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We calculate the barrier crossing rate constants for a Brownian particle in a double well potential
experiencing a non-Markovian friction kernel using a full stochastic simulation. We compare the
simulation results with recently proposed interpolation formulas which are based on the Grote—
Hynes theory and the energy diffusion mechanism. We find that such formulas can fail by orders
of magnitude in a physically interesting regime. Slow activation in an effective dynamic double
well potential is probably responsible for the deviations observed.

I. INTRODUCTION
Liquid state reactions are often described by the gener-
alized Langevin equation'~®
t
i= _ 90X _f dt' E(t— 1%t + R, (1)
ax o

where the reaction coordinate of unit mass x(f) moves in a
double well potential U(x), experiences a friction kernel
§(t) and a random force R(¢) which originates from the
thermal motion of the bath coordinates. The random force
R (1) satisfies the second fluctuation—dissipation theorem

(ROOYR()) = (1/B)¢(Jt]), (2)
where 8=1/kgT.
Kramers® treated this problem in the Markovian limit,
i.e., where £(¢) = ¥8(¢) and showed that the rate constant
for barrier crossing first increases with the damping 7,
reaches a maximum (below the transition state value) and
then decreases as 1/y. This behavior can be understood as
. originating from two different mechanisms. First, in the un-
derdamped regime energy activation is rate limiting and is
responsible for the initial rise. In the overdamped regime
spatial diffusion across the barrier region becomes rate limit-
ing and causes the rate constant to decrease. Various connec-
tion formulas have been proposed to predict the rate con-
stant for arbitrary damping.’>*’ Let us mention that the
maximum of the rate constant as a function of the damping
has recently been observed experimentally.®
Because the solvent has a finite correlation time there
has been considerable interest in redoing Kramers’ calcula-
tion with a frequency dependent friction constant. As in the
Kramers’ treatment various approximations must be in-
voked to solve this problem. The underdamped regime can
again be treated using the energy diffusion equation.” The
overdamped regime can be treated by similar methods used
in the Markovian case.’** In the high viscosity regime this
theory predicts rate constants which are often much larger
than one would obtain in applying the Markovian Kramers’
theory. Such non-Markovian theories have been used to ex-
plain the experimentally observed slow decrease of the rate
constant with increasing viscosity.” Connection formulas
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were also proposed to obtain the overall rate constant in the
non-Markovian case.*'°

Given the importance of this problem in chemical phys-
ics we have studied the validity of these ideas by comparing
theoretical predictions with full stochastic simulations. The
rapid absorbing boundary method for evaluating the reac-
tive flux makes such calculations of rate constants possible.!!
The simulation data reveal striking deficiencies in the pre-
dictions based on the above theories which have been partly
reported in a brief letter.'? Here we discuss the more com-
plete data. Our results lead to the conclusion that in the
regime of large viscosity and long correlation times all avail-
able theories severely overestimate the rate constant for a
single degree of freedom in a double well potential for any
physically interesting barrier height. This behavior can be
attributed to slow relaxation in an effective dynamic double
well potential.
. THEORETICAL MODELS

For convenience we briefly summarize the available the-
ories for the calculation of rate constants. As a specific illus-
tration let us consider a particle moving in a piecewise har-
monic symmetric double well potential*'* U(x), with bar-
rier energy Q, well frequency w,, and barrier frequency wy,
and experiencing a simple exponential friction kernel £(¢)
with Laplace transform

By b . .

§(s) = Thrs’ T. =ay, (3)
where y is the static friction (usually assumed to be propor-
tional to the viscosity) and 7, is the correlation time. The
frequency dependent part of the Zwanzig-Bixon hydrody-
namic friction kernel'* which was applied to explain reac-
tion rates in solution® is well approximated by Eq. (3) when
one takes 7, = ay at constant a. This is because the viscoe-
lastic relaxation time is proportional to the viscosity where
the proportionality constant « is essentially the inverse of the
infinite frequency shear modulus G_ . We prefer to consider
y and a as the parametrization of the friction kernel. We also
use the dimensionless quantity a* = aw?.

Since the overall rate constant never exceeds the transi-
tion state value

kst = [(wo/(2m)]e P2, 4)
we report rate constants normalized by this quantity.

