On the use of semiclassical dynamics in determining electronic spectra

of Br, in an Ar matrix®
D. Thirumalai,” E.J. Bruskin, and B. J. Berne

Department of Chemistry, Columbia University, New York, New York 10027

{Received 4 March 1985; accepted 25 March 1985}

A semiclassical method to simulate the electronic absorption and emission spectra of Br, in an Ar
matrix is presented. The appropriate time correlation functions are evaluated in the Condon
approximation using Gaussian wave packet dynamics. Several approximate methods are used to
propagate the wave packet and their relative merits in obtaining high resolution spectra are
discussed. The dynamics using a single Gaussian wave packet is inadequate for obtaining spectra
in highly anharmonic systems, frequently encountered in condensed phase problems. Where
possible, the results of the simulation are compared in detail with available experiments. The
simulated electronic absorption spectra confirm the physical picture advanced by Bondebey and
Brus. It is shown that from the spectral analysis of the emission spectra one can infer some
features of the guest-host interaction when the guest is in the electronically excited state.

1. INTRODUCTION

In recent years there have been several experimental
studies of electronic spectra of halogen molecules in rare gas
matrices (Ne, Ar, Kr, Xe) at low temperatures.'~” The study
of small molecule electronic spectra in low temperature
hosts can provide valuable information about the guest-host
interaction, and radiationless transitions. Often this can lead
to understanding of relaxation mechanisms in other systems
as well. For example, it has been suggested that relaxation in
a large molecule is similar to that of small molecules in low
temperature hosts.® It is, therefore, of interest to simulate the
electronic spectra of matrix isolated diatomics. In a system
consisting of one Br, molecule dissolved in a rare gas matrix
(Ar), we assume that all the degrees of freedom except the
vibrational coordinate of Br, may be treated classically. This
is justified because the low frequency Ar-Ar and Ar-Br vi-
brations can be approximated by classical mechanics,
whereas the high frequency Br, vibration must be treated
guantum mechanically. Because the moment of inertia of
Br, is high, the rotational degrees of freedom of Br, are also
treated classically. Herman and Berne®'® studied this sys-
tem at higher temperatures and under conditions where the
host was static. Here we study the dynamic effects of the
matrix on the photochemistry of Br,. For the purpose of
obtaining the appropriate time correlation functions and
consequently the electronic spectra we use the Gaussian
wave packet dynamics developed by Heller''™* (suitably
modified to treat mixed quantum-classical system consid-
ered here). The formalism described here is a semiclassical
treatment of a quantum degree of freedom embedded in a
classical solvent.

The purpose of this article is twofold: (a) Can we explain
some features of the experimental spectra of diatoms in rare
gas matices and obtain information regarding the nature of
the guest--host interaction? (b) We want to assess the applica-
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bility of the Gaussian wave packet method for many-body
problems of the sort considered here. We find that Gaussian
wave packet dynamics gives low to medium resolution spec-
tra. The reason for this is that the width of the wave packet
increases abnormally as it explores the anharmonic wings of
the potential surface, a problem exacerbated by the presence
of the Ar matrix. Therefore, the propagation is only accurate
over a short time interval with a concommitant decrease in
frequency resolution. We believe the single Gaussian wave
packet dynamics is simply not adequate to give high resolu-
tion spectrum. Unfortunately, the solvent-solute interaction
potentials are not known so that comparison between the
present simulation and experiment is to be taken as sugges-
tive. Nevertheless, the algorithm described here is useful in
predicting certain qualitative features and may be more suit-
ed for treating other dynamical phenomena in low tempera-
ture condensed phase systems (Chemical reactions, photodis-
sociation, etc.).

. THEORY

Using linear response theory and electronic absorption
line shape 7 () can be expressed as'*
Toy=={" dre-wrcq, (1)
27J -
where C{t) is the dipolar autocorrelation function which in
the Born—Oppenheimer approximation for the transition
from the electronic states / to fis given by

C(t)=Trlpiye ™™ "pye™ ") /Trle™ ™). @)

In Eq. (2) p; is the density operatore ~ ", M is the electronic
transition moment as a function of nuclear coordinates, H;
and H, are the Hamiltonians for the system corresponding
to the lower and upper potential surfaces, respectively, and
B = 1/kT. The system consists of one quantum degree of
freedom (corresponding to the vibrational coordinate of the
Br, molecule) and f classical degrees of freedom, X = (X,
X,. . .X;). The Hamiltonian of the system on the two surfaces
H, ,, can be written as
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Hg{ﬂ = TQ + V:’(f} (Q) + V(Q)X) + H(P,X] (3)
=hy ,(@.X) + H(PX), (4)

where T, is the kinetic energy operator for the relative mo-
tion of Br,, ¥y, (Q)is the electronic potential surface for the
lower (i) [upper ( f)] electronic surfaces, V' (@, X) is the poten-
tial of interaction between Q and X which for simplicity we
take to be the same for states / and f, and H (P, X} is the
Hamiltonian for the classical coordinates X and momenta P.

