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A simple iterative scheme which greatly facilitates the evaluation of discretized path integrals is presented.
The method is applied to study the motion of a proton in a bistable potential and the resulting configurational
distribution function is compared to both the path integral Monte Carlo calculation and to the “exact” result.
As a second illustration we present calculations of the radial distribution function for an Ar, van der Waals

dimer at two temperatures.

INTRODUCTION

The Feynman path integral formulation of the density
matrix has been used to calculate various properties of
quantum or mixed quantum-classical systems.! This is
accomplished by writing the canonical density matrixasa
Feynman sum over continuous paths with each path
obeying well defined boundary conditions. Each con-
tinuous path is then made discrete with P segments and
the semiclassical approximation for each segment then
allows one to identify the canonical density matrix for
the N body quantum system as a distribution function of
an isomorphic NXP body classical system., This formu-
lation provides a very powerful technique to calculate
equilibrium properties of quantum systems by simulating
the corresponding classical system either by Monte
Carlo or molecular dynamics. Recently, we have ex-
tended the use of path integral techniques to calculate
time correlation functions of dynamical properties of
quantum or mixed quantum-classical systems.? Thus
it appears that many interesting quantum systems such
as electrons in various solvents, electron or proton
transfer reactions in the condensed phase, transport
properties of quantum particles interacting with a clas-
sical bath, and molecular spectra in the condensed
phase can be studied using this general formulation,
Indeed, considerable progress has been made towards
the calculation of the radial distribution function of an
electron in fluid helium as a function of density. 1*®

So far, the only numerical method that has been used
with success is the classical Metropolis Monte Carlo
(MC) algorithm!@'?~* or equivalently molecular dy-
namics,® It is clear that for N body quantum systems,
the MC algorithm does indeed seem to be the easiest to
implement. Although the MC method is a very powerful
numerical technique, it is also beset with problems;
the notable one being that if one desires very accurate
answers, it may be necessary to perform averages
over many configurations and this may become very time
consuming., Hence, it is desirable to search for alter-
nate methods of evaluating the multidimensional inte-
grals that arise in these problems. In this article, we
describe one such method which not only appears to be
time saving but also does not suffer from the usual MC
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uncertainties. Moreover, the method can be used to
determine the Helmholtz free energy. This method
uses direct numerical matrix multiplication (NMM) and
is particularly suited to systems containing only a few
quantum degrees of freedom such as a quantum im-~
purity dissolved in a classical bath. Almost all of the
problems described at the end of the last paragraph
fall into this categoryas do very many other problems
of interest in chemistry. For simplicity, the method
is illustrated for one dimensional systems. The gen-
eralization to multidimensional systems will be dis-
cussed later.

The basic problem is to solve the Bloch equation

ap—(r’a%@ =-Hplr,r'; B) 9
for the density matrix

plr,v'; B) =r|e*|r"), (2)
subject to the initial condition

limplr,7'; p) =6lr -7') . (3)
Because e ¥ =¢™# .o"¥ it is easy to show that

plr,v';2¢) = ’[:‘dr"p('r, ', e plr'',r';€) . (4)

Starting with p(r,7’’, €), one can iterate Eq. (4) n times.
This gives p(r,7,2"¢) in terms of the plr,»’;€). If ¢

is chosen such that € =8/2", then x iterations yield the
desired density matrix p(r,»’; 8). If » is taken to be
sufficiently large, €=pg/2" will be small enough to
justify using the short time approximation for p(r,7’; ¢):

o @, 7"; €) =expl - (/2)V )l oy, v';e)exp [ - (¢/2)V ()] ,
5)

where

n 172
polr, v ;€)= [Z_n?:] exp -{[ (w/2)r —»' ]} .