© 1986 American Institute of Physics

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Straub, Borkovec, and Berne: Non-Markovian activated rate processes

In the underdamped regime the rate limiting step is en-
ergy activation which is described by the energy diffusion
mechanism, with the rate constant'~

Fw(E) , e PF ]_1
= dE ——— dE _— ; 5
ke U DE) Jo  w(E") ®
where w(E) is the frequency at given energy E and
D) = [ "t 60 OO 0
0

is the energy diffusion coefficient. The microcanonical ve-
locity correlation function (v(0)v(¢) )z is to be evaluated for
the undamped motion at fixed energy E. The factor 1/2 in
Eq. (5) arises because there is equal probability for trapping
in each well once the particle oscillates above the barrier
threshold.*!* For high barriers Eq. (5) can be approximated
accurately [i.e., up to terms of O(e ~#2) compared with uni-

ty] by’
B [ f@ g L0(E) -
20, | Jz, D(E) ’

where E, is chosen to be on the order of a few kT (kgp, is
independent of the precise value of E,). The rate constant
can be obtained by integrating Eq. (7) numerically. The en-
ergy diffusion coefficient is evaluated by expanding
(v(0)v(?) ) in a Fourier series.? The use of the expression

kED =

Jeup ~Re £( — BQ - se (8)

iwg) —==e
which is obtained by evaluatmg Eq. (7) approximately re-
quires some caution. Using our friction kernel Eq. (3) we
have checked Eq. (8) against Eq. (7) and found that Eq. (8)
is a good approximation only if @z » @, since in this limit a
large part of the potential is a parabolic well. In the opposite
limit Eq. (8) is only qualitatively correct and should not be
used. This is completely consistent with the more detailed
discussion in Ref. 2. As a function of the damping y the rate
constant kzp, increases proportionally with y for small y like
the Kramers’ Markovian result. However, as ¥ becomes
larger the correlation time 7, = ay increases so much that
kgp goes through a maximum and for large ¥ decreases like
1/7. Some representative graphs showing this behavior are
given by the broken line in Fig. 1.

Before we consider the intermediate and overdamped
regime for the general non-Markovian case (a>0) let us
focus on the Markovian Kramers case (¢ = 0). Consider
first the high damping limit (¥ large) where spatial diffusion
becomes the rate limiting step so that the rate constant is
given by'®

1
Ksp =L[ dx PV f dx'e -ﬁ"m] G
By

where a is the posmon of the minimum of the symmetric
potential U(x). For deep wells one obtains up to exponen-
tially small terms of O(e —#2) the result

172 -1
ksp = ﬁj—(2;_3) [ dx e‘su(")] .

This is evaluated for the piecewise parabolic potential U(x)
most conveniently by numerical integration. The limiting
behavior for large barrier energies (80> 1) is easily under-
stood. The main contribution to the integral comes from the

(10)

1789

barrier region where the potential is well approximated by
an inverted parabola and the rate constant is as obtained by
Kramers®:

kSD”Vk&ST(kDB/y). (ll)

However, if we consider the limit w,»®, (sharp barrier) at
a constant barrier height SQ the contribution from the bar-
rier becomes negligible and the rate constant approachw the
result for a cusped barrier
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FIG. 1. Rate constants as a function of the static friction for 8@ = 20 and
a* = 4/3 for different frequency ratios (a) wg/w, =20, (b) wz/w, =2,
and (c¢) wyz/wy = 0.2. The simulation data with error bars are represented
by dots: (O) on the full double well potential and (@) on the inverted pa-
rabola only. The theoretical predictions are represented by lines: Energy
diffusion Eq. (7) (- -), Grote—-Hynes theory Eq. (13) (- - -), and the inter-
polation formula Eq. (16) (—).
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ksp ~krst (0o/y) (7BQ) . (12)

Therefore one has to be careful in using Eq. (11) since it can
differ substantially from Eq. (10) even for quite high bar-
riers.

Unfortunately, we known of no analog of Eq. (9) for an
arbitrary time dependent friction kernel. However, Grote
and Hynes' initiated the study of the Kramers problem for
the case of arbitrary friction where the potential is approxi-
mated by an inverted parabola. In this case the rate constant
k for crossing the barrier is given by"**

ko = kst (A /wp) , (13)

where A is the largest positive root of the Grote—Hynes rela-
tion

A2+ A5 (4) = o (14

and g‘(s) is the Laplace transform of the time dependent
friction kernel £(1).

