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We evaluate the dissociation rate constant of a molecule in the low pressure and the weak collision
limit. We take the full coupling between energy and angular momentum into account by
asymptotic techniques. We applied this result to a diatomic molecule using the Kramers frictional
Fokker-Planck model. The predicted temperature dependence of the recombination rate
constant is in agreement with experimental data on iodine recombination at high temperatures.

1. INTRODUCTION

Early versions of unimolecular rate theory in the low
pressure regime where the energy activation step is rate
limiting were formulated using the ““strong collision approx-
imation,”"? an approximation which rests on the assump-
tion that the average energy transferred per collision (AE ) is
large compared to the thermal energy. Even though this as-
sumption is always justified at low enough temperatures it
will eventually break down as the temperature is increased.
This often happens even at room temperature. In this case
the opposite “weak collision limit” is of interest. Here each
collision can change the energy only by a small amount. In
this case one often approximates the action of the collisions
by a one-dimensional diffusion in energy space’? although
the validity of such an approximation is not trivial.> The
reason why one only focuses on the energy is that in the
absence of collisions the energy is a conserved variable.
Therefore, when the collisions are infrequent the energy wili
relax much slower than any other internal dynamical vari-
able-like positions or momenta. However, this simple pic-
ture can be only qualitatively correct since in a real molecule
the angular momentum is also a conserved variable. The
angular momentum will therefore also relax slowly and one
has to consider the coupled diffusion of energy and angular
momentum to obtain a more realistic description of the dis-
sociation process in the weak collision limit. Even though
the importance of this effect has been emphasized repeated-
1y** it is difficult to evaluate rate constants for such models
explicitly.’ To our knowledge only one very special model of
this kind has been solved.®

Recently asymptotic methods have been developed to
evaluate mean first passage times for diffusion processes in
several dimensions.” In this communication we show how to
use these methods to account for the full coupling between
energy and angular momentum in the dissociation of a mole-
cule in the weak collision limit. As an illustration we focus on
the dissociation of a diatomic molecule and represent the
action of the collisions by a simple Fokker-Planck model
which is characterized by a single friction parameter £.
However, the method is much more general since it allows
evaluation of rate constants in different situations: Dissocia-
tion of polyatomic molecules, effects of non-Markovian (fre-
quency dependent)'° friction, and situations where quanti-
ties like average energy or angular momentum transferred
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per collision, (AE ) or (AJ ), are known from trajectory cal-
culations'! can all be treated in a very similar way.

Il. ENERGY AND ANGULAR MOMENTUM DIFFUSION

A diatomic molecule in the center of mass frame is de-
scribed by the Hamiltonian'?
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+ Ve (r,J), (D

where p, is the radial component of the momentum p, is the
bond length, u is the reduced mass, and

v J?
=V(r
)+ Y

Ve (r, J) (2)

is the effective rotational potential which depends on the
magnitude J of the angular momentum J. The interaction
potential ¥(r) approaches the constant value of dissociation
energy D, as r— . The effective potential ¥V_z(r, J) has a
metastable minimum at an energy E,(J) and goes through a
maximum located at r =r,, (J) at an energy Q(J) {i.e,
Q) =V [rn(J)J ]}. As we increase the angular mo-
mentum J the metastable well of ¥4 (r, J) disappears at a
critical value J,. If the diatom feels weak friction all the
“‘conserved variables ”’ will decay slowly. Because J is always
perpendicular to the bond vector r we choose the following
set of slowly relaxing variables: The total energy E and the
two rotational energies R, = J5/2ur?and R, =J3}/2ur?,
where J, and J, are components of the angular momentum
along the unit vectors § and ¢ in spherical polar coordinates.

By r, we denote the equilibrium bond length of the diatomic
molecule.

We assume that the distribution function
P(E, Ry, R,, t) evolves according to a diffusion equation
which can be completely specified (using detailed balance)
by the equilibrium distribution function and a symmetric
diffusion matrix. The equilibrium distribution is

2 2
L) o)
2ur? 2ur?

where the canonical average (...) must be restricted to the
region of the phase where the diatomic cannot dissociate®
[i.e., J<J. and r <7,, (J)]. If we denote w, the angular fre-
quency near the minimum at r = r, of the potential ¥ (r),
Eq. (3) becomes

P, (E, Ry Ry)
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is the density of states of the effective potential and the mag-
nitude of J is obtained from R, + R, = J*/2ur,. The diffu-
sion coefficients can be evaluated from the second moments
of the transition probability density. For the Kramers model
we can obtain the diffusion coefficients explicitly. We follow
the procedure which was used to obtain the energy diffusion
coefficient in the case of several degrees of freedom® yielding
the generalization