®)

It is important to note that iteration of Eq. (4) using
the short time approximation given by Eq. (5) is equiv-
alent to the discretized Feynman path integral formu-
lation (the primitive algorithm) of the density matrix
with P =2" discrete points, Our approach here is to
use direct numerical matrix multiplication (NMM) to
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accomplish this iteration rather than to rely on the
Monte Carlo algorithm. The evaluation of the integral
in Eq. (4) proceeds as follows:

(i) The limits of integration are replaced by (-S/2,
S/2), where S is sufficiently large to ensure proper
convergence. This point will be elaborated below,

(ii) A grid is constructed of equally spaced points
over a square lattice between - S$/2 and S/2. Let A be
the spacing between successive points and 2M +1 be
the total number of points in the interval (-S/2,5/2)
so that S=MA4, then any set of points », 7'’ can be
specified as iA; jA on this square lattice. The integral
in Eq. (4) is evaluated over this grid using a simple
trapezoidal-like rule

¥
p(id,j4;2¢)=A 2 plid, ka; plkea, ja;e) . (1)
k=M
(iii) Starting with the short time approximation for
plia,jA; €), Eq. (7) gives p(iA,ja,2¢€). Substitution
of p(ia,ja; 2¢€) into Eq. (7) then gives p(i4, jA; 4¢).
Repeating this iteration x times gives p{i4,ja; 2%).

Before applying this numerical matrix multiplication
(NMM) method to calculate distribution functions, cer-
tain comments on the technical aspects of the method
are in order.

(a) Replacement of the infinite range of integration
over the intermediate points by a finite interval does
not pose a problem in practice because the off-diagonal
elements of p decrease as exp(~ up(r —»' /21 p). This
implies that for a given  and v’, the maximum contri-
bution comes when both » and 7’ are close to 7'/, the
intermediate integration point.

(b) In evaluating the integral in Eq, (4), a value of
P =2" must be chosen so that the high temperature ap-
proximation, namely Eq. (5), is valid. On the other
hand, for a given separation A, g/P should be large
enough so that the exponential term in the high tempera-
ture approximation does not decrease too rapidly as k
differs from i, This implies that one should choose the
quantity 6 = uA2P/2%@ as small as possible. In all the
problems we have studied, a value of §<0.3 seems to
ensure proper convergence, The arguments presented
show that A is an implicit function of P and g and should
be chosen so that the above criteria are satisfied, For
a given short time approximation [cf. Eq. (6)], the
NMM yields the density matrix at half the initial tem-
perature after one iteration. Because the range of
integration over the intermediate point has been made
finite [see Eq. (7)], this results in an inaccurate esti-~
mation of p(r,7’;2¢) over a distance of A from S. The
quantity can be inferred to be of the order of the thermal
de Broglie wavelength at the temperature (¢)™*. This,
of course, is not a serious problem because S can be
made large enough so that the contribution to p(r,7’;28)
for r ~ (S -~ 1) is negligible.

In this paper, we present an application of NMM to
several simple systems (see Secs. II and II1). First
proton tunneling between two geometrical isomeric
states of H,O, is studied. Then the case of two parti-
cles (argon) interacting through a Lennard-Jones po-

Thirumalai, Bruskin, and Berne: Discretized path integrals

tential in three dimensions is studied. In Sec. IV, it
is shown how NMM can be applied to calculate the
thermal properties of a mixed quantum classical sys-
tem. We conclude the paper in Sec. V with a short
discussion,

il. PROTON TUNNELING

Proton tunneling in tautomerization reactions and in
hydrogen bonded systems is of considerable interest.
The evaluation of path integrals using direct numerical
matrix multiplication is particularly well suited to the
study of the motion of protons in a double well potential,
because the size of the configuration space is limited
and, consequently, the dimension of the density matrix
can be kept small. In this section, we treat the motion
of a proton in the bistable potential

Acos3x+Bcos2x+Ccosx + D;0<x<2y

Vix) ={ (8)

The parameters of this potential were chosen® to
mimic the proton motion in the isomerization of H,0,.
The values of the parameters A, B, C, and Dare 81.08,
973.63, 1824, and 1320 K, respectively, and the tempera-
ture is taken to be 200 K, At this temperature, the pro-
ton tunneling should give rise to considerable delocaliza-
tion of the proton over the two wells with penetration
into the barrier region. Because this is a one-dimen-
sional problem, it is a simpler matter to numerically
determine the exact (numerically) energy eigenvalues
E, and corresponding energy eigenfunctions i,(z). This
is done using the “equation of motion” method. The
configurational distribution function is then given by

p(x,x)  Tlunbx)12e™ En o
“Trple,x) S, En .