For our friction kernel Eq. (3) the Grote-Hynes rela-
tion is readily solved numerically. The limiting behavior is
again easily understood.'” For small ¥ the rate constant K,
approaches kg7 . For large ¥ and vanishing correlation time
(a = 0) the rate constant reduces to Eq. (11). For large ¥
and finite correlation times (a>0) two cases have to be
distinguished. First, for a* < 1(a* = aw}) the rate con-
stant kg is proportional to 1/y for large y. For a* > 1 how-
ever kg, levels off at a constant value for large y. For
a* = 4/3 for example kgy/krsy—>1/2. Such behavior is
shown by the dashed curve in Fig. 1. This change in qualita-
tive behavior at a* = 1 can be understood by considering a
dynamic confining effective potential with a harmonic fre-
quency 1/a which has to be added to the bare potential bar-
rier.!” For a* < 1 the total effective potential imprisons the
particle at the barrier top and the particle must wait until the
effective potential relaxes. In this case the rate constant is
strongly reduced for large ¥ as in the Markovian Kramers
case. For a* > 1 the total effective potential only renormal-
izes the frequency of the barrier. In this case the particle can
leave the barrier region without any hindrance and the rate
constant does not decrease much below the transition state
value. We return to this point in Sec. IV.

One is of course interested in the rate constant for arbi-
trary damping. Let us focus first on the Markovian case
(a = 0) where the rate constant is well approximated by'"-'®

k '~k + kst +ksp - (15)
If the barrier is high enough this expression is close to the
more sophisticated formulas’*’ which—roughly speak-
ing—replace in Eq. (15) kg, from Eq. (10) by the asympto-
tic result Eq. (11). However Eq. (15) is much simpler to use
and more accurate if the result from Eq. (10) differs signifi-
cantly from Eq. (11). This difference can be substantial even
for fairly high barriers. For the non-Markovian case it has
been proposed that the rate constant & for arbitrary damping
and correlation times should be well approximated by'*>'°

kl~kgp +kou (16)

or similar formulas.* Note that for small @ (meaning small
correlation times 7,) and high enough barriers this expres-

sion yields rate constants very close to Eq. (15). This is be-
cause the two last terms of Eq. (15) represent the simplest
Pade approximant for kgy; . In Fig. 1 we show representative
plots.

Ili. SIMULATION RESULTS

Given the importance of these ideas in the modern the-
ory of liquid state reactions it is appropriate to compare
them with computer simulations and thereby test their valid-
ity. We study the exponential friction model, Eq. (3), for a
particle in a symmetric piecewise harmonic double well po-
tential described in the beginning of Sec. II.

To study this problem numerically we consider the fol-
lowing set of stochastic differential equations®®:

x=v,

v= — (U /dx) + z,

2= — (Vay—[1/(ay))z+ €,
where the Gaussian noise £(¢) has correlation function

(£(0)§()) = [1/(a?B)18(1) .

The elimination of the z variable yields (after an initial tran-
sient decay on the time scale of ay) Eq. (1) with the proper
random force R(¢) and friction kernel Eq. (3). Numerical
integration of Eq. (17) is achieved using an Adams-Moul-
ton predictor—corrector algorithm.'® The random force is
kept constant during each integration step # which imples
that £ has a finite variance.!! The integration step # must be
chosen smalil enough that the quantities of interest do not
change. Too large an & can cause spurious results. The rate
constant is determined using the rapid absorbing boundary
version!’ of the reactive flux method. ' The initial value of x
is at the barrier maximum (the transition state), vis sampled
from v exp( — fv*/2) and z from the equilibrium distribu-
tion? exp( — afz2/2). Itis crucial to realize that for large y
the trajectories have to be followed for very long times until
one reaches the plateau in the reactive flux. Note that only by
using the rapid absorbing boundary method'' were we able
to make an accurate determination of the rate constants in
this regime (i.e., where k /k.gr €1). A typical calculation of
one rate constant involved the average of 1000 trajectories
and required from several minutes up to a few hours on a
FPS-164 Attached Processor. The determination of the er-
ror bars for the reactive flux is described in the Appendix.
All the results of the calculations are displayed in Table I.
The calculation procedure has been checked in several ways:
First we have calculated rate constants in a regime where
energy diffusion or spatial diffusion are so slow that they will
be rate limiting. The corresponding values of the rate con-
stants must agree with the theoretical values obtained from
Eq. (7) or (10), respectively. As can be seen in Table I the
agreement is indeed excellent. A second check involved the
calculation of a full reactive flux in the regime of large damp-
ing and large correlation times. The result displayed in Table
I shows satisfactory agreement with the results obtained
from the absorbing boundary method. A third check in-
volved running trajectories just on the bare inverted parabo-
la. In this case the Grote—Hynes theory should be exact'?