Dgp =

ﬁsz <p2)E,Ro-R¢ s (6)
where
<p2>E,R9,R¢ =2ur (Ry +R)(r g,

E
£ dE’ . 7
+ Q,(E) J;'O(J) & (8D "
The average (...) g g, &, is analogous to the ordinary micro-
canonical average with the difference that besides £ also R,
and R, are held fixed. The notation (...) ; ; indicates that
(e g, r, depends on E and J only. Similarly one finds
ox, =2 R, for i=6. (8)
Bu
The remaining diffusion coefficients must also be evaluated
but we will not need the explicit results.

At this point we have completely characterized the dif-
fusion in this three-dimensional E, R, and R, space by find-
ing the diffusion coefficients and the equilibrium distribu-
tion function. The dissociation rate constant can be
evaluated from the inverse of the mean first passage time
from E =0 to the dissociation threshold defined by
E = Q(J) (absorbing boundary). Note that the motion is
constrained since the energies E, R,, and R, must be posi-
tive and the total energy E at a given J must always exceed
the potential minimum at given angular momentum E,(J)
(reflecting boundaries).

An explicit solution of this problem can be achieved for
large dissociation energies ( SD,» 1) using asymptotic tech-
niques. For details of the procedure the reader is referred to
the Appendix. The final expression for the dissociation rate
constant becomes

B3a) A
k~ 0 dJ Je = PEQ,(E)
ur. Jo

X(DEE —D,, iQ(_Jl)

dJ ®)

s
E=Q)

where Dy, = §J /f3u. Theresult for k consists of two separate
terms: The first and more important one is essentially the
second term of Eq. (7) and corresponds physically to one-
dimensional energy diffusion at fixed angular momentum
averaged over the equilibrium distribution of angular mo-
menta at the dissociation threshold. The second less impor-

tant term which could be neglected in an approximate treat-
ment originates from vibration-rotation coupling. Note that
the rate constant is proportional to the friction §. It might be
helpful to point out that even though for continuous poten-
tials (), (E) diverge at the dissociation threshold the inte-
grand entering Eq. (9) is well behaved.

We have evaluated numerically Eq. (9) for the Morse
potential

V(r)=D,[1—e" %], (10)

where b = ( uw?/2D,)"/2. The dissociation rate constant
can be approximated quite accurately (to a few percent) by
the simple formula

kzﬁ-A(BDe)"e—ﬂD‘ (11)
7

for a fixed value of r,b. We have summarized several values
of the prefactor 4 and the exponent « as a function of 7,6 in
Table I. One can see that for large 7,5 the dissociation rate
constant approaches the result of one-dimensional energy
diffusion without the coupling to the angular momentum*?

ke~ 2BD,e " (12)
7
In this case of large br, the angular momentum contribution
to the effective potential [Eq. (2) ] will be negligible. There-
fore, the dissociation threshold Q(J) does not depend on J
anymore and the diffusion process becomes one-dimension-
al.

IlIl. CONCLUSION AND COMPARISON WITH
EXPERIMENTS

We have evaluated the dissociation rate constant at low
pressures in the weak collision regime taking the full cou-
pling between energy and angular momentum into account.
We applied this result to the dissociation of a diatomic mole-
cule representing the action of the collisions by the frictional
Fokker-Planck model. The asymptotic result for the disso-
ciation rate constant [Eq. (9)] can be accurately approxi-
mated by Eq. (11) for the case where the atoms interact
through a Morse potential. For a large, stiff diatomic the
contribution of the rotational degrees of freedom is negligi-
ble and the rate constant is given by one-dimensional energy
diffusion. However, as the molecule becomes smaller or less

TABLE I. Exponent o and prefactor 4 of the dissociation rate constant
[Eq. (11)] of a diatomic molecule interacting by a Morse potential. The last
line for r,b— o are the corresponding quantities of Eq. (12).

r.b A a
1 29.95 1.346
2 16.03 1.232
3 10.09 1.200
4 7.46 1.182
5 6.09 1.166
6 5.27 1.153
10 3.85 1.116
40 2,54 1.035
) 2.00 1.000
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stiff the rate constant increases in magnitude and decreases
more strongly with temperature. It is interesting to note that
the influence of rotational degrees of freedom is much
smaller in the weak collision limit than in strong collision
models.>*