This provides the result against which both path inte-
gral Monte Carlo and direct numerical matrix multipli-
cation can be compared. The “exact” P(x) calculated
on the basis of 46 states is shown in Fig. 1.

o0 otherwise

P(x)

The Monte Carlo calculation is performed in the
primitive algorithm using P =100 discrete points. From
our previous work on the linear harmonic oscillator, * it
is known that the use of the direct Metropolis MC algorithm
involving single particle moves results in slow con-
vergence. To accelerate the convergence, we found it
useful to transform to the harmonic normal modes of
the chain, These correspond to the kinetic energy con-
tribution to the Hamiltonian. When this is done, each
mode has a different force constant and we can choose
step sizes appropriate to that force constant; e.g., a
small step size is chosen for the high frequency modes
and a large step size is chosen for the low frequency
modes. We adjusted the step sizes of the normal modes
so that the acceptance ratio of all the modes was roughly
equal to 0.4. The one particle distribution P(x) was
calculated as a function of ¥ in the range (0, 27) and
the result of this calculation after 12000 passes is
shown in Fig, 1.

The distribution function P(x) is also evaluated using
NMM. To this end, the initial density matrix
p(t;, X1, B/P)is evaluated ona square grid with M =50,
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— for proton tunneling in H,0, at T =200 K.
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A=0,027, and P =2%, Thus we require only six itera-
tions of Eq. (7) to reach the inverse temperature 8 of
the system. For the set of parameters used, 6= matp/
2728 turns out to be 0.145 and this is sufficiently small
to guarantee convergence.

In Fig. 1, these three methods for determining P(x)
are compared, This figure shows that NMM agrees
quantitatively with the exact solution of the Schrddinger
equation. Path integral Monte Carlo method gives
reasonably good agreement with the exact result, but
at a much higher overhead in computer time. Figure 1
clearly shows that at 200 K, the proton is more de-
localized than predicted classically. This delocalization
is due to tunneling in the quantum system and arises
because the thermal de Broglie wavelength is larger than
the width of the barrier,

It is now well established that one requires a large
number of points in the primitive algorithm to achieve
convergence.’ However, the efficacy of the NMM
method enables us to use a large number of particles
and, hence, we are assured of obtaining the exact
answer. To illustrate this, we have calculated the
Helmholtz free energy of a proton in the bistable po-
tential at T=10 K. The convergence of the free energy
and the partition function @ are shown in Fig. 2 as a
function of P. It is clear that with P =2048 [11 itera-
tions of Eq. (7)], we have obtained quantitative agree-
ment with the exact result. The exact answer was ob-
tained from the energy levels of this potential, It must
also be emphasized that the CPU time required to cal-
culate @ with P = 2048 was a factor of ten less than the
CPU time needed to compute the exact . In addition,
we have determined P(x) as a function of the number of
discrete points used in the primitive algorithm. Figure

The result is shown in Fig. 1,

3 shows that P(x) converges to the exact result for
P~256, a number considerably smaller than the P =2048
required for the convergence of the partition function.