We now treat the X coordinates classically and the trace
operation in Eq. (3} is to be interpreted as Tr = Try Try

whereTry = fd X dP.Let¥,,(Q,X)and ¥, (Q, X)represent
the stationary eigenstates of 4, (Q, X) and 4, (Q, X) with ener-
gy eigenvalues with E,, and Ej,, respectively. Here / and /'
label electronic states and n and »' label the vibrational
states. Clearly E;, and E;, depend on the positions of the
classical degrees of freedom, i.e.,

hi(Q, X)¥,, (@, X) = E;, (X) ¥, (@, X), (Sa)
(@, XY (O, X) = Ep (X (Q, X)- (5b)

At low temperatures (8— o) such that only the ground vi-
brational state ¥, of 4, contributes to the trace, it is easy to
show that C{¢) can be approximated by

C,(t)= fdx JdP e PHEN (G (G NZ 5, (6a)

where
= fdx ffd P PHERX
and

¢t =p,e”

and

e y=e ™" Tl (6b)
For simplicity we make the Condon approximation, i.e.,  is
independent of Q, although this is not always justified.'®
Equations (6) can thus be evaluated by propagating |#,) on
the upper and lower surface for a time ¢ and then evaluating
the overlap. The states |@,/ (¢)) obey the time dependent
Schrodinger equation

; ‘9|¢.a () _ ={To + Vinl@)+VIQX()]}dysn(t) (T

where the potential ¥'[Q, X(z}] is a function of the classical
trajectory X(¢ ), and hence is time dependent. The trajectory
X({t) is obtained by solving the classical equations of motion.
It is shown in the Appendix that the time dependent poten-
tial seen by the classical coordinates X(¢) is given by

Wi = u[X() ()] + Wy plt WVIQ, X(#) by ny ). (8)

It is obvious that W /) depends on the electronic state of Br,.
Equation (7) and Hamilton’s equation for X{z ), and C (¢ ) with
the potential given by Eq. (8), constitute a self-consistent set
of equations for the mixed quantum classical system.

For purposes of computation |/ ) is taken to be a
Gaussian wave packet'”:

)| = exp( L14, (@ — Q.F + [P0 0)+0,1))
o)

!'Hit/ﬁi¢ )
i)

and 4,, Q,, P,, D, are time dependent parameters whose
equations of motion are given below.'* Following Heller, we
assume that the effective time dependent potential seen by
the quantum coordinate can be expanded in a Taylor series
about Q,, i.e,,

Vih (Q) Vin(@)+ V@)@ — Q)

Winl@)Q— Qi) + -+ (10)

If the effective potentlal is truncated after the quadratic term
and if O, and P, are assumed to satisfy Newton’s equation of
motion 4, and D, can be shown to obey

: 2 " ifi
4, = "‘_Az"’_y (Qt) Dt““—A +PQ1 z{f}

(11)

Given the initial values of 4,4, D,, Q,, and P, the wave
function at time # can be determined by integrating Eq. (11)
along with the Hamilton equations for P, and Q,:

P, = —3H /3Q,; Q, = JH /3P, (12)
with

H=P}/2m+ V(@) + V[0, X(t)]. (13)
To proceed we approximate the average potential seen by the
classical coordinates X due to the quantum coordinate Q by

the potential obtained by localizing the quantum degree free-
dom at its cldssical value Q,, i.e.,

(KbxmiV(Q’ X)W’i{f))——"iV[Qn X(t)] (14)
This is valid as long as the width of the wave packet remains
much less than the range of the potential. Equations (11) and
(12) determine the time evolution of the wave packet and the
trajectory of the classical degrees of freedom is obtained by
solving the Hamilton’s equations. The potential experienced
by the classical coordinates is given by substituting Eq. (14)
into Eq. (8).

The potential seen by the quantum degree of freedom @
is highly anharmonic and hence the locally quadratic as-
sumption for the effective potential is in general not ade-
quate. This leads to an anomolously large spreading of the
wave packet and consequently only short time spectra can be
constructed from this formalism. To circumvent this prob-
lem the frozen Gaussian wave packet is adopted. A heuristic
justification of the frozen Gaussian approximation (FGA)
has been given by Heller.'®'” Substitution of Eq. (9) into Eq.
(7) gives
Hilgo) = — (4,00~ Q) —24,(@ — 2)C,
+P(Q— Q) —P.Q: + D1t

= {Ty + Vi (@) + V[Q, X(t)1} |¥0- (15)

Multiplication of Eq. (14) by ¢% followed by integration over
Q gives

~A,(1/J;0|(Q—Q,)2¢,o) +PIQ! = <Eilf)(t)>’ (16)

where

(Eyn(0)) = W {Tp + Vi p(@) + V1O X(t)]} e )-(17)
The FGA amounts to setting 4, = O giving
Dt =Pth - (Ei(f)(t))~ (18)
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Thus the wave packet at time £ can be obtained by integrating
Egs. (12) and (18) given the intitial value of the parameters
D,, P,, and @,. Notice that in the FGA the action that ap-
pears in the equation of motion for D, is different from that
in the TGA [cf. Egs. (11) and (18)].