One would like to compare the prediction of this model
with experimental data. Let us consider iodine recombin-
ation as an example. Since for iodine'* »,b ~5.0 and the
equilibrium constant is proportional to 7 ~!/2 one finds from
Table I that the present model predicts that the ratio of the
recombination rate constant k. and the friction ¢ is propor-
tional to 77-%¢7. It is known that at low temperatures the
recombination of iodine atoms proceeds by the bound com-
plex mechanism and not by the energy transfer mechanism
considered here.'*!> However, at higher temperatures
( ~700K) the recombination proceeds mainly by the energy
transfer mechanism. Even though the recombination rate
constants are not too accurately known at such high tem-
peratures plotting the available data!® as k.. /¢ vs the tem-
perature one finds for a wide variety of bath gases that k.. /£

« T ~“ where a = 0.6 4 0.2. The friction constant £ can be
estimated from £~ /2 where the friction on a single iodine
atom ¢ is calculated from the Enskog expression for a Len-
nard-Jones interaction potential (using tabulated potential
parameters).!”” The experimentally observed temperature
dependence is in agreement with the model presented here.
However, if one compares the absolute value of the low pres-
sure rate constant with experimental data the theory severe-
ly overestimates the rate constant. However, this is not sur-
prising since one must include electronic degeneracy
factors''*'* and furthermore, the Kramers model uses a del-
ta-correlated friction which is an appropriate model of hard
sphere interactions only. Because soft collisions are not in-
stantaneous the friction has a correlation time of the order of
a duration of one collision. A finite correlation time of the
friction is known to significantly reduce the rate constant for
one degree of freedom in the low pressure regime'* and one
has to expect that this effect is important in the case of disso-
ciation of diatomics too.

We now comment on how well these experimental data
compare with simpler theories. If one neglects the coupling
to the angular momentum and considers a one-dimensional
energy diffusion equation (or 7,b—w ) we find from Eq.
(12) that k.. /¢ « T ~'/2, Obviously both models are able to
explain the experimentally observed temperature depen-
dence. A strong collision model on the other hand predicts
that k.. is approximately independent of temperature
which is in substantial disagreement with experimental
data.'®

In our treatment we neglected the role of the conserved
center of mass momentum. However, the above arguments
apply if one includes the relaxation of the kinetic energy of
the center of mass. It turns out that this mode completely
decouples from the total energy and rotational energies and
does not affect our results.

At this point one can approximately evaluate the rate
constant for the Fokker—Planck model for arbitrary friction
¢ since the rate constant is known in three different limits:
First, the rate constant in the low friction limit was evaluated

in this communication. Second, the transition state rate con-
stant is given by canonical transition state theory. Third, the
high friction (diffusive) limit is equivalent to Smoluchowski
theory of diffusion controlled reactions with a diffusion coef-
ficient D = 1/B¢. With the exception of the low friction limit
these results were considered in detail in connection with a
different collisional model.'* Given these three limiting ex-
pressions the rate constant for arbitrary friction can be eval-
uated from a simple Padé-like approximant.'® The dissoci-
ation or recombination rate constant of a diatomic molecule
exhibits the characteristic maximum as pointed out by
Kramers® for a single degree of freedom model.

Recently the same problem was considered by reducing
the Langevin equations for each atom to a one-dimensional
equation for the bond length » which is solved in a standard
fashion.'® However, the elimination of rotational degrees of
freedom involves the assumption that the orientational aver-
age of the square of the angular velocity for a given r immedi-
ately relaxes to its equilibrium value 2/8ur*. While this as-
sumption is correct in the high friction limit (where 7 is a
slow variable) it breaks down in the low friction limit where
r is a fast variable. Therefore we believe that such an ap-
proach is not entirely correct at low frictions.

In conclusion let us summarize our results. We have
evaluated the dissociation rate constant in the low pressure
regime and in the weak collision limit taking the full cou-
pling of the relaxation of the energy and angular momentum
into account. The asymptotic result valid for large dissocia-
tion energies is evaluated for the Kramers frictional Fokker—
Planck model. The temperature dependence of the recom-
bination rate constant predicted by the Kramers model is in
agreement with experiments on iodine recombination at
high temperatures.

APPENDIX

There has been considerable activity in applying asymp-
totic techniques for evaluation of escape rate constants.
Since most of the arguments have become quite standard”*®
we give only a brief summary of the ideas involved.

