Evaluation of microcanonical rate constants for bimolecular reactions
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An expression for the microcanonical rate constant that can be conveniently evaluated by path
integral techniques is proposed. The efficacy of the method is illustrated by obtaining accurate
transmission probabilities as a function of energy for a particle tunneling through an Eckart
barrier. The application of the method to systems involving many degrees of freedom is discussed.

INTRODUCTION

One of the important achievements in bimolecular reac-
tion dynamics has been the investigation of state-to-state re-
action cross sections'™ as a function of energy of the collid-
ing partners. Very recently Marinero, Rettner, and Zare*
and Gerrity and Valentini® were successful in studying the
reaction dynamics of H + D, as a function of collision ener-
gy. Undoubtedly these results will prove to be of great im-
portance in constructing approximate theories of reaction
dynamics. Thus the task of a theoretician is to calculate mi-
crocanonical rate constants as a function of energy for a giv-
en Born—Oppenheimer potential energy surface. This is a
well posed problem in reactive scattering theory and the so-
lution can be reduced to a set of N coupled channel Schro-
dinger equations.® The solution to the N-channel problem
yields the § matrix from which the state-to-state reaction
cross section can be obtained. This procedure was followed
by Schatz and Kuppermann’® for the reaction H + H,;
however, this task is impractical for more complicated reac-
tions. The difficulty in calculating the quantum mechanical
microcanonical rateconstant k (E )asa function of energy has
led to the exploration of classical trajectory methods.'® Al-
though this approach has indeed met with much success, it is
not applicable to the many bimolecular reactions of interest
in which tunneling dominates the reaction rate. Thus in this
paper a formulation of the problem that enables us to direct-
ly evaluate k (E') for a given potential energy surface is sug-
gested. The range of applicability of this formulation will
eventually depend on the development of efficient Monte
Carlo algorithms. Given the current attention to the devel-
opment of simulation techniques,'' it is hoped that the
scheme outlined here will indeed be practical for systems of
chemical interest.

MICROCANONICAL RATE CONSTANTS IN TERMS OF
PATH INTEGRALS

We begin by deriving formal expressions for the micro-
canonical rate constant in terms of path integrals. The start-
ing point of our formulation is explicitty found in the work of

Milter'? and has been reproduced more recently by Miller,
Schwartz, and Tromp."* To keep the notation simple we
consider the case of one degree of freedom, namely the reac-
tion coordinate. The generalization to many dimensions and
the associated difficulties in evaluating the resultant expres-
sion are dealt with at the end of the section. Starting from an
explicit and formally exact expression for the quantum me-
chanical rate constant, Miller et al.'*'* have shown that the
canonical rate constant kK can be written as

l o0
kQ=—) Gl at, (1)
where the flux—fiux correlation function C,(t) is given by
Ct)=tr{Fe "Fe H™} ()

In Eq. (2) H is the Hamiltonian of the system, F is the flux
operator given by

F=}[8(x){P/m) + (P/m)5(x)], (3)

where Pis the momentum conjugate tox, and 7 = 8 /2 — it /
#. In order to obtain the microcanonical cumulative reaction
probability N (E ) it is observed that k is given by'?

I T 4
krmj; ¢~ PEN (EdE. 4)

Substituting the identity
e'”’=Jw e ¥SE — H)ME
in Eq. (2}, itis ; :impie matter to show that
kQ = ﬂﬁj‘m dE e PEtr [FS(E — H)\FS(E — H)}. (5)

Comparison of Eq. (5} and Eq. (4) allows one to identify N (E')
as
N(E) = y2mhif* tr [FS\E — H\FS(E — H)]. (6)

This formally exact expression for the microcanonical rate
constant was first obtained by Miller.'? In the coordinate
representation Eq. (6) becomes'?
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N1E) =T Lyt 1ot — H )

- 4(.8‘37@'15@ - H)]x))z] (7

evaluated at x = x’ = 0. Notice that the second term in Eq.
(7} vanishes for potentials that are symmetric about x = 0.

