to predict that at
an energy just above the barrier we should encounter
total chaos-—as the irregular trajectory at E=1, 02 in-
dicates. If we look back at the solid curve in Fig. 3,
we can conclude that if we decrease Z below ~9.0, we
should not expect to obtain complete chaos above the
barrier. This indeed turns out to be the case, There-
fore, we may conclude that a good conditions for global
chaos to occur above the barrier is for Eg; to occur deep
in the well (keeping in mind that one may find a few
cases where this criterion is insufficient). We find that
this latter criterion is correct for most of the param-
eter range considered—not just for those parameters
satisfying the condition b3=1.5.

The linear stability analysis allows us to construct a
stability graph Fig. 6 of w, versus Z for various values
of by, that provides us with insight into which parts of
parameter space correspond to RRKM-like systems.
This graph was constructed by varying the value of b,
from 0.5 to 35.0. For values of b;>35.0, the system
is found to be stable except in very small regions of
parameter space (cf. Fig. 2). The dotted regions of
Fig. 6 roughly correspond to those regions of param-
eter space where one will obtain an RRKM system. The
criterion on Eg; was again chosen to be such that Egy
<0.5. There are several interesting features of this
graph that should be pointed out. First, notice that for
either large w, (w,>4.5) or for small w, (w,<1,0), no

E =025

FIG. 5. These are the trajectories used to generate the sur-
face of sections of Fig, 4. In each case, trajectories were
generated with the initial condition X =X, ¥ =142, ¥=0,001,
X=X(E;X,Y,Y), Given sufficient time, all of the trajectories
at or above E =0,6 will fill the entire configuration space,

287

3.0
i (b) o0
2.5k 16.0
s ———20.0
2 oL T f..’..\zsbo
w i A T Nss0
° 15k W GEET
10 i (=1 NON-RRKM
’ RRKM
~=-Ssy >2bp
05 e

13117 9212325
4

0
01 35791

FIG, 6, This figure is the principal result of this paper. In
the w,; vs Z plane, we plot those areas where one expects to
find systems whose rate constants are accurately predicted
by RRKM theory. This figure is separated into two sections,
Figure 6(a) displaysa wider range of the parameter space.
Figure 6(b) enlarges the small w, dependence of Fig. 6(a).
See the text for discussion,

linear instability occurs below the barrier. We can
immediately obtain the pertinent parameter space for
RRKM behavior, it would be bounded by approximately

1.0<w;<4.5,
3.0<Z .

(14)

Though the exact limits on Eq. (14) are not important,
they do point out in a semiquantitative fashion that the
approximate frequency in the transverse mode (x in
this case) cannot be either too large or too small. In
either extreme, the modes will adiabatically decouple
from on another—the result being that the system again
becomes integrable., This kind of behavior was ob-
served in Ref, 2, Next, note in Fig. 6 that some of the
lines of constant b, are solid and some are dashed. As
in Fig. 3, dashed lines correspond to the function
Eqy(Z;bo) with a minimum and solid lines correspond to
the function Egy(Z;b,) behaving monotonically, e.g.,
with no minimum, If can be shown that RRKM systems
can only lie on lines of constant by corresponding to the
latter type. In fact, one may obtain the interesting
relations,

Sgy/2>b,, minimum exists,
(15)

Sgy/2<by, minimum nonexistent .
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TABLE 1. This table lists the values of
Sgy for various values of b, extracted from
Fig. 2, More precisely, the tables sup-
plied by Ref. 16 were used to calculate

Sg; somewhat more accurately,

bo Sgy bo Ssy

0.05 1.75 19.00 35,24
1.50 2.20 20,00 35,40
2,00 4,90 21,00  39.60
3.00 13,75 22.00  43.90
5.00 7.25 23,00 48,20
6,00 11.70 24,00 52,90
7,00 16. 90 25,00 57,90
8.00 26. 00 26,00 64,00
8.80 30. 60 29,00 46,90
10.00 12.60 30,00 51,80
11.00 17.40 31,00 56,00
12,00 22,00 32,00 60,00
13.00 26, 40 33,00 64,20
14,00 32,20 34,00 68,40
15.00 36,70 35,00 72,70
16,00 44,40

