The influence of intramolecular vibrational relaxation on the pressure
dependence of unimolecular rate constants

Michal Borkovec, John E. Straub, and Bruce J. Berne
Department of Chemistry, Columbia University, New York, New York 10027

(Received 24 February 1986; accepted 26 March 1986)

We study the rate constant in a bistable two degree of freedom system subject to impulsive BGK
collisions. We find that the rate constant is very sensitive to the coupling of the degrees of freedom
in the low collision regime. RRKM theory often overestimates the low collision rise—especially
at higher collision rates, where the rate constant rises much more slowly making the molecule

appear to have fewer degrees of freedom. We argue that such effects should be seen in experiments

extending over a very wide range of pressures.

The dependence of a unimolecular rate constant of a
polyatomic molecule on pressure (or equivalently collision
frequency) has been studied extensively using RRKM the-
ory."? At low collision rates the rate constant rises propor-
tionally to the collision rate due to energy activation. Let us
focus on impulsive strong collision models so that the rate
constant is well approximated by’
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where SQ is the barrier height in units of thermal energy, a is
the collision rate, and #n is the total number of degrees of
freedom of the molecule. At high collision rates the rate con-
stant decreases inversely proportional to the collision rate

as'
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due to spatial diffusion where wj is the frequency of the
unstable mode of the saddle point. The rate constant is al-
ways smaller than the value given by transition state the-
oryl,Z
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where ©{® and w® are the stable normal mode frequencies
of the saddle and the wells, respectively. A simple approxi-
mation for the rate constant valid for any collision rate is*

k~lek o) 4+ kgst + kg (4)
Therefore, as a function of collision frequency the rate con-
stant for a polyatomic molecule increases at first then goes
through a broad maximum near the transition state value
and decreases again. The initial rise is slow for a molecule
with few degrees of freedom and very rapid for a polyatomic
with many degrees of freedom.

This approach, however, makes the important assump-
tion inherent in RRKM theory that the energy flow between
vibrational modes of the molecule is very rapid (fast IVR).
A simple example where this assumption breaks down is a
polyatomic molecule where the reaction coordinate is com-
pletely decoupled from all the other degrees of freedom (infi-
nitely slow IVR). In this example the rate constant will be
described by a one degree of freedom model and will exhibit
a slow rise at low collision rates {# = 1 in Eq. (1)]. There-
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fore, the RRKM theory is not valid in this case. Obviously
there will be some kind of transition between these two ex-
tremes of strong coupling (fast IVR) and weak coupling
(slow IVR). There has been some speculation on the nature
of this transition.®* However, there have been no studies of
such non-RRKM effects on rate constants using specific
model systems, mainly because of numerical difficulties cal-
culating rate constants. Recently, however, a rapid method
for calculating rate constants based on reactive flux ideas has
been suggested by Straub and Berne.%” In this paper we use
this rapid method to calculate rate constants in a non-
RRKM molecule subject to impulsive collisions. We use the
two degree of freedom “polyatomic” studied by De Leon
and Berne with the Hamiltonian®

H=4(x2 +y2) + 4y2(y2 _ l)e—z/lx
+10(1 —e=*)2+ 1. (5)

The potential energy consists of a quartic bistable potential
(¥ coordinate) of unit barrier height and a Morse oscillator
(x coordinate) which are completely decoupled for z = 0.
For nonzero z the modes become nonlinearly coupled and
the system shows a quite complex pattern of regular and
chaotic motion for different choices of the parameters A and
z. The equations of motion are solved using a Runge-Kutta
method.® The system is subjected to random collisions with a
mean collision frequency a. After each collision both veloc-
ities are resampled from a Maxwell-Bolzmann distribution
with a temperature 8 ! = 0.1. This BGK model’® mimics a
bath gas composed of heavy hard spheres. The rate constants
obtained by the rapid method®’ are shown in Fig. 1. The
solid line is the prediction of the rate theory using the
RRKM assumption (rapid IVR) for two degrees of freedom
[Egs. (1)~(4) with » = 2].!! The dashed line is the same
theory but applied to the quartic y degree of freedom [Egs.
(1)-(4) withn = 1]. Note that at low collision rates the rate
constant for one degree of freedom (dashed line) lies below
the rate constant for two degrees of freedom (full line). In
Fig. 1 (a) we show the simulation data for a strongly irregu-
lar surface (4 = 1.95 and z = 2.3). The corresponding iso-
lated system is accurately described by a RRKM rate con-
stant.® The thermal rate constant shown in Fig. 1(a) is in
good agreement with the two degree of freedom theory. In
Fig. 1(b) we show the results for the uncoupled system
(z = 0). Here the rate constant is correctly given by the one
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FIG. 1. A log-log plot of the rate constant as a function of collision frequen-
cy for a BGK model applied to a bistable two degree of freedom potential.
The dots are simulation results with 95% confidence intervals (Ref. 24).
The solid line is RRKM theory for two degrees of freedom assuming rapid
energy partitioning [ Eqs. (1)-(4) with n = 2]. The dash—dotted line is the
same theory but applied only to a single degree of freedom [Eqgs. (1)-(4)
with n = 1]. (a) Strong coupling between the modes with rapid energy par-
titioning (4 = 1.95 and z = 2.3). (b) No coupling between the modes with
infinitely slow energy partitioning (4 = 1.0and z = 0.0). (c) Typical inter-
mediate coupling between the modes (1 = 2.8 and z = 1.0).