In all the calculations described in this paper the real
part of 4, is chosen to be zero and the imaginary part of the
A, is chosen in accordance with the frequency of the initial
electronic state suitably modified by the surroundings, i.e.,

Im A4, = imw/2, (19)
where

__[[8*Vin@Q) | FV(QX) 12

(u——{[ 30° + 30° ]ng,/m} . (20)

This choice of @ includes the distortion due to the argon
matrix. The parameter Q, is set equal to the equilibrium gas
phase value Q,, of the appropriate electronic state of Br,.
Although the Ar atoms perturb the equilibrium value Q,,
the shift was found to be negligible. This was inferred from
the potential of mean force. Finally, P, is taken to be zero.

To implement this procedure one must solve Hamil-
ton’s equations to follow the time evolution of the classical
degrees of freedom for a given (X, P,). This generates a time
dependent field in which the wave packet ¢, moves. The
state of the quantum system, ¢, in turn determines the po-
tential for the classical coordinates. Solving these equations
self-consistently allows determination of |, (¢)) and C(¢)
and the line shape 7 {w) can be obtained by performing the
requisite Fourier transform.

lil. CALCULATIONS

Semiclassical wave packet dynamics allows determina-
tion of the electronic absorption and emission spectra of Br,
in an argon matrix, a system that has been studied experi-
mentally by Bondebey et al.> The details of the preparation
and the structural characterization of the matrix system will
be described in a future paper.'® In this study we consider
only the A4 state of Br, for absorption and the B state for
emission.” This precludes detailed comparison with experi-
ment because our calculations ignore curve crossing, a po-
tentially very important mechanism for energy relaxation.’
The system consists of 106 Ar atoms and one Br, molecule
enclosed in a cubic box of length 15.96 A. Periodic boundary
conditions are employed. The internal potential for Br, for
both the X, B, and A states were obtained by fitting the RKR
curves to Morse functions with parameters for the X state'®
being D, = 23 100k, @ = 1.94 A, and the equilibrium po-
sition Q, = 2.28 A. The parameters for the B state®® are giv-
enby D, = 5454.75k,a =2.04 A~", Q, = 2.67 A, and the
minimum of the B state ¥(Q,) = 22 800k. The A4 state?! is
characterized by D, = 2948.5k, O, =2.69 A, a =2.517
A~ and ¥(Q,) = 20 006k. The Ar-Ar and Ar-Br interac-
tions are modeled by a (6-12) Lennard-Jones potential with
€ncar = 145k, €prp, =157k, Onrn. =332 A, and
Oarpe = 3.46 A. The rationale for this nonstandard choice
of the Lennard-Jones parameters is given elsewhere.?” The
matrix was simulated using Monte Carlo. The details will be
given in a subsequent paper.'® The system was equlibrated

at 500 K and sequentially quenched to 12 K. The resulting
matrix is believed to be a glassy material.'® The spectra re-
ported in this paper are obtained by maintaining the system
at 12 K. With this initial configuration the system is further
equilibrated using molecular dynamics. The equilibrium
configuration and the conjugate momenta generated by the
molecular dynamics method are used as the initial configu-
ration for the purposes of integrating the classical equations
of motion. It would be desirable to average the spectra over
many different initial configurations [see Eq. (6a)] instead of
the small number used here. The equations of motion were
integrated at the start by a fourth order Runga-Kutta meth-
od (32 time steps) with a step size 47 of 5X 107 ps and then
for the subsequent time evolution a fifth and sixth order Ad-
ams—Moulton algorithm with a step size 47 of 4 X107 ps
was used. This choice of A¢ was dictated by conservation of
energy and the overall normalization of the wave packet.

IV. RESULTS
A. A model potential

In order to assess the accuracy of Gaussian wave pack-
ets we first present the electronic absorption spectra from the
X state of Br, to a model excited state potential. This model is
representative of the dynamics of Br, in the A state. After
excitation to the repulsive state, the Br atoms move rapidly
apart, strike their neighboring argon atoms of the matrix,
lose energy, and approach each other. The excited state po-
tential consists of a repulsive region representing the neigh-
borhood of the inner turning point of Br,, a repulsive region
representing the outer turning points due to the matrix
atoms, and a fairly constant well region connecting the two
repulsive regions. This can be qualitatively represented by
the one dimensional potential

ymoi(Q — QF + ¥,
V@) =1Vo

Q<Ql,
Qi <0<0Q,, (21)
%mwf(Q——Q,)zﬁ-Vo, Q>Qr’

