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A simple statistical theory for calculating the effects of nonadiabatic transitions on activated
barrier crossing is presented. It is based on the model of Cline and Wolynes which combines
the impulsive BGK collisional model with the Landau—Zener theory for curve crossing to
calculate rate constants for barrier crossing. We derive a closed analytical expression for the
rate constant for nonadiabatic transitions which requires as input only the rate constant for
barrier crossing on the adiabatic surface and the parameters for the Landau—Zener theory. Our
theory gives excellent agreement with the numerical results of Cline and Wolynes.

I. INTRODUCTION

In most discussions of classical reaction rate theory'? it
is assumed that (1) the temperature is high enough that
tunneling is negligible in comparison with activated crossing
of the barrier, and (2) the electronic state of the reacting
molecule follows the motion of the nuclei adiabatically. The
adiabatic potential surface corresponds to the ground state
of the diagonalized Hamiltonian. These assumptions allow a
simple description of nuclei moving on a Born—-Oppenbhei-
mer potential surface according to Newton’s equations of
motion. ’

For those physical systems where the temperature is be-
low a certain value, the “crossover temperature,” tunneling
will be the dominant reaction channel and the first assump-
tion will be violated.? The effect of a solvent on the tunneling
frequency was first examined by Wolynes* and has since
been given much attention. A recent review of this work is
given by Hinggi.® Also, Pollak has unified many of these
ideas under a single formalism, the multidimensional transi-
tion state theory.’

For those systems above the crossover temperature, the
dominant contribution to the rate should be activated bar-
rier crossing. However, when the splitting between the excit-
ed and ground state adiabatic potential energy surfaces is
small compared to k; 7, the assumption of adiabatic curve
crossing may be violated. For isolated systems, nonadiabatic
effects have been incorporated in the semiclassical trajectory
calculations of Tully and Preston,® and Miller and George.’
These ideas and further applications have been reviewed by
Tully.® Recently, Cline and Wolynes have applied these
techniques to study nonadiabatic effects in activated barrier
crossing.’

A great deal is known about activated processes in adia-
batic systems. Analytic theories exist for the prediction of
rate constants for single and many degree of freedom sys-
tems for weak and strong collision models at both low and
high friction or collision rate.'~>'° In addition, an increasing
number of numerical simulations have been performed on
stochastic and molecular systems to test the validity and ap-
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plicability of these theories.!''* Here we present a statistical
theory which predicts the rate for activated barrier crossing
in nonadiabatic systems simply in terms of the rate for bar-
rier crossing in the adiabatic system and the Landau-Zener
curve crossing probability. Our result may be readily applied
to predict barrier crossing rates for any nonadiabatic system
where the adiabatic rate constant is known from theory or
simulation.

In Sec. I1 we review the model of Cline and Wolynes; in
Sec. I1I we derive our primary result which relates the nona-
diabatic rate constant to the adiabatic rate constant and the
Landau—Zener probability; in Sec. IV we compare our pre-
diction with the numerical simulation data of Cline and Wo-
lynes; and in Sec. V we discuss the possible limitations of this
model.

Il. THE MODEL OF CLINE AND WOLYNES

Cline and Wolynes examined a system consisting of a
nuclear reaction coordinate g, linearly coupled, by the pa-
rameter g, to a two-level system. The reaction coordinate
moves in one of two electronic states which are modeled as
harmonic wells centered at g = + g/w®. The Hamiltonian is
given by

1.2 a)2 2 A
H=‘—q +—'q +—.0.x +gqaz +HB’ (2'1)

2 2 2
where o, , are Pauli spin matrices, A is twice the matrix
element which couples the two electronic states, and Hy is
the bath Hamiltonian. The diabatic and adiabatic potential
surfaces are shown schematically in Fig. 1. The transition
state surface is chosen at the curve crossing point ¢ =0
which has energy Q = g*/20%

The bath was incorporated using a stochastic BGK
model® which thermalizes the velocity of the reaction coor-
dinate on each collision while sampling collision times from
a Poisson distribution with average collision frequency £.'¢

If the electronic state surfaces are strongly coupled,
nonadiabatic effects are important. Cline and Wolynes used
a surface hopping model to calculate nonadiabatic correc-
tions to the adiabatic theory. They performed a trajectory
calculation using the reactive flux formalism'” (also, see Sec.
III); 10* trajectories were used for each rate constant calcu-
lation. Their method may be summarized as follows. Initial-
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FIG. 1. Potential surface for the Cline—-Wolynes model.

ly, all trajectories are placed on the left diabatic surface (Fig.
1). The trajectories begin at the transition state ¢ = 0, and
are propagated on the diabatic surface according to the
BGK algorithm until they recross the transition state, at
which point the probability of hopping to the other diabatic
surface is calculated. The trajectory then either moves to the
other diabatic surface, or continues on the present surface.
Trajectories with initial velocity ¢ > 0 are immediately tested
for curve crossing (as though they had started just to the left
of the transition state) while those with initial velocity ¢ <0
are moved away from the surface and are only tested for
crossing on return (as though they had started just to the left
of the transition state).