Table I lists various values of b, and the corresponding
Sgu- Because of the above demarcation, one cannot ob-
tain a continuous series of RRKM systems as one pro-
gresses down w, for a fixed value of Z. Instead, bands
of RRKM regions are obtained. The width of each band
significantly decreasing as w, gets smaller. One should
note that the dynamical system is very sensitive to a
small change in w,. The above point is a direct indica-
tion that nonlinear systems can in general be very sen-
sitive to small variations in their parameters,

It should be pointed out that there are a few small
ranges of w, which have an Egy deep in the well but with
no global chaos above the barrier. This is due to a
linear restabilization of the trajectory, that is, the un-
stable region in Fig. 2 was not “wide enough” to main-
tain the instability throughout the necessary energy
range. For example, at b;=28.0, there is an instabil-
ity at Sgy; =42. 0 and a restabilization at $=60.5. This
latter stability tends to maintain a semblance of global
stability, Fortunately, the above case seems to be re-
mote and in general one will not need to worry about it.

V. CONCLUSIONS

The above linear stability analysis provides us with
information about the global dynamical behavior of the
system. It has been demonstrated that the energy Eg;
can be a simple quantity to calculate. The evaluation
of this quantity provides us in most cases with a good
estimate of Egpyy, if it exists. It therefore suggests
when we can expect RRKM rate constants to be accu-
rate. In Ref. 2, it was demonstrated that the system
was more sensitive to variations in w, than variation
in Z. The above analysis (cf. Fig. 6) is consistent with
this observation, and moreover produces the same kind
of dependence on wy. That is, for large and small wy,
the system becomes more integrable~—an observation
which we have attributed to adiabatic behavior. In gen-
eral, we have observed that the measure of integrable

regions can be very sensitive to the parameters of the
Hamiltonian—especially the frequency ratios between
the two modes.

The above analysis is not restricted to the system
presented in this paper. Instead, it is applicable in
general. The difficulty lies, of course, in the evalua-
tion of the stabilty of the general Hill’s equation. Only
for a very few cases is the stability of Eq. (8a) well
studied. Nevertheless, if one wanted to carry out the
linear analysis, it could be accomplished numerically
by determining the linear mapping matrix T,

Y =T1"Y(0), 16)

Y () =[y(m), yir)],

and then determine the eigenvalues of 7. The imaginary
eigenvalues correspond to an elliptic point and real
eigenvalues correspond to a2 hyperbolic point.

It is at this point proper to emphasize that the afore-
mentioned stability analysis is only the simplest of the
various techniques used to estimate when one can ex-
pect to encounter chaos in dynamical systems. Much
more sophisticated techniques have been developed by
Mo, ! Cerjan and Reinhardt, 2 Kosloff and Rice, %!
Zaslavskii and Chirikov, ? Bummer, Duff, and Toda, %
and J. Ford.? In some cases, these are simple to ap~
ply but in general they tend to be very cumbersome in-
deed. The principal difference between the above meth-
ods and the use of the stability analysis in this paper is
that we are not trying to determine that energy for
which one fivst obsevves the onset of chaos Egyr—the
principal goal of the above authors—rather, we gre in-
tevested in a less complicated enevgy Egy which (we
claim) can give a good indication of when the RRKM
theory of the rate constant is accurate. This gives a
qualitative test for the validity of RRKM theory.

Another difficulty lies in determining the range of
energy in which the bifurcated elliptic points remain
stable. It would be very desirable if one could find a
method by which their range of stability could be deter-
mined. If this were possible we would then, essen-
tially, be able to calculate Egp. )y rather than Eg,.
Needless to say, we are unaware of any method that
specifically treats this though there are investiga-
tions dealing with specific systems,!"? Of course,
one expects the bifurcated elliptic point to bifurcate
again, and so on. These secondary and tertiary bi-
furcations need not concern us, since the energy range
in which they are stable quickly decreases as the hier-
archy progresses. In Fig. 6, we have approximated
the energy at which the primary bifurcated elliptic
points are stable to be ~0. 5 in all cases. This is, of
course, an approximation but one that is born out by
direct trajectory calculaiions.

In spite of the above inherent difficulties in the cal-
culation, the simple system we studied has provided us
with much useful information. We believe that by avoid-
ing the direct determination of Eggpxy, and, instead,
focusing on Egy we can provide simple but, neverthe-
less, instructive criterion for statistical rate theory.
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