where Q, was set approximately to Q, of the X state and Q,
was adjusted to give roughly the same outer turning point as
we had seen in full dynamical calculations. In particular we
usedQ, ~2.694,Q, ~3.984,0, =w, =2544cm~",and
Vo, = 10 000 K. The initial width parameter in 4, was taken
to be imw; /2 and the initial condition for the trajectory pa-
rameters were taken to be Q, = Q, of the X state and P, = 0.
With this choice of the initial wave function the wave packet
was propagated using both the thawed and frozen Gaussian
approximations. The band contour of the absorption spec-
trum, the spectrum obtained after 1.5 period propagation
using the thawed wave packet and the “analytic” spectrum
are shown in Figs. 1{a)-1(c). The FC spectrum shown in Fig.
1(a) is calculated by Fourier transforming the overlap func-
tion after the initial decay. Figure 1(b) shows the expected
fine structure using the thawed Gaussian, but with an unu-
sual envelope: at about 4492 nm there is a “pinch” which
distorts the envelope shown in Fig. 1(a). After this point the
peak spacing is also interrupted. Another pinch is evident at
about 4193 nm. These features become prominent (the
pinches move, however) as the propagation time is increased.
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FIG. 1. These four pannels show the
absorption spectra for excitation from
the X state of Br, to a model potential
l as a function of frequency. The model

potential is chosen to mimic the dy-
namics of Br, in the Ar matrix. The
l form of the potential and the relevant
parameters are given in the text. The
area under each curve is normalized to
unity. Figures 1(a) and 1(b) show the

band contour of the absorption spectra
and the spectrum obtained after 1.5
periods of propagation, respectively.
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Figure 1(c) shows that the analytic spectrum does not exhibit
these anomalous features. We construct the analytic spec-
trum by obtaining the eigenvalues of the model potential
using the WKB method and the corresponding FC factors
from Fig. 1(a). The eigenvalues are given by
P (2m)''2Q, + [2mQ} + (4n#/w) (n + 1/2)]"/*
" /o) ’
(22)

where Q; = @; — @, and » = 0, = w;. Knowledge of the
eigenvalues allows us to determine the FC factors accurately
from the band contour [Fig. 1(a)]. As a check the resulting
FC factors when summed yield 0.97. Because the “exact”
spectra did not exhibit any of the pinches seen in the spec-
trum obtained using the thawed wave packed dynamics it
seems reasonable to assume that the TGA fails for long time
propagations. There are perhaps two reasons for the appar-
ent failure of TGA dynamics: (a) the V' "(Q,) for the model
potential is not continuous; in particular both at Q, and @, it
changes discontinuously from ma? to 0; (b) the wave packet
spreads without bound, eventually beyond the range of the
potential. In Fig. 2 we show that the plot of the width of the
wave packet, i.e., [Im(4,)]~'/? as a function of number of
propagation steps. It is obvious that the width increases dra-
matically with time (except of course when the wave packet
impinges on the repulsive walls). After about 425 steps the
width becomes larger than the flat region itself. This con-
firms our belief that the failure of the TGA is due to the
anamolous spread of the wave packet with time.

One way to bypass this problem is to adopt the FGA
packet for the wave packet dynamics. The resulting spec-

Al‘l“l‘

The spectra shown in panels (a) and (b}
were obtained by propagating the
wave packet using the thawed Gaus-
sian approximation. The arrows
shown in Fig. 1(b) indicate the inter-
ruption in peak spacing. In Fig. 1(c) the
analytic absorption spectrum for the
model potential is presented. Figure
1(d) shows the spectrum obtained us-
ing a frozen Gaussian packet after 1.5
periods of propagation.

(d)

i

i

19,000 21,000

““Hh..“...

23,000

FREQUENCY (cm™M

trum obtained after 1.5 periods is displayed in Fig. 1{d). This
figure shows that the intensity profile obtained using the
FGA approximation is identical to the analytic spectrum. In
particular the locations of the various peaks coincide with
the expected transition frequencies. Given the arguments for
the failure of the TGA it is not surprising that the spectrum
obtained from the frozen Gaussian does not exhibit the ana-
molous pinches. However the intensities of the spectral lines
shown in Fig. 1(d) are not in exact agreement with the analyt-
ic spectrum. Notice that in the frequency range from about
19 000 to 21 200 cm ' the peak the intensities alternate. We
do not understand the source of this behavior but it is prob-
ably caused by the algorithm used to numerically evaluate
Fourier transformation. Nevertheless, there is a marked im-
provement in the spectra obtained by propagating the wave
packet using the FGA.