17)

(18)
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TABLE 1. Rate constants from simulations in a double well potential for
different parameter values. The error bars represent 95% confidence inter-
vals.

BQ  wg/w, Y/wp wpa k /krsy k /krsx
20 0.2 0.01 4/3 0.176 4 0.020
20 0.2 0.1 4/3 0.753 4+ 0.034
20 0.2 1 4/3 0.745 4 0.048
20 0.2 10 4/3 0.439 4 0.032
20 0.2 100 4/3 0.103 4 0.015
20 0.2 1000 4/3 0.010 4 0.005
20 2 0.1 4/3 0.953 + 0.028
20 2 1 4/3 0.779 4 0.047
20 2 10 4/3 0.536 4+ 0.049
20 2 100 4/3 0.126 4 0.024
0.088 + 0.018*
20 2 1000 4/3 0.018 4 0.004
100 2 1000 4/3 0.064 + 0.008
1000 2 1000 4/3 0.379 4+ 0.021
20 20 0.0001 4/3 0.127 +0.017 0.119°
20 20 0.001 4/3 0.549 4 0.034
20 20 0.01 4/3 0.992 4+ 0.014
20 20 0.1 4/3 0.996 1+ 0.011
20 20 1 4/3 0.366 1 0.042
20 20 10 4/3 0.056 4 0.006
20 20 100 4/3 0.006 + 0.002
20 2 1 0.001 0.609 4+ 0.035
20 2 10 0.001 0.106 +- 0.015
20 20 10 0.01 0.036 - 0.009  0.037°
20 20 0.1 0.01 0.929 4 0.043
20 0.2 100 0.1 0.014 4+ 0.010
20 0.2 100 0.5 0.053 4 0.020
20 2 300 0.5 0.014 4+ 0.010
20 0.2 100 0.7 0.107 + 0.028
20 0.2 300 1 0.049 4- 0.019
20 2 100 25 0.128 4 0.031
20 2 1000 25 0.025 4 0.010
20 2 300 10 0.024 4+ 0.014
20 0.2 0.1 25 0.132 +0.018  0.145°
20 0.2 1 25 0.022 + 0.007° 0.016°
20 20 10 25 0.141 4 0.033
20 20 100 25 0.016 4+ 0.006

* Full reactive flux calculation.
®Theoretical prediction of the rate constant from Eq. (7) in the energy dif-
fusion region.
" °From Eq. (10) in the spatial diffusion region.

and the simulations should agree with Eq. (13). This is also
the case as can be seen in Figs. 1(a)-1(c).

A first set of simulations was run by varying the ratio of
the well to barrier frequency at constant a* =4/3 and
BQ = 20. The results are summarized in Fig. 1. Atlow ¥ one
can see the rise of the rate constant due to energy diffusion
which is shown as the broken line. As one increases ¥ the rate
constant decreases as 1/ due to the energy diffusion mecha-
nism. At intermediate ¥ one would expect the Grote-Hynes
relation (shown as dashed line) to be rate limiting over a
wide range of . Surprisingly, however, this does not happen
and the rate constant decreases much sooner. Note the ex-
treme deviations in the case of a sharp barrier (@, /w, = 20)
shown in Fig. 1(a). In all cases considered we observed em-
pirically that to high accuracy the decrease of the rate con-
stant is proportional to 1/ as one would expect from energy
diffusion but with a much smaller proportionality coeffi-
cient. We studied this coefficient / defined by

k/kst~(05/V) f (19)