The probability for curve crossing on a single passage
through the curve crossing region is given approximately by
the Landau-Zener formula®'8

P, =1 —exp( — nwA*2tw|F, — F,|), (2.2)

where F, , are the slopes of the diabatic potential surfaces at
the point of curve crossing and v is the velocity of the trajec-
tory which is assumed to be constant in the curve crossing
region. Note that for small velocities, where the nuclei move
very slowly, the probability of curve crossing will approach
unity and the reaction coordinate will move on the adiabatic
Born—-Oppenheimer surface.

lil. THEORY

In this section we will summarize the reactive flux meth-
od of Chandier.!” We then present a short discussion of an
approximate version of the reactive flux method for adiaba-
tic systems, the so-called absorbing boundary method.'%?°
Finally, we generalize the absorbing boundary formalism to
include nonadiabatic transitions and derive an analytical
expression for the nonadiabatic rate constant expressed in
terms of the adiabatic rate constant and the Landau~Zener
curve crossing probability.

The reactive fiux method consists of calculating the
function'6-?!

k() =(01g1) . — G laO]D -, 3.1
where 6(q) is the Heaviside step function, which is unity for
¢ >0 and zero otherwise, and ( ), indicate, respectively,
averages over the normalized phase space distribution func-
tions

40( + 9)8(g)e 4™
§dT g0( £ §)8(g)e ™’
g is the reaction coordinate, 6 (g) defines the transition state,
¢ is the reaction coordinate velocity, and H(I') is the Hamil-
tonian.

We restrict ourselves to a discussion of symmetric dou-
ble wells. For a system consisting of two bound states sepa-
rated by a barrier Q (Fig. 1) if 0>k, T, k(¢) will decay on
two widely different times scale.'” There will be a fast tran-
sient decay from the initial value, followed by a very slow
decay

k(t) —xe” Frtkot (3.3)

where k; and k, are the forward and backward rate con-
stants and « is the “plateau value” of the reactive flux or the
dynamical transmission coefficient

o k,+k, _ kK ,

(kf + kb )TST kTST
where k = k; + k,, is the exact Kinetic rate constant, and
krst = (k; + Ky ) sy is the transition state theory approxi-
mation to k.2

We have proposed a simple and accurate method for the
calculation of rate constants for chemical reactions, the ab-
sorbing boundary method,'®?° which is an approximate ver-
sion of the reactive flux method. We observe that the separa-
tion of time scales required for a plateau in k(¢), Eq. (3.3),
implies that there are two types of trajectories, those which
move into the wells and are trapped for long times, and those
which rebound from the turning point of the potential, or are
reversed by collisions, and recross the transition state in a
short time. Therefore, if P(¢) is the probability that a trajec-
tory, which starts at the transition state at ¢ = 0, will remain
in the well at time ¢ having never crossed the transition state,
then P(¢) will begin at unity and decay to a plateau value 7.
[At long times, P(¢) must decay to zero as all trajectories
will eventually cross the transition state. ]

If one assumes that those trajectories which recross the
transition state conform to the initial state distribution, Eq.
(3.2), then, after each recrossing, the same fraction of trajec-
tories will be trapped. Consider (8[¢(¢)]) .., the number of
trajectories in the right well at time ¢, which begin with posi-
tive velocity, moving into the right well, at ¢ = 0. Initially, a
fraction of trajectories T, is trapped in the right well and the
complementary fraction 1 — 7T, moves into the left well
where To(1 — T,) will be trapped and (1 — T,)? will cross
the transition state back into the right well, and so on. At
intermediate  times (0 [q()]) . =Ty + To(1 — T,)?

+ --- . Similarly, at intermediate times {(8[q(#)])_
=To(1 —=T,) + To(1 — Tp)® + -+ and"®

PENT) = (3.2)

(3.4)

ky =(0[g()]), —{(Olqg()])_
__T
T2-T,

(3.5)

where the subscript 4 denotes that the reaction takes place
on the ground adiabatic surface.
To calculate x , in practice, one samples points in phase
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space from the distribution function P ¢ +’(I") which places
them at the transition state with positive velocity, heading
into the product well. One then propagates the trajectories
removing those which cross the transition state. If a separa-
tion of time scales exists, one may follow the trajectories in
time until P(#) reaches the plateau 7. A good rule of thumb
is that P(#) should remain constant over an order of magni-
tudein time. Ifk € kg, &, €1, and T < 1. Using the absorb-
ing boundary method, only a small fraction of trajectories
will have to be integrated for the full length of the simulation.
In such cases, the absorbing boundary method is computa-
tionally much faster than a full reactive flux calculation
which requires that all trajectories be integrated for the full
length of the simulation.