B. Absorption spectra of Br, in Ar matrix

The initial width parameter of the wave packet in 4, is
given by Eq. (19) and this automatically determines D,. Fol-
lowing the initial excitation to the A state repulsive wall the
motion of the wave packet in the 4 and X states is generated
for a total of 4500 time steps. The corresponding absorption
spectra are plotted in Fig. 3. This figure shows that for all
practical purposes the absorption spectrum in the matrix is
similar to the gas phase profile. The full width at half-maxi-
mum is larger in the matrix than in the gas phase. This is
rationalized by observing that the matrix appears to stabilize
the potential surface of botli the ground state and the excited
state relative to the gas phase. Due to the attractive forces of
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FIG. 2. Width of the wave packet in A vs the
number of time steps for Br, in the model poten-
tial. The arrow on the width axis indicates the
extent of the flat region.
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the matrix the center of the wave packet has a large velocity,
and the initial overlap dies off faster in the matrix than in the
gas phase leading to a slightly larger width. After the initial
decay the overlap does not recur for a long time so that the

251073

---TGA
— FGA
A e GAS PHASE

20

INTENSITY (ARB. UNITS)

0

15,000 20,000 25,000

FREQJUENCY (cm—1)

30,000

FIG. 3. The electronic absorption spectra from the 4«X state of Br, in an
Ar matrix is plotted as a function of frequency. The area under each curve is
normalized to unity. The dashed line (---) is the result using the frozen Gaus-
sian and the solid line (—) corresponds to the thawed Gaussian. For com-
parison, in dotted line (- - -) the spectra in the gas phase is shown.

6000

absorption profile is determined by the initial decay. Similar-
ity between the gas phase absorption spectrum and the ma-
trix spectrum suggests that there is no “spectroscopic” cage
effect, i.e., the matrix does not induce any additional quan-
tized bound vibrational states in the gas phase continuum.
This has been seen in several experimental studies of diatoms
in matrices. '

The advantage of molecular dynamics simulation is
that one can follow the detailed classical dynamics of Br, in
the matrix. This in turn sheds light on the relaxation mecha-
nism after Br, is excited to the A state. The energy records of
Br, and Ar matrix atoms as a function of time are shown in
Figs. 4(a)-4(d). Figure 4(a) shows the potential energy V of
Br, and in Fig. 4(b) the kinetic energy is plotted. From these
figures we see that after 250 time steps the Br, molecule
seems to have given up its excess energy and executes period-
ic motion in the bound part of the A4 state potential. Thus,
although the Br, molecule is initially excited to 4520 cm ™!
above the A state dissociation energy we find that the matrix
atoms prevent it from permanently dissociating. Our simula-
tion, therefore, confirms the experimental findings that in all
studies involving diatoms in matrices the quantum yield to
permanent dissociation is less than 10,

Before we account for the effect of the matrix on the
dynamics of Br, it is important to distinguish between static
and dynamic perturbations due to the cage atoms. If the
perturbation due to the lattice is static then this will merely
induce frequency shifts but Br, in a static field will not make
aradiationless transition. Dynamic perturbations of Br, can,
however, induce radiationless transitions with the excess en-
ergy taken up by matrix. We refer to this as the dynamic cage
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FIG. 4. Plot of energy of various subsystems in keluim as a function of the
number of time steps. This is obtained by following the classical dynamics of
Br, in an Ar matrix after excitation to the 4 state. Figures 4(a) and 4(b) show
the internal potential energy and the kinetic energy of Br,, respectively.
Also shown in Fig. 4{b) is the kinetic energy of the matrix which remains
nearly constant. Figures 4(c) and 4(d) show the potential energy of the ma-
trix and the energy of interaction between Br, and Ar matrix, respectively.
Each time step is equal to 4X 107 ps.
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effect. The absence of structure in the electronic spectrum
and the formation of the dynamic cage which prevents Br,
from dissociating can be explained in terms of efficient ener-
gy transfer from Br, to the cage atoms. In fact the dynamic
cage effect is best illustrated in terms of the classical dynam-
ics of Br, molecule in the matrix which we show in Figs. 4(a)
and 4(d). After the initial excitation of Br,, 0.58 eV above the
dissociation barrier of the 4 state, it is seen to execute unhin-
dered vibrational motion until it encounters the nearest cage
atom. This is seen in Figs. 4(a) and 4(b) which show that the
internal potential energy starts to decrease [see Fig. 4(a)]
while the kinetic energy of Br, increases [cf. Fig. 4(b)]. At
this point the Br atom suffers a violent collision with its

neighboring Ar atom and transfers most of its kinetic energy -

to the lattice. After the collision (which occurs within the
first 80 time steps), the Br atom continues to move in the
same direction with reduced velocity until it reaches the out-
er turning point, which is approximately at 4.23 A. Even
after the first collision the Br, molecule is slightly above the
dissociation barrier. However after it suffers a second colli-
sion [see Fig. 4(a)] Br, loses its excess energy and it relaxes to
an intramolecular bound part of the excited potential. No-
tice that Fig. 4(b), which shows the plot of the kinetic energy
of the Br,, mirrors exactly the potential energy. After Br,
relaxes to the bound part of the A4 state it simply undergoes
periodic motion in the well. Thus Br, loses its excess kinetic
energy in about 0.03 ps and this is the time scale of the dy-
namic cage effect. Because of this fast energy relaxation the
inner turning point is so far to the right of the center of the
original wave packet, that there is no recurrence. Therefore,

the electronic absorption spectra is determined from the ini-
tial decay of the overlap leading to a spectra resembling to
gas phase profile.