for large ¥ with f independent of . The simulation results
for fas a function of a* are summarized in Fig. 2 for different
g/, For energy diffusion f turns out to be proportional to
1/a? for large ¥ and the factor f can be explicitly evaluated
from Eqs. (7), (6), and (3) and is shown as a broken line in
Fig. 2. Furthermore the Grote-Hynes relation gives f= 1/
(1 — a*) ifa* < 1(a* = aw? ). This is shown by the dashed
line in Fig. 2. The value of fat @ = Q1is given by Eq. (9). Note
that in the case where one can make a saddle point approxi-
mation to Eq. (9) {cf. Eq. (10)] f=1 (for @ =0). The
factor f predicted by the interpolation formula Eq. (16) is
not shown in Fig. 2 since it is very close to the Grote~Hynes
relation for a* <1 and to the energy diffusion result for
a* > 1. One can see that the simulation results approach the
theoretical laws for small and large a*. However there is a
region for a* R 1 which exhibits a behavior not predicted by
any of the theories discussed. These deviations are most pro-
nounced in the case of a sharp barrier. For example for
wg/w, = 20and a* = 4/3 Eq. (16) would predict a limiting
slope which is five orders of magnitude too large.

To gain a better understanding of where the problems
arise consider the potential with fixed fQ =20 and
wp/wy = 2 at arbitrary damping  and correlation time 7.
We plot contours of equal k /kq,¢; in Fig. 3. The heavy lines
are the rate constants obtained by approximate interpolation
of our simulation data and are thus only semiquantitative.
Dashed lines are the predictions of Eq. (16). The straight
line represents the cut through Fig. 3 at a* = 4/3 which is
shown in Fig. 1(b). Note that the energy diffusion mecha-
nism is rate limiting in the left as well as in the upper portion
of Fig. 3. On the other hand, spatial diffusion is rate limiting
in the lower right corner. The shaded region is where Eq.
(16) overestimates severely the rate constant. These prob-

w00 [ N T\ \

11—

/i § \‘T
/ w

03 - \ \-

0.01 01 1 10 100

FIG. 2. The limiting slope for the rate constant which seems to be propor-
tional to 1/y for large ¥ for BQ = 20 and different ratios of w,/w,. The
energy diffusion mechanism Eq. (5) is represented by (——), the results of
spatial diffusion at @ =0 by arrows (—), and the prediction of Grote—
Hynes relation Eq. (13) (—-). The simulation data are presented for
wg/wo =02 (@), wp/w,=2(M), and wy/w, =20 (A). The line con-
necting them is for an eye guide only.
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FIG. 3. Plot of equal rate constants for different damping ¥ and correlation
time 7 for BQ = 20 and wy/w, = 2. The approximate interpolation of the
simulation data (—) and the prediction of the interpolation formula Eq.
(16) (——). The shaded region shows the parameter values where one finds
most serious disagreement. The diagonal line represents the cut shown in
Fig. 1(b) at a* = 4/3.

lems appear to arise if a* > 1 and if at the same time the
energy diffusion mechanism is not rate limiting. If we de-
crease wy/w, at constant SQ (flatter barrier) the energy
diffusion mechanism becomes slower. The shaded region
where Eq. (16) overestimates the rate constant shrinks ra-
pidly since the slow energy diffusion covers up this region
completely. Note that previous numerical results* which
show good agreement with Eq. (16) were performed for
small w,/w, where no problems are expected. However, if
we increase wy/w, at constant SQ (sharp barrier) the
shaded region grows rapidly to an enormous size thus mak-
ing the application of the interpolation formula Eq. (16)
nugatory.

We have made some exploratory calculations of the de-
pendence on BQ of the rate constant in the shaded region of
Fig. 3 for the case wp/w, = 2, a* = 4/3, and y/wp = 1000.
From Table 1 it can be seen that as BQ is increased from 20 to
1000 the rate constant seems to approach the expected value
of 0.5 given by Grote—Hynes theory Eq. (13).

IV. INTERPRETATION

To understand the reason for the serious failure of the
interpolation formula, Eq. (16), let us first consider some
sample trajectories and phase plots shown in Fig. 4. In each
case the trajectory is started at the barrier top and followed
until trapped for a long period in either well as would be done
in a full reactive flux calculation. On the left in Fig. 4 the
position of the particle is shown as a function of time. On the
right the corresponding phase plot shows the same trajec-
tory in position and velocity space. For comparison in Fig.
4(a) a typical trajectory in the underdamped energy diffu-
sion regime is plotted. One can see that the particle oscillates,
almost freely, above the barrier threshold until it is trapped
in the upper well. In Fig. 4(b) a trajectory in the over-
damped spatial diffusion regime is shown. The particle per-
forms a Brownian motion in position space. From the phase