degree of freedom theory except near the maximum where
the approximation formula [Eq. (4)] is inaccurate.
Actually we were surprised to find that for our Hamilto-
nian Eq. (5) the two degree of freedom RRKM theory does
not work for most other parameter choices. A typical inter-
mediate case (4 = 2.8and z = 1) is shown in Fig. 1(c). The
data lie in between the predictions of the one and two degrees
of freedom theories. Figure 1(c) suggests that the rate con-

stant is approximately described by the two degrees of free-
dom theory at very low collision rates, whereas at higher
collision rates it is described preferably by a model with one
degree of freedom. Such behavior can be explained qualita-
tively in terms of slow energy migration between the reactive
and nonreactive mode as follows.’ If the collision rate is slow
compared with the IVR rate all activated trajectories can
cross to the product side. Thus all phase space is available
and the rate constant rises rapidly according to RRKM the-
ory. If on the other hand the collision rate is fast compared
with the IVR rate, any activated trajectory having most of its
energy in the nonreactive mode gets deactivated before it can
transfer its energy to the reactive mode and has therefore no
possibility to react. This reduces the available phase space
and leads to a slower rise of the rate constant as a function of
the collision rate.

The physically intuitive concept of “energy in a vibra-
tional mode” can be made more precise using the notion of
“vague tori.”’®'? On a short time scale a trajectory will move
on such a vague torus and resemble quasiperiodic motion.'?
On a longer time scale (reciprocal IVR rate) the vague tori
get destroyed and trajectories cover the energy shell in-an
irregular fashion. It has also been suggested that “cantori”
(unstable tori) can represent surfaces in phase space which
are difficult to cross resulting in trapping in a region of phase
space. '

From these considerations one might think a quantita-
tive theory of such non-RRKM effects must be intrinsically
complicated. Fortunately, as we show below, a simple prop-
erty of the isolated non-RRKM molecule determines the
rate constant in the “strong collision approximation”??
where each collision resamples the total energy of the mole-
cule. The rate constant can be defined as the correlation time
of the correlation function’?

(66(0)56(t))
(66%)
where @ is the characteristic function for the reactants, i.e., in
our case the step function of y and § denotes a fluctuation
from the equilibrium value. For the strong collision approxi-
mation any correlation function C(¢) at a finite collision rate
a is related to the same correlation function in the absence of

collisions C @ (¢) by!s"’
C9%+a)
1—aC9%s +a)

e = ) (6)

C(s) = @)

where C(s) is the Laplace transform of C(z). It turns out
that in practice it is much easier to evaluate the time deriva-
tive of C9(1), i.e.,

COt) = — kpstk (1), (8)
where
soye [y 1)
k(O) t =< (9)
® 16237163

is the normalized reactive flux [k @ (+—0*) = 1] for the iso-
lated molecule in the absence of collisions and § (y) is Dirac’s
é function. Using the fact that krg; is exponentially small
and that the correlation time is the Laplace transform at
s=0, Egs. (7)-(9) give a simple expression for the rate
constant
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where we have neglected exponentially small terms. Since
k ©(¢) can be evaluated from a trajectory calculation on the
isolated molecule quite easily, Eq. (10) represents a simple
way for calculating the rate constant in the strong collision
approximation including all non-RRKM effects. Note that
very similar relations are used in chemical activation stud-
ies.'® Let us consider the limiting behavior of Eq. (10). At
high a Eq. (10) reduces to unity, i.e., the rate constant is
given by the transition state value. Atlow a Eq. (10) reduces
t016
(a—0),

ksca—0kigr f dtk9(t) = X *ky, (11)
(4]

where in the second equality we have introduced X *, the
thermal average of the measure in phase space of crossing
trajectories.'® In a system of three or more degrees of free-
dom Arnold diffusion'® connects all irregular regions of
phase space and 1 — X * is the measure of trapping tori.
However, in a two degree of freedom system an irregular
trajectory may be bounded by a trapping torus so that it will
never cross and therefore will not contribute to X *. In either
case the explicit value of X * can be evaluated from Eq. (7)
by performing the time integral numerically. If the phase
space is completely irregular all trajectories are crossing
(X*=1) and Eq. (11) reduces to Eq. (1). However, if
there is a measurable portion of trapping tori (X * < 1) then
the rise at low collision frequency is slower than predicted by
Eq. (1). Physically this means that if an activated trajectory
moves on a trapping torus it will never be able to cross over to
the product side and therefore the next collision will always
be deactivating. This results in a reduced low collision rate
constant.

