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Molecular dynamics can be used to evaluate the path integral representation of the density matrix.
Implicit in this method is the assumption that the dynamical system is ergodic. It is shown here
that this is not the case in many systems that are of interest. For example water or liquid neon can
not be simulated by this method. Monte Carlo methods do not suffer from this weakness.

INTRODUCTION

Path integrals’ offer a powerful method for simulating
quantum systems. For example, the canonical partition Z
function of a single quantum particle of mass m moving in a
potential ¥'(r) can be approximated by the following path
integral in the primitive algorithm.
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where Pis an integer, and where i | Z, = Z. The function
@ can be regarded as a potential energy function and the
integral then looks like a classical configurational partition
function for a classical cyclic chain polymer with nearest
neighbor harmonic forces, each segment of whichmovesina
potential ¥ (r)/P. One method for evaluating this integral is
to sample the configurations of the chain polymer using
Monte Carlo techniques.>* Alternatively the integral in Eq.
(1) can be expressed differently by recognizing that the pre-
factor can be expressed in terms of an integral involving a set
of P fictitious momenta,
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This looks like the canonical partition function for a classical
chain polymer with Hamiltonian H ' where the mass of each
segment m’ can be chosen for convenience. This suggests an
attractive alternative to the Monte Carlo method.*> Assum-
ing that the classical system described by this Hamiltonian is
ergodic one can solve the classical equations of motion corre-
sponding to some initial state and then time average any
dynamical variable over the trajectory to determine the sta-
tistical mechanical averages consistent with the partition
function given by Eq. (2a). The initial state must be chosen so
that the mean kinetic energy per particle is consistent with
the desired temperature given by 8 ~ ' asis the standard prac-
tice in classical molecular dynamics. This method has been
used with considerable success in two recent papers.**

It is the purpose of this note to show that this molecular
dynamics approach to evaluating path integrals can be prob-
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lematical. A trivial case is that of a free particle. Since then
the effective Hamiltonian corresponds to a purely harmonic
classical chain molecule, any sampling of the initial state
assigns energy to the normal modes of this molecule and
these energies are conserved. This system is not ergodic, and
time averages will not agree with phase space averages. Of
course in this case the system is unbounded in space so that
the partition function does not exist. What happens when the
quantum particle feels a potential function ¥ (r)? In principle
this will permit energies to be exchanged between the normal
modes corresponding to the harmonic terms in Eq. (2b). If
the temperature is very low then the dynamics may be in the
KAM regime and the Hamiltonian flow will be confined to
multidimensional Tori.® Again the system will be nonergo-
dic and the molecular dynamics method will fail. Interest-
ingly, the force constant in the harmonic part of the Hamil-
tonian grows larger with P while the potential experienced
by any segment on the polymer chain decreases as 1/P.
Moreover the heavier the particle is, i.e., the more classical it
is, the larger will be the harmonic force constant. In addition
the higher the temperature the higher will be the force con-
stant. From this it follows that the normal modes for systems
of high mass and high temperature will be displaced to high-
er frequency whereas the frequencies characterizing the po-
tential function V' (r)/P will get lower. The high frequency
modes of the chain will therefore become far out of reso-
nance with the external potential and again energy exchange
between the high frequency modes of the polymer will be
very slow or nonexistant. Ironically then, for systems that
are almost classical the molecular dynamics method will be
either very inefficient due to the long correlation times or
nonergodic. Monte Carlo methods will, however, be valid
because single particles are moved.

NONERGODICITY IN NEON

In this note we demonstrate these problems on a system
containing two neon atoms interacting with a Lennard-
Jones potential at a temperature of 40 K. To avoid dissocia-
tion an additional harmonic potential is imposed between
the neon atoms. At this temperature NMM shows that that
P = 40 gives excellent agreement with exact quantum me-
chanics.” For P = 40 Monte Carlo also gives agreement with
exact quantum mechanics. Molecular dynamics gives very
poor agreement. The details follow.

