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TABLE II. Bend potential (kcal/mol, relative to collinear energy at same
level) for F(3.069 a,)H(1.43a,)H withan E + (3d 1f,1p1d) basis as a func-
tion of bond angle in degrees.

Level \Angle 175 150 130 120 110 100

Variational® 004 010 001 005 020 054
+Qp° 004 008 —014 —020 —0.17 000
SEC® 004 006 —027 —041 —051 —051
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and SEC estimates, indicating a consistent trend with the
collinear results. These calculations give us more confidence
in the basic correctness of the trends obtained by the SEC
method.
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Recent studies of activated barrier crossing of a Brow-
nian particle in a metastable potential have extended
Kramers treatment' of the low friction regime to an arbi-
trary number » of strongly coupled degrees of freedom.*™
As for a single degree of freedom the rate constant is propor-
tional to the damping rate y at low y. Here we evaluate the
corrections to this result and show that the rate constant
behaves as y(1 — const "+ 4 ---), As n increases
such correction terms become increasingly important and
they will substantially diminish the rate constant in a physi-
cally accessible low friction regime.

The theory of unimolecular reactions in the gas phase’
reduces to the weak collision limit for a Brownian particle.>*
The probability density P(E,¢) for finding a reactant mole-
cule with # strongly coupled degrees of freedom with an
energy E is described by an energy diffusion equation®*

OPEY _ _Je

E ET krrxm (E)P(E\?) , (D

where the energy flux is

d[P(Et)/P,(E)]
OE '

For simplicity consider a harmonic density of states and an

jE= _D(E)Peq(E) (2)
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isotropic Markovian friction kernel with an energy diffusion
coefficient D(E) = ykyz TE and an equilibrium distribution
function P, (E) « E"~' e #F with 8 = 1/k, T. Neverthe-
less, our arguments are independent of these assumptions
and apply to arbitrary potentials and to non-Markovian fric-
tion kernels.

The dissociation rate above the barrier threshold Q is
approximated by the RRKM expression®

1 Mol®E— n—1
kRRKM (E) 25—_&-@}”( EQ) (3)
for E> Q and k gy (E) = 0 for E<Q. The frequencies of
the stable normal modes »{® and o are evaluated in the
reactant well and at the saddle point, respectively. Equation
(1) describes the activation process of the molecule to an
energy E > Q whereupon it dissociates in accordance with
RRKM theory.

The overall reaction rate constant is obtained by solving
Eq. (1) for the normalized steady state distribution P, (E).
The rate constant is equal to the constant steady state flux j;
below threshold. At high damping the energy activation is so
rapid that P (E) = P,, (E) above threshold and the flux is
obtained by averaging Eq. (3) over P, (E), giving the tran-
sition state theory*” result for the rate constant®
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Below threshold (E<Q) the general steady state solu-
tion of Eq. (1) is
e 1
WE) =) f dE—3 ¢, (5)
e e P (E)D(E)
where h(E) = P, (E)/P. (E) and C, is an unknown con-
stant. Unfortunately above threshold (£ > Q) Eq. (1) can-
not be solved in general. However, the low friction limit can
be analyzed easily. Since particles above the threshold disap-
pear with a finite dissociation rate, the threshold becomes an
absorbing boundary in this limit, i.e., C; = 0. For high bar-
riers’ the rate constant in the low fiction limit becomes*™

BO"_ o )
(n—1)!
However we can solve Eq. (1) for E> Q at low damping

more carefully. In the steady state, for high barriers, Eq. (1)
simplifies to

e P2, 4)

klow = 1/

n—1
zi[e-xd”(")]= e h(x), (7
dx dx (n—1)!
where x = B(E — Q) and
k
z=—" (8)
kTST
The substitution h(x) =x e*f(x) and

y=[4x"*/z(n — 1)!(n 4+ 1)?]"/? transforms Eq. (7) into

A df .
2 & 1)-24 2
y dy2+ydy [(n+ D)7 +y
+ ¢, ()" D] f=0, 9)

where ¢, is an unimportant numerical constant. Since z van-
ishes at low ¥ [cf. Eq. (6)] the z-dependent term in Eq. (9)
can be dropped. Up to a proportionality constant C, the
solution of the resulting equation® is a modified Bessel func-
tion K |,¢, 4 1, (). The undetermined constants C; and C,
can be eliminated by matching #(E) and its derivative at
E = Q. The rate constant becomes®

k

k TST

=z(1—a,,zl/("+”+"'), (10)

where

a,=[(n+ 1)2F(n>1“‘"+‘>r(” “)/r( n )
n+1 n+1

and I'(x) is the Gamma function.® Some values of a, are
given in Table 1. Similar analysis can be done for the sym-
metrical double well problem. Again one obtains Eq. (10)
but z has to be replaced by z/2.

For a single degree of freedom (n = 1) the present uni-
molecular RRKM theory is essentially equivalent to the
original approach to this problem.'® Both approaches pre-

dict that the rate constant behaves as (1 — constyy + **+)
at low 7. Recent work'! shows that RRKM theory overesti-
mates the coefficient a, in Eq. (10). We include the accurate
values of @, in Table I for comparison.