It is expected that for very low temperatures, conver-
gence will be attained only for such large values of P
that path integral Monte Carlo methods may become
impractical. Even for P as small as 100 such MC cal-
culations using the primitive algorithm require large
amounts of computer time, Thus recent efforts to
reduce the number of discrete points using variational'®

NUMBER DISCRETE PARTICLES
4 16 64

256 1024
060 /

/
0.00 /

0.00 2.00 4.00 6.00 8.00
NUMBER ITERATIONS

4096

[T=10K]
o
@
[e]

F/ F (EXACT)
o
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o

o
»
[=]
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FIG. 2. The Helmholtz free energy F relative to the exact
result Fo,, F/F,; at T=10 K for the proton motion in H,0, as
a function of the number of iterations » using NMM, Also
shown are the number of particles P used in the primitive
algorithm. Note that P=2",
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FIG. 3. The distribution function P(x) for proton tunneling in
H,0, at 10 K, as a function of the number of iterations » using
the NMM method.

and renormalization group techniques ¥ should lead to
practical methods for simulating quantum systems,
Fortunately, the NMM method is so fast that systems
with large P present no obstacle. Thus if NMM can be
applied to a problem, it will not be necessary to resort
to difficult algorithms for reducing P.

We now make a brief comparison of MC and NMM
methods: The CPU time on the VAX 11/780 computer
needed to obtain P(x) by the MC method was consider-
ably larger (more than two orders of magnitude) than
the time needed by the NMM method. In fact, the NMM
required considerably less time to calculate P(x) than
direct numerical integration of the wave equation and
subsequent use of Eq. (9). More importantly there are
no fluctuations associated with the NMM method where-
as the path integral MC method suffers from this, Al-
though the error bars for the MC method were uniformly
small (say 5%-10%), the computational effort required
to obtain this good agreement was enormous,

iI1l. THE Ar, VAN DER WAALS DIMER

It is of interest to investigate whether the discretized
Feynmann path integral is capable of giving accurate
bound states for simple van der Waals molecules like
Ar,. To be specific, consider two identical particles
interacting via a central potential in a very large box.
The Hamiltonian of the system can be written as

# i

Ve -5 Vtz' + V(T) =Tc.m. +Hrg 5 (10)

H=—oni Y® "3,

where R is the center-of-mass position, r is the rela-
tive coordinate, T, .. is the center-of-mass kinetic

energy, and H,,, is the Hamiltonian for the relative
motion. The density matrix  in the position represen-
tation can be written as

p(rR, r'R’; B) =(r,R|e®#|x', R") 11)
=(R| exp(— BT, |R)x' | eXp(= fHpy, [ 1) .

It is possible to write Eq. (11) in the factorized form
because the Hamiltonian for the center-of-mass T, .
commutes with the Hamiltonian for the relative motion,
Strictly speaking, this is not true because the system
is enclosed in a box, but the “edge” effects can be made
arbitrarily small by making the size of the box very
large. Thus for all practical purposes, we treat the
system as essentially unbound. The expression for
(Rle*®Tc.m. IR") =p,. .. (R, R’; B) is given by

Pe.m. R, R'; B) = “Jl‘]% ex TM (R R')z} @2)
com, VIV, AV )= ZHIfB {Y 278 - .

The nontrivial problem is to evaluate p(r, r';:8)

={r le"®#rel |7') which satisfies the Bloch equation [cf.

Eq. (1)].

It is well known that for any central potential
p(r, r’; B) for the two bosons can be expanded in partial
waves, i.e.,

ol § @Llpr,r'; 8)
p(r,ryﬁ)_ Z ‘rrrr' Pl(

Izeven 2

cos6) ., (13)

The quantity p,(r,7’, 8) is the Ith partial wave con-
tribution to p(r, r’; g). It satisfies the Bloch equation

]
%(7:7'53)7-‘[1191(7,7,;0), (14)

where

Ho= 7 & Rli+1)
Y ST B

For each [, Eq. (14) can be solved by direct numerical
matrix multiplication (NMM). To proceed, we choose
the short time approximation

Vi) . (15)

oY (r,7'; €) =P Veap (r, v ; ) WIVet1?) (16a)
where
Vors ) =-l(—lzz—;;i +Vr) (16b)
ooy €) =[#,;—€] v {exp [_ =t _r')a]
-exp[-z—’-r’éz(rw')z]} ) (16¢)

Equation (16c¢) is the Oth partial wave contribution to
Eq. (13) at temperature (€)', Of course, other choices
for the decomposition of H are possible.