Two neon atoms are assumed to interact through a LJ
12-6 potential plus a harmonic potential

Vir)=4el(o/n)" — (0/n°] + 3k (r — rof’, (3)
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FIG. 1. The frequency distribution of the 117 vibrational normal modes for
the relative coordinate to two neon atoms in an isomorphic cyclic chain
polymer containing 40 beads. (120 degrees of freedom): These modes are
divided into 57 low frequency modes and 60 high frequency modes. The
verticle arrow indicates the harmonic frequency of the neon-neon pair po-
tential.

where e/ky =358 K, 0=274 A, k=4¢e/0? and
ry=2Y%0.

The effective Hamiltonian for the relative motion is giv-
en by

_ 5 _P_'z_ pupP _ 2, 1 }

where u’ is an arbitrary reduced mass and y is the real re-
duced mass of two neon atoms.

Newton’s equations of motion for the relative motion
d*r P avi(r
= () e 1 - T
[where 7 is the time variable divided by (u')!/?] were integrat-
ed for several sets of initial conditions. Since the Hamilton-
ian corresponds to a cyclic harmonic chain polymer, each
bead of which experiences a LY plus Harmonic potential [di-
luted by a factor of 1/P, cf. Eq. (4)], it is useful to study how
energy is transfered between the normal modes of the cyclic
harmonic chain. Since the chain has 40 beads there are 120
degrees of freedom, three of which are attributable to the
com of the chain. The frequency distribution of these 117
modes is shown in Fig. 1. The “harmonic frequency” of the
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FIG. 2. The total energy (in units of the expected energy at equipartition) of
the 57 low frequency modes as a function of number of time steps. The
initial state was chosen such that the total energy was in the 60 high frequen-
cy modes. As indicated these curves correspond to different masses.

LJ plus Harmonic potential is indicated by a verticle arrow
in this figure. The low frequency modes correspond to the
long wavelength “breathing modes” of the chain. We sample
the initial momenta and normal mode positions of the 60
highest normal modes from a Maxwell-Boltzmann distribu-
tion at 40 K. The remaining 57 normal modes are given zero
momenta and normal mode displacements. The center of
mass of the chain is given zero momentum and given one of
three possible initial positions: (a) R = 2"/® g, (b) R = 1.50,
and (c) R = o. The question to be answered is: How long does
it take the energy to flow from the high frequency modes to
the low frequency modes in molecular dynamics? Figure 2
shows among other things how the normal mode energy of
the set of low frequency modes changes in time for the initial
state R = ¢. Similar results were found for the other two
metial states which we regard as extremes to be found in a
liquid state simulation. It should be clear from this figure
that the energy transfer for Neon is extremely slow and that
to reach equipartition an impractically long run is required.
Although it is impossible to tell from this curve whether or
not the system is ergodic, we suspect that it is not. This ques-
tion can be answered by determining the maximal Lyapunov
exponent, but since the poor convergence implies that MD
should not be used for the simulation we do not bother to
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make these more exhaustive studies. Figure 2 also shows
how the energy of the low frequency modes change in time if
the mass is changed to that of an electron, a muon, or a
proton, i.e., m =m,, m = 206.8 m,, and m = my . Clearly
energy exchange is rapid for the electron and muon but not
for a proton or neon. Nevertheless it should be noted that
simulation of systems of such small mass requires P to be
large. Because for increased P the force constants are large
MD simulations of electrons and protons at low tempera-
tures should lead to similar problems.

It is important to note that for Ne because energy trans-
fer between the low and high frequency modes is inefficient
any initial internal configuration will not relax quickly. To
do so would require large amplitude changes in the low fre-
quency modes which is precluded by the slow exchange. It
was seen that the center of mass is equilibrated efficiently.
Thus if one picks an initial configuration in which the chain
is extended the chain will remain extended; that is more de-
localized in space than would be consistent with quantum

statistics. This would overpredict the amount of tunneling
into classically forbidden regions. Likewise if the chain is
initially too contracted it will also remain this way, and the
simulation will predict classical behavior.
In closing it is worth noting that Metropolis Monte
Carlo works for all masses and molecular dynamics gives
poor results for large masses. In a forthcoming paper on
quantum effects in water, we show that molecular dynamics
with periodic resampling of the momenta circumvents the
problem outlined here.®
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