In what follows, we apply the absorbing boundary for-
malism to the system of Cline and Wolynes, assuming only
(1) that the distribution of those states recrossing the transi-
tion state is given by Eq. (3.2), and (2) that the velocity
dependent probability for curve crossing [Eq. (2.2)] can be
replaced by its average value P, .*

Consider the two-dimensional column vector p whose
elements represent the population on the upper (excited) p,,
and lower (ground) p,, electronic surfaces in a given well
moving towards the transition state. We can then define the
matrix

Cz( PL_Z_ l:PLZ),

1—P, P,
such that Cp is the population having crossed the transition
state. Curve crossing results in a redistribution of trajector-
ies on the upper and lower electronic surfaces. The diagonal
elements of C correspond to the probability of remaining on
the lower or upper electronic surface while the off-diagonal
terms represent the probability of making a transition to the
other surface.

We may similarly define the matrix

1 0 )
S_(Ol—To

such that Sp is the population returning to the transition
state on a given electronic surface without being trapped in a
well. That S,, = 1 expresses the fact that a trajectory cannot
be trapped in a well while on the upper electronic surface
while S,, = 1 — T, is the probability of surviving a passage
in the well to recross the transition state.

Finally, we define the vector

de (To(l ——PLZ))
ToPy,

such that d”p is the population of trajectories which are
trapped in a given well before they can recross the transition
state. d, gives the probability that when a trajectory is on the
upper electronic surface it must first cross to the lower sur-
face with probability 1 — P, , before it can be trapped with
probability T, while d, corresponds to the fact that a trajec-
tory on the lower electronic surface must remain on the low-
er surface to be trapped.

With these vectors and matrices we follow the adiabatic
calculation described above and compose the averages
{Blq()]) . and {f[q(¢)])_ at intermediate times. Then,

(3.6)

(3.7)

(3.8)

using Egs. (3.1) an (3.3) we calculate the transmission coef-
ficient « for the nonadiabatic system.

Translating the scheme of Cline and Wolynes: initially
those trajectories starting at the transition state with velocity
g > 0 will reside on the left diabatic state of the reactant, so
that the initial state vector is

--()

Trajectories will cross the transition state where they will be
trapped in the product, right diabatic, well with probability
d”i, or recross the transition state with population SCi, .
The population SCi_, recrosses the transition state withg <0
where a fraction d7SCi , will be trapped in the reactant well
while the population (SC)%, will recross the transition
state. Continuing, we may write the fraction of trajectories
which begin in the reactant well with ¢ > 0 and are trapped in
the product well as

Olan]), =d" 5 (SO,
N=0

(3.9)

=d7{1 —(SC)*] 7', . (3.10)

We may similarly find (#{q(¢)]) _. Initially, those tra-
jectories starting at the transition state with velocity ¢ <0
will reside on the left diabatic surface, corresponding to the
ground state of the reactant. A fraction 7, of the trajectories
will be trapped in the reactant well while the remaining frac-
tion 1 — T, will cross the transition state on the left diabatic
surface with ¢ > 0. The analysis for {(8[g(¢)]) . may then be
applied where the initial state vector i, is replaced by

. 0
l”—(l——TO)' (3.11)
It follows that
(Blgn)])_=d"[1—(SC)*] '
=(1-TyO[g(n)]) . (3.12)

Combining Eqs. (3.1), (3.10), and (3.12) we may write the
transmission coefficient for the nonadiabatic system as

x=Td"[1 - (SC)*1 4, . (3.13)

After some algebra, one finds that the nonadiabatic
transmission coefficient can be expressed in terms of the
adiabatic transmission coefficient x, [Eq. (3.5)] and the
averaged Landau-Zener curve crossing probability P,
[Eq. (2.2)] as

. kp+k, 2P K,

kst Ky +_'FLZ(2_KA) .

This is an explicit relationship between the nonadiabatic
transmission coefficient and the adiabatic one for the same
collision rate. Further, Eq. (3.14) can be transformed into

(3.14)

(3.15)

which neatly separates the adiabatic and nonadiabatic con-
tributions to the rate constant. Equation (3.15) can also be
derived for asymmetric potentials where the trapping proba-
bilities of the reactant and product states differ.