The task of calculating N (E ) is thus reduced to evaluat-
ing the matrix elements of § {E — H ) in the coordinate repre-
sentation. This is accomplished by using the method sug-
gested by Hirsch and Schrieffer’® in the context of the
evaluation of ground state dynamic correlation functions in
quantum systems and it springs from the fact that 6 (E — H)
can be expressed as

B w2 ,
6(E—H)=_lim<—) e BH—EF (8a)
B~ \ T

so that

(xlolE — H)1x) = Jim (£) " cie 22710 o)
B0\ T

Substitutions of Eq. (8) into Eq. (7) gives the following
expression for N (K ):

a —~BH — EPy 0
X(c?xax’<xie b ))

(o]
ox'

gvaluated at x =x’ =0, and where it is understood that
B— o . The computation of N (E') has been reduced to calcu-
lating the matrix elements of the Gaussian operator in the
coordinate representation. This is accomplished by exploit-
ing the discretized path integral representation of such oper-
ators. To proceed we observe that

e~BH—EV _ [-B/Lu—EVIL (10)

and therefore (x|e ~## =~ E¥|x'} in the coordinate represen-
tation becomes
(xle == EV|x)

L
=J-dx2...dx,_ H{x,]e‘B’L‘”’E’z]x,H) (11)

t=1

with the conditionx, = x and x, , , = x’. Although this for-
mulation for the evaluation of N (E) is formally exact in the
{imit of B— 0 in practice one chooses a sufficiently large (but
finite) value of B so that the Gaussian function adequately
represents the delta function. Thus for a given value of Bif L
is large enough so that 8 /L ==¢ is small then we can use the
Trotter formula to evaluate ¢~ %~ £/*;

—e(V—E)Z] o { p
2 P 4m?

2
e~ H—E)

=exp {

+P—2(V—E)+(V—E)P—2}
2m 2m

—e(V—EJ
2

X exp{ } +0(). (12)

Using Eq. (12) the matrix element (x, |e =¥ = £¥|x, . ) can
be shown to be'*"

- - 2
(x,ie‘B/“H Er |x1+l>
- 2 - B —E}?
e PPLIVEISE o e BAEIV =BT )
where

g(x,,x,+1)=%jo dPcosP(x, —x, )

-—B[ pP* P?
—F Jull ) /4
xexp( 2+2 [ (x.)

-+ V(x,+,]—E]D. (14)

We have not been able to evaluate Eq. (14) in a closed form so
that it has to be calculated numerically. Substituting Egs.
(11), (13), and (14) into Eq. {9) yields a complicated multidi-
mensional integral which, in general, has tobe evaluated by a
Monte Carlo algorithm suitably designed to account for the
negative weights that could arise from the short time approx-
imation to the Gaussian operator.

For systems which involve only a few degrees of free-
dom it proves to be convenient to calculate N (E ) using Eq. (9)
by the numerical matrix multiplication method'® suitably
adopted for Gaussian operators. The NMM method exploits
the group property for the Gaussian operators, i.c.,

2 2 — _E?
e—qH—E)e—qH—E) —e 2e(H E)’

(15a)

so that in the coordinate representation
<x|e"2"”'£)2|x')
=jdx”(x(e‘d”'""'zix”)(x"le““”‘E’zlx’). (15b)

Having obtained (x|e ~29¥~#)|x’) one can substitute it in
Eq. (15b) and obtain (x|e = *<¥~®)|x’). This process can be
repeated and after n iterations this would yield
(x|e 24" —£)x") for all x and x". If 2" is chosen so that
2"e = B(L = 2"), then after n matrix multiplications one ar-
rives at the desired matrix elements of the Gaussian opera-
tor. Given this, N (£) can be evaluated using Eq. (9), where
derivatives are obtained by finite difference. The ultimate
usefulness of our formulation however, will depend upon
efficient Monte Carlo methods to calculate N (E ).