Before specializing to the problem of the dissociating
diatomic considered in the text let us outline the general
solution the diffusion equation'®

9 p(x, 1) =LP(x, 1), (Al)
dat
where
L= —ezgi—i [a:(x)...]
L
Ll b, (X)... A2
+ 55 g L6001 (A2)

and detailed balance gives for even quantities x; even under
time reversal'®

_€ 9
2P, (x) 5,"’ ox;
and a symmetric matrix b;. Suppose that the equilibrium
distribution is of the form

P, (x) = K(x)e ™ ¥,

a;(x) = [6;(x)Pq(x)] (A3)

(A4)
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where ¥(0) = 0.

The mean first passage time T'(x) from a point x out of a
domain Q with a surface dQ which has an absorbing part
a0,,, and a reflecting part J€,; can be calculated by solv-

il’lgw

L*T(x)= -1, (AS)
where
3 & 2
L+ = ) —+—Y'5, A6
€Xax ot T 2 by a0

is the adjoint operator of L and Eq. (AS5) has to be solved
with the boundary conditions

T(x)=0, x€d0,, »

(A7)

=0,

_6_T X< ¢

b, (x)n,

; i (X) o
where 1, are the components of the outer normal unit vector
7t of 3€). Such problems can be solved asymptotically in the
€—0 limit using boundary layer techniques.”'® One sets
T(x) = Cv(x) where the maximum of v(x) is unity for xe(}.
As we show later [cf. Eq. (12)] for e-0 the constant C
becomes exponentially large so that Eq. (AS5) becomes

L *v(x)~0. (A8)

Deep inside Q the function v(x) = 1 and drops rapidly to
zero in boundary layer near 31, . To evaluate v(x) with the
boundary layer we transform to local orthogonal coordi-
nates with the origin at 30} where one of these coordinates is

(A9)

where x, is a vector pointing to the surface d€). The bound-
ary layer solution is obtained by introducing the stretched
variable # = z/€ and expanding the coefficients of Eq. (A8)
around x,. To lowest order in € the resulting equation for v
involves only the variable z. The solution of this equation
becomes

z=h(x—Xx,),

v(z)=1—e" 1, (A10)
where
y=—2 2na;(x,) (A11)

=, by (x)n;

This holds if 3,n,a, <0 which is the case of interest here.
Given the function v(x) the constant C is determined by
multiplying Eq. (AS) by P, (x) and integrating over ).
Using Gauss’ divergence theorem and Eq. (A7) we obtain
Sa dx" P (x)
3€* Sa0,,, @S P (X) 2, n,by (x) (00/3%;) |, =y,
(A12)

The rate constant is evaluated from the inverse of C which
becomes using Eq. (A9),

C= —

1
k~—~ —-ef aS P, (x, na;(x;). Al3
C o eq (X ) 2 (x,) (A13)
Taking Eq. (A3) into account one finally obtains

. (Al14)

00 e

€ a
kel [ a5 P () Dby, oL

ilx=x
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Returning to our problem of a dissociating diatomic we
identify e=1/8D, and the variables by x, =E/D,,
x,=Ry/D,, and x; = R,/D,. The b,’s are proportional to
the diffusion  coefficients; ie., b, = 28%Dg,
by, = 28°Dyy,, etc. The final result [Eq. (9)] is obtained by
rewriting the surface integral as an integral over R, and R,
which can be transformed to polar coordinates to give a sin-
gle integration over J.

One should point out that the present derivation of Eq.
(A14) assumes a finite X(x) in Eq. (A4) at the boundary
a0,,. even though the case considered in text has a weak
logarithmic divergence. However using very similar argu-
ments it is possible to rederive Eq. (A14) for this more gen-
eral case.

For applications of the expressions derived here in the
case where average energy and angular momentum trans-
ferred per collision, (AE ) or {AJ ), are known from a trajec-
tory calculation, Eq. (A13) is more useful in evaluating the
rate constant since these quantities are essentially the a’s
which enter Eq. (A13). Note that the major advantage of
Eq. (A13) is that quantities like (AE ) or (AJ ) enter onlyin
the linear combination 2; n;a; and furthermore even though
this quantity depends on the energy E and angular momen-
tum J of the molecule prior to the collision one only needs
this quantity evaluated along the absorbing boundary [in
this case for £ = Q(J)]. This fact should reduce the compu-
tational effort enormously. In a trajectory calculation one
would therefore have to start the calculation with an excited
molecule at the dissociation threshold and after a thermal
collision sample directly the quantity =, n,a; for different
angular momenta.
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