N-fold iteration of the equation
o, 7' ;2€) = f ar'’'p,r,r"’, p, "', 7' €) amn
0

using the short time expansion (Eq. (16a)] for
p,r,7'; €) with €=g/2", then gives the desired
pi(r,7'; B).
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FIG. 4. Normalized radial distribution function P(r) as a
function of /¢ for Ar, van der Waals dimer at T =2 K and
T=20 K. The quantum mechanical results were obtained using
NMM, For comparison purpases, we show the classical ra-
dial distribution function at these temperatures.

The two Ar atoms are assumed to interact through a
LJ 12-6 potential

Vir) =4 (0/r) - (o/7)°], (18)

with €=119,8 K and 0=3.405 A. For purposes of
calculation, we chose two values of the temperature of
the system, namely, T=2 K and T =20 K. The quan-
tity of interest is the normalized radial distribution
function

Py 400, 7i8) | S0+ Vp 7 B)

@ Tico (21 +1)fo" dr plr,7;8) 7
where Bose-Einstein statistics restrict the summation
to even values of I. For the LJ potential, it is con-
venient to use the following set of reduced variables:

r _4(;10‘2
A

(19)

x=—: €*
0.’

: _#8
; andp*_l?. (20)

The Bloch equation was solved in terms of these re-
duced variables. The quantity p,(x, x’; 8*) was evaluated
on a grid with M =77, A=0,016, and P=2*=16 for
T=20 Kand M=65, A=0.023, and P=28=64 for
T=2K. The sum given in Eq. (19) was approximated
by truncation at 7 =100. In both cases, the parameters

were adjusted to achieve convergence. Furthermore,
it was verified that the calculations were independent of
the box size. It is worth remarking that we require a
smaller number of partial waves at lower temperatures
(1=30 at 2 K).

The radial distribution function determined from the
path integral by NMM is compared with the classical
radial distribution function in Fig. 4. There are
significant quantum effects. The distribution function
in the quantum system is considerably broader than in
the classical system, and, as expected, there is a finite
probability of finding the particles in the classically
forbidden regions. Of eourse, the effects are more
dramatic at T =2 K.

Another property of considerable interest is the po-
tential of mean force

W(r)=—%lng(r) R 21)
where g(r) is the pair correlation function
o) =28 (22)
In the classical system W(r)=V(r); but in the quantum
system W{r)# Vir). These two functions are compared

in Fig. 5 for both temperatures, This figure shows
that for T =2 K, there is considerable difference in W(r)

360.0}

240.0
L §
=
2 CLASSICAL POTENTIAL
A
I
< ] EFFECTIVE POTENTIAL
; 1200 / T = 20K
w
5 EFFECTIVE POTENTIAL
a T T =2K

0.0 4
~120.0 . T T T —
0.70 1.05 140 1.75 2.0 245

R /7 SIGMA

FI1G. 5. The effective potential as a functionof »/v at T=2K
and T=20 K, The 6-12 LJ potential is drawn for comparison.
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for the quantum and classical system in the range
0.72<X <2.1 whereas, for T =20 K, we observe a
noticeable difference in the range 0.92<X<1,20. This
is another indication that delocalization due to quantum
dispersion is important at this temperature. The quan-
tum effective potential W{r) may be used in either classi-
cal integral equations or classical computer simula-
tions to provide a picture of quantum effects in liquids,
This approximation can be evaluated by comparing it to
the exact asymptotic expansion of the exact quantum
distribution functions in powers of 7.