Now we examine the fate of the lattice after the nearest
neighbor cage atom suffers the first collision. The potential
energy of the matrix plotted in Fig. 4(c) shows that in about
80 time steps (or shortly after the first collision) the lattice
has gained about 4000 K (0.34 eV) energy. After this initial
gain in energy the potential energy of the lattice remains
more or less constant. When the classical trajectory of the
system is integrated for about 5600 time steps we see that the
lattice seems to be at a slightly elevated temperature. Motion
of the Ar atoms is extremely slow and hence the relaxation of
the lattice is slow. Finally consider the Br-Ar potential ener-
gy Vgra., shown in Fig. 4(d). The V5, _,, energy is seen to
increase with time even after the Br atom has suffered its first
collision with the cage atom. This is because Br continues to
travel in the same direction after collision and hence inter-
acts very strongly with the colliding Ar atom. However after
the Br, molecule relaxes to the bound part of the A4 state
potential V', ,, is seen to remain fairly constant and equal to
its value at time # = 0. Thus almost all of the energy lost by
Br, has been transferred to the lattice. Another interesting
aspect of this simulation is that although Br, carriers energy
of about 0.58 eV above the dissociation we have indirect
evidence for the absence of transient local melting that is for
the preservation of the cage.

C. Emission spectra

In order to calculate the emission spectra we equili-
briate the system with Br, in the excited state. This equili-
briation is actually achieved during the calculation of the
absorption to the B state. For purposes of the simulation we
study the emission from the B >7(0") state and thus we can
compare our results with the experimental work of Bonde-
bey et al. A Gaussian wave packet, with the parameter Im A4,
given by Eq. (20} is assumed to represent the v = 0 of the B
state. Following the Frank—Condon transition to the ground
state the time development of the wave packet if followed
both in the B state as well as in the X state. The quantity Cy(t)
is calculated using the f— o limit of

Clt)=Tr{e ", ™ Py e ™" /Trie P} (23)

in the Condon approximation; at finite temperature this
would entail propogation in both the Euclidean time as well
as in the Minkowski time. The wave packet is propagated in
both the X and B electronic states for a total of 485 time steps
and the emission spectrum thus obtained is displayed in Fig.
5(a). The striking feature is the progression in the v” quan-
tum number in the high frequency region of the spectrum
and the absence of structure in the low frequency end. As the
wave packet propagates in the X state the parameters change
according to the local region of the X state. In order to re-
solve the spectral lines in the low frequency region we re-
quire the wave packet after one period to overlap with the
initially prepared packet. Furthermore the corresponding
FC factors should be appreciable. Because the packet loses
energy to the lattice the FC factors for transitions to high v”
quantum numbers are negligible. As the packet develops in
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(a)
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FIG. 5. Emission spectra from
X< B state of Br, in Ar matrix
as a function of frequency. The
area under each pannel is nor-
malized to unity. Figures 5(a)
and 5(b) show the spectra ob-
tained after 485 time steps us-
ing the thawed Gaussian and
the frozen Gaussian, respec-
tively. In Fig. 5(c) the spectra
obtained after 1200 time steps
using the frozen Gaussian is
shown. Each time step is equal
to 4 107 ps.
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time it explores the potential region corresponding to the
lower v” quantum numbers only. Consequently, we do not
observe vibrational progression in the low frequency region.
This leads us to conclude that the ansatz of a single coherent
state representing the v’ = 0 state of the B state is perhaps
not adequate.

In Fig. 5(b} we show the emission spectra obtained by
propagating the wave packet for 485 time steps in the FGA.
Like the spectrum obtained using the TGA for propagation
we see a vibrational progression in v” but unlike the spec-
trum shown in Fig. 2(a) we see a few well resolved lines in the
low frequency region as well. This can be understood very
simply by noting that in the FGA approximation the width
of the wave packet which is chosen in accordance with the
frequency of the upper state is kept fixed throughout the
propagation. After the Frank—Condon transition the wave
packet explores the potential corresponding to the X state.
We noted earlier after the first recurrence the wave packet
essentially explores the regions of the potential correspond-
ing to low v” quantum numbers only. However because the
width of the wave packet which is kept fixed throughout the
propagation, is larger than what it would have been had it
followed the local curvature of the X state, the tail of the
wave packet feels the region corresponding to high v” quan-
tum numbers even after the first period. The revisitation to
the anharmonic region of the X state gives rise to stronger
overlap with the initial wave packet compared to the TGA

and this is necessary to resolve the low frequency transitions.
It seems logical that one can propagate the wave packet us-
ing the FGA for longer times than seems possible by the
TGA scheme. Accordingly we obtained the emission spectra
after following the frozen Gaussian wave packet for 1200
steps. The resulting emission spectra which exhibits all the
features shown in Fig. 5(b) is displayed in Fig. 5(c). Figure
5{(c) shows that some of the peaks in the low frequency end
are slightly better resolved. However one starts to notice
unnatural splittings in the low frequency peaks indicative of
the instability of the single Gaussian wave packet dynamics
for long propagation. It should be pointed out that the emis-
sion spectra obtained after 1200 time steps by propagating
the thawed Gaussian yields unphysical lines with each peak
split into smaller peaks. This suggests that longer time infor-
mation may be obtainable by the frozen Gaussian method
than the thawed Gaussian scheme.