plot one can see the fast relaxation of the velocity in this case.
In the case where Grote-Hynes theory applies [Fig. 4(c)]
the trajectory is immediately trapped as it leaves the barrier
region. However in the case when there are large deviations
from Eq. (16) one can see very clearly [in Fig. 4(d)] that as
soon as the particle reaches the anharmonic region of the
potential it turns around and recrosses. Such rapid recross-
ings are not treated by the interpolation formula Eq. (16)
and lead to a dramatic decrease in the rate constant. From
Figs. 4(c) and 4(d) it appears that the particle moves in an
effective dynamic double well potential whose spatial exten-
sion is much smaller than the full double well. The form of
the effective potential is readily derived explicitly. Since we
are in the regime of large correlation time we can approxi-
mate the kernel §(¢) in Eq. (1) by its initial value §(0) = 1/

e
—

P .
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o] 100 200
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» l l
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'WB X/OwB
1 i
| |
-

F,ﬁ

x/a

200 400 600
th

FIG. 4. Sample trajectories shown as position as a function of time (left)
and as a plot in position and velocity spaces. The barrier lies at x = Oand the
distance from the barrier to the position of the minimum of the well is a
(——) and the joining point of the parabolas is a/5 (- -). (a) Energy diffu-
sion region (a* = 4/3, y/wp =0.01, SO = 20, wy/®, =2). (b) Spatial
diffusion region (a* = 0.01, y/wy = 100, BQ = 20, wy/w, = 2). (c) Re-
gion where Eq. (16) applies (a*=4/3, y/wgz = 1000, 5Q = 1000,
wg/wy=2). (d) Region where Eq. (16) fails (a* = 4/3, y/w5 = 1000,
PO =20, wg/wy=2).
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a and the time integral can be performed with the initial
condition at the barrier x(0) = 0. This gives a dynamic cor-
rection to the force which can be derived from an effective
potential

Ug (x) = U(x) + [1/Q2a)]x%. (20)
If we consider the barrier region (x—0) we obtain'’
Ug (x)~[(1/a*) — 1](0}3/2)x% + -, (21)

where a* = aw?. For a* < 1 the effective potential is confin-
ing and imprisons the particle for the length of a correlation
time. For a* > 1 the barrier remains repelling but has only a
renomalized frequency. However, if we plot this effective
potential (see Fig. 5) for a* <1 the effective potential is
confining but for a* > 1 it is an effective double well poten-
tial which deepens as we increase a and approaches the bare
potential for large a. If we start a particle on the top of the
barrier and it becomes trapped with a high probability on
one side of the effective double well potential [as in Fig.
4(c)] Grote-Hynes theory will apply. If on the other hand
the particle is not trapped easily on one side of the effective
double well potential and recrosses many times before trap-
ping [as in Fig. 4(d)] one has to expect that Eq. (16) in
theory will severely overestimate the rate constant. This idea
can be quantified by assuming that the loss of energy is re-
sponsible for the trapping in the metastable well. The energy
diffusion rate constant Eq. (5) in this effective double well
potential is able to predict the simulation data shown in Fig.
2 for not too small & within an order of magnitude. Obvious-
ly this idea can work only semiquantitatively since the effec-
tive potential is not static but changes in time. Nevertheless
this appears to be a good point of departure for developing a
complete theory of this effect.

K]
o
~
=
o
051
o ;

FIG. 5. Effective dynamic potential Eq. (20) for different a*’s (- -). The
bare potential which coincides with the effective potential for a— o is
drawn for comparison (—).
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V. CONCLUSION

We have performed numerical simulations of a Brow-
nian particle experiencing frequency dependent friction. We
evaluated the barrier crossing rate constant of a double well
potential. We have confirmed that in the Markovian case the
simulation data are accurately described for any damping by
a simple connection formula Eq. (15) for all barrier heights
of physical interest (e.g., QR 5).

For a non-Markovian bath however, connection formu-
las such as Eq. (16) exhibit serious problems for similar
barrier heights. The present theories can overestimate the
simulation data by orders of magnitude in the high damping
(i.e., zero frequency friction) and large correlation time re-
gime. Without being able to determine the f factor defined in
Eq. (19) it seems impossible to construct connection formu-
las which are as powerful as, e.g., Eq. (15) in the Markovian
case. We find that the particle moves in a dynamic effective
double well potential (see Fig. 5). The slow energy activa-
tion in this effective double well potential can become rate
limiting and is probably responsible for the deviations ob-
served.