IV. SIMULATION OF MIXED QUANTUM-CLASSICAL
SYSTEMS

In this section, we sketch the use of the NMM method
in the simulation of mixed quantum-classical systems,
To be specific, let us consider a quantum particle of
mass m embedded in a classical bath consisting of N
particles of mass m. In addition, we assume that the
motion associated with the quantum particle is much
faster than the motion associated with the classical
particle. This enables us to make the usual Born—
Oppenheimer approximation and, therefore, the density
matrix for the system can be written as

sz ', -BU(R) _nt
plr,R, ', R’; /3)=(?:%§) p(r,’; B|R)e 5(R-R'),
(23)

where U(R) is the sum of the solvent-solvent poten-
tials. p{r,r’; 8IR) is the density matrix of the quantum
particle for a given configuration R of the bath, and
where r’ is the coordinate of the quantum particle and
R denotes collectively the coordinates of the N classical
particles. Equilibrium properties like the various dis-
tribution functions may be calculated as before. In the
usual approach to such a calculation, p(r,7'; BIR) is
written as a path integral and if the paths are discretized
into P segments, then the partition function @(8) can be
identified as the partition function for a P +N particle
classical system, i.e.,

06 = (ZHA;TB )szv/a( znn;? B)ap/z

x/drpR expl— BV g (rp, R)] .

(24)

With this, the equilibrium properties of the system can
be computed by sampling the distribution proportional
to exp| - BV,4(rs, R)] by standard Metropolis MC. The
details of such a calculation for electrons in fluid He
are given in Ref. 1(c).

As described inSec. I, the right-hand side of Eq. (12) can
alsobe calculated by using NMM. Thiscanbe accomplished
asfollows, (1)Sample the solvent configuration by using
the distribution proportional to exp[- SUR)]. (2) For
each solvent configuration, p{r,r’; 8IR) can be de-
termined by NMM using a square grid of points as de-
scribed in Sec. III. In order to do this, we have as-
sumed that the quantum particle interacts with the class-
ical system through a central potential. (3) The equi-
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librium distribution functions, the energy of the system
and other thermodynamic functions can be calculated
by averaging over many solvent configurations in the
usual way.

3

It is anticipated that the use of NMM may eliminate
fluctuations in systems which are strongly interacting
and highly quantum mechanical, and furthermore, it
appears that NMM can be executed in a much shorter
time thereby making possible simulations of these
mixed quantum-classical mechanical systems,

V. CONCLUSIONS

It is becoming increasingly evident that discretized
path integrals provide a practical tool for solving quan-
tum mechanical problems., In this article, we have
used a simple numerical method to evaluate the path
integrals. In addition to the results presented here we
have evaluated partition functions for a simple linear
oscillator as well as a Morse oscillator over a wide
temperature range. There are several advantages to
this simple method that have become transparent from
these calculations., First, it has been asserted that
the convergence of the primitive algorithm for highly
quantum mechanical systems can be very slow and the
examples treated by Barker do indeed illustrate this,
We have encountered no problems in implementing NMM
and the simplicity of the method enables us to treat
thousands of particles. Second, NMM appears to be
much faster to execute than the MC algorithm. Third,
there are no fluctuations associated with NMM. Fourth,
NMM allows a direct determination of the partition
function and the free energy. Finally, we note that with
the use of NMM, we can obtain accurate estimates of
the off -diagonal elements of the density matrix and this
may sometimes be necessary. Knowledge of the off-
diagonal elements are essential to calculate time cor-
relation functions of dynamical operators? and it is ex-
pected that NMM can be profitably utilized in that con-
text,

Before we conclude, let us list some of the possible
limitations of NMM, It is ideally suited to treat sys-
tems consisting of only a few quantum degrees of free-
dom coupled to a classical solvent (bath). The second,
and perhaps more serious, problem is that the method
is limited by the size of the matrix that can be handled
on existing computer systems. Thus it will be difficult
to treat problems in which the quantum system is de-
localized over very large distances, Finally it would
appear that the number of arithmetic operations involved
per iteration is given approximately by (M%/2)!, where
d is the dimensionality of the system. This clearly re-
stricts both 4 and the size of the matrix that can be
used. However, due to the fact that the matrix
p@EA;ja; €) is sparse, it should be possible to devise
a much more efficient algorithm. Despite this potential
limitation, it seems that many interesting problems
involving quantum degrees of freedom can be attacked.
In particular, we have successfully studied the effects
of the solvent on tunneling systems over a wide tempera-
ture range and the results will be presented in a future
communication, ®
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