For purposes of comparing the effect of the matrix on
the potential surface of the ground state and on the spacing
T, we make a spectral analysis. This is made using the spec-
tra obtained by the TGA. Assuming that the highest peak
correspondsto B (V' = 0)}-X (V" = 11)(which would bein
accord with the experimental assignment of Bondebey et
al.’) the w, and w, X, can be computed from the vibrational
progression, turn out to be 315 and 1.55 cm ™', respectively,
and are in excellent agreement with the gas phase values
@? =321cm™!and (@, X, = 1.61 cm™ . The value of T,
turns out to be 13 770 cm ™! and this is 1645 cm ™' lower
than the experimental value. Bondebey et al.” infer that the
matrix stabilizes the electronic states of Br, by about 476.3
cm ™! and this shift to lower energies is typical of most ma-
trix isolated compounds. The discrepancy of 1169 between
the experimental value and our simulation result may be
indicative of the incorrect parameters characterizing the Br—
Ar potentials. If the interaction of the Ar atom with the Br
when Br, is in the B state is adequately given by the LJ poten-
tial then the simulation can be systematically used to esti-
mate the LJ parameters. This study suggests that Br-Ar in-
teraction depends strongly on the electronic state of Br,. The
desired blue shift of 1169 cm ™! can be obtained by adjusting
both the € and o values. Thus the €, 5,5, has to be less than
€arprix) and the o, 5 x) hastobe madelessthan o, g5, to
achieve the desired blue shift. One can quite easily do a two
parameter search to map out the sensitivity of the matrix
shift to the changes in the Br—Ar interactions. (Based on a
very simple calculation we recommend that €,, 5, = 127.4
K and 0, 5, = 3.54 A be used when Br is in the B state.)

V. CONCLUSIONS

In this article we have reported the results of a simula-
tion of electronic absorption and emission spectra of Br, in
an Ar matrix. The appropriate correlation functions were
evaluated semiclassically using the coherent state represen-
tation. This amounts to propagating the Gaussian wave
packet in time and this was achieved by the methods pioneer-
ed by Heller over the last several years.!"!%!6 Based on this
study we make the following recommendations:

(a)} The single Gaussian wave packet method (SGW),
although intuitively very appealing, is most suited for ob-
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taining short time information in many-body systems with
small anharmonicities. The assumption of a locally quadrat-
ic potential breaks down when the wave packet explores an-
harmonic regions of the potential. This leads to an unphysi-
cal spreading of the Gaussian wave packet.?>28
Unfortunately, in the calculation of electronic spectra in ma-
trices the potential experienced by the quantum system is
highly anharmonic. Therefore it appears that the wave pack-
et method in the thawed Gaussian approximation (and to a
lesser extent the FGA) is not suitable for calculating high
resolution spectra. We have shown that there is marked im-
provement in the quality of spectra when the frozen Gaus-
sian scheme was used. But even the FGA is not trustworthy
when high resolution emission spectra is desired.

{b) One of the ways of improving the quality of the wave
function is to determine the wave packet parameters varia-
tionally. In this method we calculated the parameters 4,, Q,,
P,, and D, using the time dependent variational princi-
ple.?®*° Since we do not make locally quadratic approxima-
tion for the potential it is expected that the variational meth-
od would yield a “better” wave function than the TGA or
the FGA. The only approximation made is the ansatz that a
single Gaussian wave packet adequately describes the state
of the quantum coordinate. We used the variational wave
packet method to calculate the gas phase emission spectrum
from the B<X state. The time dependent equations for the
parameters of the wave packet were integrated using the
fourth order Runga-Kutta algorithm with a time step of
10~ ps. The wave packet did not spread more than 0.3 A
(the range of the potential being 0.49 A) over the entire time
of propagations of about 1.6 ps. This is to be constrasted with
the TGA for the propagation which resulted in wave packet
spreading to 0.5 A in about 0.8 ps. However, the resulting
emission spectra obtained from the variational wave func-
tion after propagating for 0.8 ps was found to possess spur-
ious features. Since the only approximation made in this cal-
culation is in the choice of the state of the quantum
coordinate it is clear that the single Gaussian is an inade-
quate approximation to the true ground state wave func-
tions. However it may be possible to choose a linear combi-
nation of Gaussian wave packets*'*? and determine the
coefficients using the variation principle. Lee and Heller*?
have used this method to calculate the gas phase photodisso-
ciation spectrum of CH,l. In principle, this is an obvious
extension but this definitely makes the wave packet dynam-
ics more cumbersome and one loses the remarkable simpli-
city of the single Gaussian wave packet method. Further-
more this may not be very practical when one is dealing with
finite temperature many body systems.