Very recently Hinggi® suggested a criterion for the va-
lidity of the Grote~Hynes relation which is based on the
analysis of the second eigenvalue contributing to the motion
on the top of the barrier. To apply Grote-Hynes theory safe-
ly the criterion requires that ¥ > @ where ¥ is the renormal-
ized damping and @ is the renormalized barrier frequency.>”
These two quantities are easily evaluated for the present sys-
tem. One finds that the Grote-Hynes relation is safely appli-
cable for small a and large y. For larger values of a the
criterion is most severely violated for small and large y. Our
simulations show that Grote—-Hynes theory indeed works
well for large ¥ and small a and applies for larger values of @
at intermediate . However, Grote—Hynes theory might still
be applicable where the criterion is not satisfied. We observe
such behavior for @ = 4/3 at large fQ for example (where
the criterion is not met for any ) and Grote—-Hynes theory
still applies for some intermediate 3’s.

There is substantial experimental evidence that rate
constants for chemical isomerization reactions™?' and re-
combination reactions® in liquids often decrease more slowly
with the viscosity 7 than %~'. This fact was recently ex-
plained using the Grote-Hynes relation and the Zwanzig—
Bixon hydrodynamic friction.** Also molecular dynamics
data were used to obtain the frequency dependent friction.?
In both cases it is simple to estimate the quantity
a* =w37./y. If a*>1 we are in the region where the
Grote-Hynes theory can severely overestimate true rate
constants. Taking a typical barrier frequency of 10~ s~ it
turns out that a* can very roughly between 1 and 10. This
means that the regime of interest for chemical reactions in
liquids lies just where Eq. (16) severely overestimates the
rate constant. Therefore one should reexamine interpreta-
tions of the slow fall-off behavior® which are based solely on
the Grote—Hynes relation. Even though non-Markovian ef-
fects can influence the rate constant substantially it is not
obvious if one can obtain order of magnitude enhancement
for realistic potentials as predicted by the Grote—-Hynes rela-
tion alone.
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One has to be extremely careful not to draw any prema-
ture conclusions about the realistic case of several degrees of
freedom from this study of a model with a single degree of
freedom. Even though energy activation is much faster in the
case of several degrees of freedom® it is not yet clear if effects
as described here will be more or less important in these
cases.
In the last few years it has become apparent that fre-
quency dependent friction is only one of many possible ex-
planations of the observed slow decrease of the rate constant
as a function of viscosity. Recently it has been demonstrated
on various systems that a simple equilibrium solvent effect
can be the cause of such behavior.?* It has also been shown
that translational diffusion coefficients are often in substan-
tial disagreement with the Stokes—Einstein relation exhibit-
ing a fractional dependence on the viscosity 7 (De<n ™"
where 0 < a < 1).%° Finally, one might expect that a aniso-
tropic friction in a system of several degrees of freedom can
cause slow fall-off of the rate constant as a function of the
damping.”¢

In conclusion we have used computer simulation to
evaluate barrier crossing rate constants of a Brownian parti-
cle in a double well potential experiencing an exponential
friction kernel. We find that for the large damping and long
correlation times characteristic of many solvent systems the
present theories grossly overestimate the rate constants for
physically interesting barrier heights. For this reason we
question the recent interpretations of chemical rate data
which are based solely on the Grote~Hynes relation.

APPENDIX

Here we address briefly the problem of determining er-
rors bars on calculated reactive fluxes. This method can be
simply applied to obtain error bars from a single reactive
flux. Recall that the reactive flux is obtained by averaging
6, [x(t)] where 8, (x) is the characteristic function which
is 1 for reactants and O for products and x is the reaction
coordinate. Suppose the reactive flux at time ¢ is 8. An esti-
mate of this quantity is obtained by computing the arithme-
tic mean 6 of N random variables which are either 1 with
probability 6 or 0 with probability 1-6. The distribution
function of 8 is binomial with a mean of @ and a variance
@(1 — 6)/N as shown in any statistics textbook.?” The exact
confidence intervals of & can be obtained from tables or
scientific subroutine packages.Z® If NV is large enough the bi-
nomial distribution approaches a normal distribution with
the appropriate mean and variance for which the confidence
intervals are easily obtained.
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