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FIG. 2. Low frequency part of the fluorescence excitation spectrum and
fluorescence spectrum of the perylene-DMA complex.

sition and almost structureless elsewhere are superimposed
at this background (Fig. 2). Under excitation of the back-
ground or of the structured spectrum a characteristic exci-
plex emission is observed: a broad (§v = 2500 cm "), struc-
tureless band with v,,,, = 20 900 cm ™! for perylene-DMA
and 22 400 cm~* for anthracene-DMA, i.e., blue shifted by
~ 1500 cm ™~ ! with respect to alkane solutions® and—in the
latter case—nearly the same as that of the isolated anthra-
cene-(CH,),-DMA intramolecular exciplex.” The fluores-
cence lifetimes of complexes are much longer than those of
bare molecules (~ 10 and ~ 100 ns for perylene and its com-
plex).

The results may be explained by assuming existence of
two closely spaced electronic states of the AD complex (van
der Waalsin its ground state): alocally excited 4 *Dstate (4 *
excited state perturbed by van der Waals interaction stron-
ger than in the ground state) and a charge-transfer (CT)
A ~D ™ state. In the TEA complexes the 4 *D state is the
lowest one giving origin to the structured emission similar to
that of 4 *; the quasicontinuous absorption in the high-fre-

quency range may be due to the CT state. In DMA complex-
es the CT state is the lowest and the level broadening in the
A *D spectrum is obviously due to the rapid electronic relax-
ation to the 4 D * state followed by the exciplex emission.

Three points merit attention:

(i) A completely diffuse absorption to the nondissocia-
tive CT state of a cold complex (already reported in Ref. 2) is
surprising. It may be due to an exceptionally strong electron-
vibration coupling and to a very rapid vibrational redistribu-
tion.

(ii) The vibrational redistribution in the perylene-TEA
complex is relatively slow (¢,.; > 5 ps from the absence of line
broadening) although its onset is drastically lowered with
respect to the free molecule (from 1700 to below 300 cm ™).

(iii) The vibrational predissociation of complexes above
the dissociation threshold is also very slow (insignificant for
short-lived TEA complexes, more pronounced for long-
lived DMA ones).

The work is being continued and complete results will
be published elsewhere.

The authors are highly indebted to B. Fourmann, C.
Jouvet, and F. Piuzzi for their help in setting up of the experi-
ment.
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Thirumalai and Berne' have shown that correlation
functions in Euclidean time determined by Monte Carlo
techniques can be analytically continued in Laplace space to
obtain information about real time dynamics. The advantage
of this methodology is that it allows use of classical Monte
Carlo methods. Other methods have also been tried.>?

In this comment we present a rather straightforward
method for evaluating time correlation functions using path
integral techniques. This method does not involve analytical
continuation and it also lends itself to classical Monte Carlo
methods. We apply it to the evaluation of dynamics of a
double well system. Direct application to this of the short
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time propagation using the numerical matrix multiplication
shows that this method is remarkably stable and accurate.
Solvent effects are treated in a forthcoming paper.*

Consider the two functions

Clt)=Q ' Trle ## Ae*Be "] (1
and

Gp(t)=Q ' Tr Ae~#"Be~H7, (2)
where ¢ is the Minkowski (real) time and 7 = (Bi/2 — it)isa

complex time. It is easily shown® that G, ()
= exp( — BFiw/2)C p (o) s0 that C,p(t) can be obtained from
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G 5 (t). If 4 and B are position dependent operators, then in
the coordinate representation

Golt) =0~ fdx f dx’ A (x)B (x')| (xle = #x') 2 (3)

so that we need only determine the Green’s operator
{x|e = #7|x"). Only for autocorrelation functions is G, (¢ ) an
even real function of time. In a previous paper® we showed
how such operators can be evaluated using numerical matrix
multiplication together with the short time approximations.

As an example, we calculate the dipole—dipole correla-
tion function of a proton moving in a bistable potential given
by Eq. (8) of Ref. 5. It is important to note that we are impli-
citly treating all bound states. This corresponds to proton
tunneling in H,0, at a temperature of 10 K. For the dipole
operator we take u(g) = u,tanh{ag), where u,=1 and
1/a = 0.1 a.u. is much smaller than the width of the poten-
tial. If only the two lowest states were to contribute at 10
K, G,,,(t) = Q| pyo)? expl — BI(E, + E)/2]cos[(dw)t ],
where 11, is the transition moment, and Aw = (E, — E,)/#is
the tunnel splitting. In Fig. 1 we compare the simulation
using NMM with (n = 6,9,11) with the two state approxima-
tion. This is equivalent to a discretized path integral in the
primitive algorithm with P = 64, 512, and 2048, respective-
ly. We note that a large chain is required for good conver-
gence. The time corresponds to eight periods. It is important
to note that a similar evaluation of C,, (¢ ) [cf. Eq. (1)] leads to
numerical instabilities even at short times. Because
C (o) = G (w)e®™?, it is possible that small errors in G (w) at
high frequencies will be amplified by exp B#iw/2, this has yet
to be studied. '

This study shows that it would be inadvisable to use
Monte Carlo methods to evaluate C,,, (¢ ). On the other hand
such methods should be stable for the direct evaluation of
G,,.(t). This can be appreciated by studying the explicit path
integral form of G, (¢ ):

G p(t)= f dx,..dx,p F(x,..%,p)P (X 5. X2p), (4a)

where P is the Monte Carlo sampling function

2p2 Pd /2 2P
Plxxsy) = (—MP" _
(xl sz) (”2(B2+4t2)) exp[ B};l |
__mP 2, 1
X[(B2+4t2) By =X+ 2P V(xf)”

(4b)

and where Fis
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FIG. 1. The correlation function G, (¢} vs time for protonic tunneling in
H,0, at T= 10 K. The solid curve represents the analytical time depen-
dence determined using the two lowest states (frequency splitting, 4w
= 4.87 K). The curves ---, ---, and - represent G,,,,(t) calculated using
discretized path integrals with P = 64, 512, and 2048, respectively. The
time is given in reduced units of (Aw)t, and G, (¢) is given in atomic units.

F(xl---xzp)=A(xxlB(xP+1)exP(“‘it i

2M. 2 5
[m%tT) [0 =% 1) =54 p — %05 41 )]
+% [Vix;)— V(xj+P)]])' (4¢)

The basic approach is to sample the configurations
(x)...x,p) from Eq. (4b) and average F(x,...x,;) over these
configurations. Because F involves a phase factor that de-
pends on the differences between functions of the sampled
configurations it is expected that cancellation will result and
that the average will be much more stable than would be the
case for a direct attack on C,,(t). This is borne out in the
NMM study given in Fig. 1.
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