To apply these ideas we have considered the Hamilto-
nian [Eq. (5)] with A = 2.8 and z = 1.0. We ran 10* trajec-
tories on the surface Eq. (4) without any collisions and de-
termined the survival probability P ©(¢), i.e., the fraction of
the trajectories which have not yet recrossed the transition
state as a function of time.” One can calculate the Laplace
transform of the normalized reactive flux & ©(s) by numeri-
cally determining the Laplace transform of the survival
probability 2 (s) and using

RO(s)m P
2 — P(O)( s )

which is a quite accurate approximation for the symmetric
double well.” From % “(s) one can then calculate the rate
constant in the strong collision approximation using Eq.
(10). The result is shown by the solid line in Fig. 2. As a
check of this procedure we simulated the strong collision
approximation®* (after each collision one resamples veloc-
ities as well positions from an equilibrium distribution in a
given well) on the Hamiltonian [Eq. (5)]. The results
(points in Fig. 2) are in perfect agreement with the predic-
tion of Eq. (10). Therefore, we are confident that the rate
constant in the strong collision approximation can be accu-
rately determined using the free molecule trajectories in
practice. In this case Eq. (11) gives X *~0.85.

Turning back to the impulsive BGK model (resampling

(12)

1072 i

FIG. 2. Strong collision approximation applied to the moderately weakly
coupled bistable two degree of freedom system shown in Fig. 1(c). (A = 2.8
and z = 1.0). The solid line is the prediction of the exact non-RRKM the-
ory [Eq. (10)] using the reactive flux for the isolated molecule as input.
The dots are the simulation data.

velocities only) we use an approximate model to explain the
simulation data which are shown in Fig. 1(c) and replotted
in Fig. 3 (dots). The solid line in Fig. 3 is an approximate
theory where we use the strong collision approximation [ Eq.
(10)] and the spatial diffusion result [Eq. (2)] in the inter-
polation formula

k '~k gea + K gn- (13)
This approximate theory is in semiquantitative agreement
with the data.

One expects that such non-RRKM effects will play a
similar role in weak collision models®* (e.g., Kramers fric-
tional model'). We also think that such non-RRKM effects
become more important for a molecule with more than two
degrees of freedom. Unfortunately the computational effort
for the two degree of freedom system in the low collision
regime is already substantial. Even when done by the rapid
method®’ one rate constant usually requires several hours
on the FPS-164 attached processor. With every degree of
freedom added the reactive flux decays roughly by a factor of
BQ more slowly to the plateau value, and it will be very costly
to obtain accurate data on a larger system at low collision
frequencies.

If these non-RRKM effects are important in real mole-
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FIG. 3. BGK model applied to the moderately weakly coupled bistable two
degree of freedom system shown in Fig. 1 (c). The solid line is the prediction
of the approximate non-RRKM theory [Egs. (10) and (13)] using the
reactive flux for the isolated molecule as input. The dots are the same simu-
lation data as shown in Fig. 1(c).
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cule measurements of the rate constant as a function of pres-
sure should show initially a rapid rise which goes through a
plateau and then subsequently rises more slowly. The pres-
ent study suggests that such transitions from rapid to slower
rise are probably very smooth and stretch over several dec-
ades in pressure. Since most gas phase experiments are not
performed over more than two orders of magnitude in pres-
sure, it is not surprising that no such effects have been ob-
served. Because of practical difficulties there are very few
experiments on polyatomics which cover many orders of
magnitudes of density.'®' In cyclohexane there indeed
seems to be a rapid rise at lower pressures'® changing into a
slower rise at higher pressures.”® In fact Zawadski and
Hynes recognized this discrepancy between predictions of
simple RRKM barrier crossing theories and experimental
data.?? Studies on stilbene?! also seem to suggest such behav-
ior. Unfortunately, in either case, the experimental data are
not conclusive enough. It is therefore quite possible that fu-
ture studies along these lines might show such effects. Good
candidates are recombinations or isomerizations of mole-
cules where the reactive degree of freedom is a low frequency
mode and the molecule has some high frequency modes.
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