Before closing we make a few remarks about extending
the above formulation to multidimensional systems. Substi-
tuting Eqgs. (11} and (12) into Eq. (9) it can be readily shown
that N (E) can be written as

NE)= fd?_RP (RIF(R),

where R denotes collectively all the coordinates in the iso-
morphic system obtained by making the short time approxi-
mation to the Gaussian operator, P [R} is the probability dis-
tribution for the configuration and F (R) is the residue. This is
precisely the form that is amenable to Monte Carlo evalua-
tion. The strategy is to sample from P (R) and average the
quantity F (R). It should be pointed out that there is consider-
able freedom in the choice of P (R) which can be optimized to
obtain convergence. Because the short time approximation
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to the Gaussian operator can sometimes be negative one
might require many configurations to achieve convergence.

CALCULATIONS AND RESULTS

In order to test the feasibility of our approach we have
calculated the one-dimensional reaction probability for the
symmetric Eckart potential'’

2ax
Vi =, (16)

(1+ e
where we have taken ¥, =0.02 Hartree and a =20
(a.u.)~". Since this is a one-dimensional problem we can pro-
fitably use NMM toevaluate N (E ). In particular, the integral
in Eq. (15b) which gives the matrix {x|e ~2# ~ £)|x') start-

ing from (x|e ~ ¥~ £)|x") is approximated by

(id |e—2d”-f"VA )

~4 2 (id |e= = EV\kA Y (kA |e~H~EFjA ),
o 17)

where x = A4, x" =jA,x" = k4, and 4 is the lattice spacing.
The spacing 4 and the upper (lower) limit M4 ( — M4 ) are
chosen to ensure the convergence of the integral.'® Thus the
calculation of the matrix elements of the Gaussian operator
for a given B is reduced to » matrix multiplications. The
integral in Eq. (14) which is needed to calculate the short
time aproximation to the Gaussian operator was evaluated
by Gauss—Hermite quadrature for sufficiently small values
of (x, — x,, , ) and by repeated Gauss—-Legendre quadrature
for large (x, — x, ., ;)

In order to accelerate the convergence of the matrix
multiplication scheme we note that the matrix G whose ele-
ments (i4 |e =¥ ~F)|j4 ) are given by Eqs. (13) and (14),is a
real symmetric and banded matrix. Consequently, one can
diagonalize G using an orthogonal matrix U, i.e.,

UTGU = A%,

where A? are the eigenvalues of G and I is the unit matrix. It
can be readily seen that U also diagonalizes the matrix G"",
obtained after the first iteration [cf. Eq. (17)], i.e.,

UTGYU = AUTGGU = 4UTGUUTGU = 4 (AZ)zﬂ (19)

The matrix G of the Gaussian operator (obtained after n
iterations) for a given B is easily obtained from

G® = .4 LAY T {20)
Thus the desired matrix after » iterations may be obtained by
diagonalizing the short time approximation to the Gaussian
operator, multiplying a diagonal matrix » times, and finalty
using the inverse transformation in accordance with Eq. (20).
This additional simplification proves to be about twice as
fast as the straightforward iteration scheme using Eq. (17).

We note that the matrix elements of the Gaussian opera-
tor can be rewritten as

(x|e—PH—EP|x')

=e ‘BEzjdx"(xie"E”zix") (x"|ePEH |x'y,

(18)

(21)

and hence (x|e~#"*|x") which is independent of energy
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need be evaluated just once. The operator ¢?£4 is the inverse

of the operator e ~ 22 and has matrix elements in the coor-
dinate representation which can be readily calculated using
NMM. When doing problems involving muitidimensions,
the inverse has to be updated every pass and this is most
easily accomplished by the method introduced by Von Neu-
man and Ulam'® and more recently used by Kuti’’ in lattice
gauge calculations involving fermionic degrees of freedom.