(c) Despite the shortcomings of the SGW method for
the problem considered in this paper we have shown that it is
possible to glean some of the qualitative aspects of matrix
isolated spectra commonly found in experiments. In particu-
lar the results obtained for absorption confirm the analysis of
Bondebey and Brus.'” The low resolution emission spec-
trum shows the vibrational progression seen in the experi-
ments. Furthermore, assuming that Br and Ar interact via a
6-12 Lennard-Jones potential, the emission spectrum can be
used to obtain the Br—-Ar potential when Br is in the excited

state.

(d) In light of the difficulties with the Gaussian wave
packet dynamics it seems necessary to look for alternate
methods. One possiblity is to use the coherent state path
integral method introduced by Klauder.**-3¢ In this formu-
lation the propagator e ~#¥ (or ") is expressed in the co-
herent state representation and consequently the measure
involves both the coordinates as well as momenta. Each step
of the propagation can be done either semiclassically or by
using Monte Carlo techniques. The use of coherent state
path integrals for problems of chemical interest has also been
hinted at by the Heller®” but so far they have not been tested
on any system. Other methods have been proposed for calcu-
lating medium effects on spectra.>®*!

(¢) Recently we have shown*? that path integral meth-
ods can be used to obtain absorption and emission spectra by
directly obtaining the relevant real time information. This is
not restricted to any form for the potential and more impor-
tantly one does not have to invoke the Condon approxima-
tion either. It is hoped that this theory may provide a viable
alternative to obtaining spectroscopic information in the
condensed state.

APPENDIX

In this Appendix we comment on the use of Eq. (8)
which gives the potential seen by the classical coordinates X
when it is interacting with the quantum coordinate. The jus-
tification for this is contained in the work of Pechukas.** The
Hamiltonian for the mixed-quantum classical system can be
written as

H({P,X, Py,0)=H(P,X)+ H(Pg, Q)
+ V(@ X)=H(P,X)+h(Q X). (Al)
The propagator for transition from (X;, Q,) at time # to (X,

Q) at time 7 + € is given by the Feynman path integral for-
mula as

K (X;, Ot + €X,,0,.t) e
=jD[Q]D [X]exp[%J: Ldt], (A2)

where L is the appropriate Lagrangian for the mixed-quan-
tum classical system. As emphasized by Pechukas in order to
obtain the “classical” path X(¢) while the quantum system
evolves from (Q, ¢ ) to #(Q, + €) one needs only the reduced
propagator K, (X, t + €, X;, t) and this is given by

KX, 146 X,~,t)=JD [X]exp[-;—isl} TIX], (A3
where
f 4 € .
S, = f L (X, X)dt (A4)
and
f

L (XX) =J im, X2 — V(X). (AS)

i=1

The transition probability T'[X] is given by
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TIX] = f dQY*(Q, 11O, + ¢
- fdQ MO, te YO, 1), (A6)

Remember that ¢(Q, ¢ ) satisfies that time dependent Schro-
dinger equation.

To obtain the classical path X(z ) we make the stationary
phase approximation to Eq. (A3) giving rise to the following
condition:

5{s,[X(t)] +#AImIn T[X]}=0. (A7)

This is the “least action principle” for X(z ) when it interacts
with the quantum subsystem. The “solution” to Eq. (A6), if
it exists at all, is expected to be very complicated and the
resulting interaction can be highly nonlocal, etc. To make
progress we assume that € is small and hence we use a pertur-
bation approach to obtain a computationally useful formula
for the effective potential seen by the classical coordinates.
From the first order perturbation theory we get

ST [X] = — i/he(YlQ, 1)|h|¥g, 1)) (A8)

using Eqs. (A8) and (A7) the classical path is seen to satisfy
the equation

d

Mi= -2 x_ 2y .x1) (A9)
adX X

where

Ver (X, 1) = (HQ, 1)1 (Q.X)HQ, 1)) (A10)
In obtaining Eq. (A8) we have assumed that € is very small.
This can always be arranged in any simulation and is in the
spirit of the semiclassical solution to the TDSE advocated
here. As a final note we add that the above approximation
leads to conservation of energy, i.e.,

() H (P, X, P, Q) )=0. (A1)
Thus this allows us to calculate energy exchange between the
quantum subsystem and the classical system and if #(¢ ) can
be obtained accurately one should be able to study the relax-
ation of the quantum system as well as observe any elemen-
tary excitation associated with the medium.
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