For n degrees of freedom the rate constant behaves as
(1 —const '"+ 1D 4 ---) at low y. As for a single degree

TABLE 1. Numerical coefficients a,, for the corrections to the Kramers low
friction result. The second column is the present prediction [Eq. (10)] for n
strongly coupled degrees of freedom based on the energy diffusion equation
and RRKM theory which is used to approximate the dynamics on the po-
tential surface [cf. Eq. (1)]. This theory predicts equal coefficients for a
metastable well and the symmetrical double well. The last two columns
show the accurate results for a single degree of freedom (Ref. 11) based on
the true dynamics on the potential surface.

n  RRKMtheory Metastable well (Ref. 11) Double well (Ref. 11)

1 1 0.824 0.683
2 1.372
3 1.759
4 2.148
5 2.536

of freedom!’ we expect small modifications of the numerical
coefficients a,, in Eq. (10) for higher #. It would be interest-
ing to investigate possible extensions of this analysis to an
arbitrary number of degrees of freedom. As ¥ is decreased
the low friction limit of the rate constant, Eq. (6) will be
approached extremely slowly and such corrections become
increasingly important for larger #. This has already been
clearly recognized in numerical studies of unimolecular rate
constants for weak collision models.'* Such a slow ap-
proach®? to the low collision limit must be included for the
interpretation of experimental or simulation data. Otherwise
data collected over a limited friction range might lead to
errorenous conclusions about the number of strongly cou-
pled vibrational modes.

We would like to acknowledge an inspiring discussion
with Professor A. Nitzan and J. E. Straub which prompted
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comments on the manuscript.
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In a recent publication, Diestler and Riley (DR)' have
examined the use of the Brownian approximation (BA) in
describing the motion of a subset of particles (termed the
primary zone, and denoted P) in a harmonic lattice. These
authors found that the Brownian theory admitted the possi-
bility of undamped modes in P; they thereby concluded that
the BA gave rise to results that were not physically meaning-
ful, and suggested that it might, therefore, also engender
other spurious effects.

While DR were correct in pointing out the existence of
undamped modes, their subsequent conclusions about the
validity of the BA are misleading for two reasons: (i) the
undamped modes are a real effect, being a consequence of
time-reversal symmetry, and (ii) the method used by DR is
invalid when the lattice response function is nonanalytic
about w = 0, as will be shown to occur for the Rosenstock—
Newell model. What the results of DR can be used to illus-
trate is the inherently nondissipative nature of the zero fre-
quency limit (ZFL), and therefore that the conventionally
accepted equivalence between the ZFL and BA is inappro-
priate.

For any finite classical lattice that interacts through a
purely position dependent potential, the existence of un-
damped modes follows immediately from Poincaré’s
theorem.? According to this theorem, any such system will
eventually return arbitrarily close to its initial phase point.
Since such quasiperiodicity is inconsistent with the irrevers-
ible loss of energy from any region of the lattice, one must
conclude that any model of a finite lattice that is based upon
the exact equations of motion must exhibit undamped
modes. For infinite lattices, the situation is not transparent,
since the proof of Poincaré’s theorem assumes that the lat-
tice has finite extent. If the ZFL is taken first, then the un-
damped modes will remain as one arbitrarily increases the
lattice, thus implying that the undamped modes in this infi-
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nite lattice limit (ILL) are a real effect. On the other hand, if
(following DR) the ILL is taken before the ZFL, then one
can no longer apply Poincaré’s theorem and the undamped
modes are not obvious. However, this is precisely the case for
which DR proved the existence of undamped modes. Thus
changing the order in which the double limit is attained does
not alter the final result, suggesting that the underlying
physics is the same in both bases, and therefore that un-
damped modes in the ZFL motion of infinite lattices are a
direct consequence of Poincaré’s theorem.

In its essence, the above discussion is far from new, be-
ing just another manifestation of the problem of how to rec-
oncile microscopic reversibility with macroscopic irreversi-
bility.> Traditionally this paradox has been resolved by
recognizing that the period of a Poincaré cycle is immensely
long, and therefore of no physical significance in any chemi-
cal system. Thus, in practice, one can consider a very long
but finite time, for which the paradox does not arise. How-
ever, such a procedure also implies that the frequencies dealt
with are constrained to be nonvanishing, and thus precludes
the consideration of a ZF1.. Hence, the ZFL is the one situa-
tion for which the quasiperiodic nature of stable lattices can-
not be ignored. In this sense DR were correct in ascribing
origin of the undamped modes to the localization of the P
motion about zero frequency.

One conclusion to be drawn from these comments is
that the physically useful domain in which to examine the
BA is at low, rather than zero, frequencies (i.e., long, but
finite time scales—note that the BA is still meaningful for
finite times); however for these conditions the method of
DR leads to difficulties. In the first place, the method is
based on a Taylor series expansion of the friction kernel,
épp (w), about w = 0 and should therefore break down for
nonanalytic ()pp(a)); such nonanalytic behavior has been
found before in transport coefficients,> and will be shown
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