Before presenting the results, we piot the short time ap-
proximation to {x|e~ ¥~ E’|x'y for x' = — 1, E = 0.018
a.u., and € = 100 as a function of x in Fig. 1. The solid line
represents the real values of the function and it is quite evi-
dent that there are small regions where the matrix elements
becomes negative. In order to focus on the magnitude of the
negative weights the ordinate has been scaled for various
regions of the x axis. For example, the short-, intermediate-,
and long-dashed lines are scaled by 10, 100, and 1000, re-
spectively, to accentuate the region 0.25 < |x — x| > 1.0,
Comparison of the two peaksnearx = — 0.3andx = — 1.2
clearly shows the asymmetry of the curve about x = — 1.
The negative weights are most prominent in the region
02<|x—x'|>07.

The results for the transmission probability N (E), as a
function of energy is presented in tabular form. For each
energy, N (E ) was calculated at five large values of 5. The
results were then fitted to a polynomial in 1/8 and N (E ) was
extrapolated as B— oo or 1/8—0. In Table I we compare the
present calculations with the exact results. The exact expres-
sion for N (E ) for the symmetric Eckart potential is given by’

N(E)= cosh{2a) — 1 ’ 22)
cosh(2a) + cosh(b)
where
27 l/2 23
g( ) ’ ( )
2711/2
b=—7’[8mV0 (ﬁ“” .
fi 2
7 I T T T ‘
6 - .
. \ -
g A
[ A Lo |
& i | '
78 [' ; P !\\ |
Il | ;
o2t ; ( ! ! 1
X |
o ! \ /“ f " ‘ “ 4
! Py Lo
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FIG. 1. Short time approximation to the matrix elements of the Gaussian
operator exp[ — €(H — E *}{G (x, x'}] as a function of the coordinate x for
fixed x' = 1.0 bohr and € = 100 a.u. G(x, x} is given in atomic units for
tunneling at a total energy of 0.018 hartree through a symmetric Eckart
barrier with maximum of 0.02 hartree at x = 0 and a range parameter of 2
bohr~ L. The solid line is G (x, x’) and the short-, intermediate-, and long-
dashed lines are G (x, x') scaled by 10, 100, and 1000, respectively.
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TABLE 1. Microcanonical reaction probability as a function of energy for
the Eckart potential. The exact result is also shown for comparison.

Energy (a.u.) N(E)
Present Exact®
0.005 1.93(— 6)° 1.71{ — 6)
0.010 4.60) — 4) 4.51(— 4}
0.015 3.13(-2) 3.15(—2)
0.018 2.33(~1) 232(-1)

“Calculated using Eq. (22).
*Figures in parentheses refer to powers of 10.

1t is seen that the present calculations are in excellent agree-
ment with the exact answers. The maximum deviation of
about 12% occurs at the lowest energy considered where
N(E) is quite small. It is well known that convergence of
small quantum mechanical probabilities is difficult to
achieve. Our result for this energy can definitely be im-
proved by using smaller lattice spacing. Nevertheless, for
energies of practical interest (obtainable in beam experi-
ments), the present calculations are very encouraging.

CONCLUSIONS

We have presented an algorithm that may be useful in
the direct calculation of quantum microcanonical rate con-
stants. The method avoids the calculation of state-to-state
rate constants, which are often extremely difficult to obtain.
The application to a one-dimensional problem demonstrates
the usefulness of our method. However, we emphasize that
the practicability of the formulation for multidimensional
problems will undoubtedly depend on Monte Carlo algo-
rithms to evaluate k (E ). It should be recalled that in multidi-
mensional problems the degrees of freedom besides the reac-
tive coordinate are bound-like and in a sense are easier to
treat than the translational motion. In fact our formulation
can be easily applied to the reaction path Hamiltonian®"?2
model for a polyatomic reaction. This and other generatiza-
tions will be presented elsewhere.”?
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