It is worth noting that when «, is approximated by the
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small step diffusion limit of Kramers theory of adiabatic ac-
tivated barrier crossing, and the term (1 — P,,)/2P,, is
expanded to second order in A, Eq. (3.15) reduces to some-
thing very similar to Eq. (3.38) in a recent paper of Ripps
and Jortner*® (and Refs. 10, 35, and 36 cited therein).

Deviations from transition state theory are normally de-
scribed in terms of recrossings of the transition state surface.
Equation (3.15) may be understood as a sum of the number
of recrossings of the transition state where the first term on
the right-hand side varies as the number of recrossings due to
nonadiabatic curve crossing while x; ! varies as the number
of recrossings due to inertial recrossings of the barrier at low
collision frequency or spatial diffusion in the barrier region
at high collision frequency.

In the adiabatic limit, P, =1 and x =«,. In the
strongly nonadiabatic limit, P, , <1 and if x , is not far from
unity then xk=~2P.,/(1+ P.,), while if x, <P,, then
k =k, which is the asymptotic adiabatic result.”® The largest
deviations from the adiabatic theory should occur for inter-
mediate collision frequency where the maximum in the rate
constant is reduced by nonadiabatic effects. The maximum
in our transmission coefficient for a given P, , is found for
k, = 1, where x = 2P;, /(1 + P, ) which, for P,, <1, re-
duces tox = 2P, (1 — P, ).}

IV. COMPARISON WITH SIMULATION DATA

It is straightforward to apply Eq. (3.15). One needs
only the adiabatic transmission coefficient x, and the aver-
age curve crossing probability P, [Eq. (2.2)].%

Cline and Wolynes carried out BGK simulations for the
system defined by Eq. (2.1) (see Fig. 1) on (1) the lowest
electronic (ground) state potential*® and (2) the diabatic
potential surfaces where curve crossing was allowed. The
parameters defining system 1 (2), chosen to approximate
ligand binding to hemoproteins,® are A/%i» = 0.6(0.8486),
8/fiw = 1.87 (4.1195), and 5Q = 21.0(4.0).

The adiabatic rate constants are defined as follows. The
rate constant at low collision frequency was first given by
Skinner and Wolynes.?* They determined the rate at which a
particle, whose dynamics correspond to the BGK model,
escapes from a harmonic well. For a symmetric double well
potential, the rate for energy activation is given approxi-
mately by

kea ~3 [ 72 — erfc(VBO ) /2], (4.1)

where ¢ is the collision frequency and erfc(x) is the comple-
mentary error function.”* At high collision frequency, the
rate for energy activation is fast and spatial diffusion across
the barrier top will be rate limiting. For a cusped barrier the
rate for spatial diffusion is given by*¢

ksp ~ kst (0/8) (7B Q) 2. (4.2)
The adiabatic theory predictions [Eqgs. (4.1) and (4.2) ] are
combined with the connection formula

Kk '=kn!+ ket +ksp', (4.3)
to predict the total rate constant at any collision frequency?’;
kTST = we _’BQ/ZTT.

Figure 2 compares the numerical data of Cline and Wo-
lynes, for (a) system 1 and (b) system 2, with the adiabatic
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FIG. 2. A log-log plot of the transition state theory normalized rate con-
stant as a function of the collision frequency ¢ for the adiabatic theory (—)
using the connection formula [Eq. (4.3)]; the nonadiabatic result (--) is
calculated using Eq. (3.15). The simulation results are shown for the adia-
batic (O) and nonadiabatic (@) reactive flux calculations of Cline and Wo-
lynes for (a) system 1 and (b) system 2 (as defined in the text). The maxi-
mum nonadiabatic transmission coefficient, predicted by Eq. (3.15), is
indicated by an arrow.

theory [Eq. (4.3)] and the nonadiabatic theory [Eq.
(3.15)]. The adiabatic rate constants agree well with the
theory of Skinner and Wolynes [Eq. (4.1)] at low collision
frequency and with the spatial diffusion rate constant for a
cusped barrier [Eq. (4.2)] at high collision frequency. The
connection formula [Eq. (4.3)] consistently underesti-
mates the simulation results at intermediate collision fre-
quency. For intermediate collision frequency, there is often a
maximum in the transmission coefficient close to unity. Our
result [Eq. (3.15)] predicts a maximum of
k = 2P, /(1 + P, ). Frauenfelder and Wolynes have pro-
posed that the transmission coefficient should show a maxi-
mum of « = P;,.?® [The simulation results show a maxi-
mum in the transmission coefficient of the diabatic rate data
of approximately 0.552 (0.176) for system 1 (2). Averaging
Eq. (2.2) over the distribution Eq. (3.2) to calculate P, ,
produces 0.407 (0.090) which corresponds to a prediction
based on Eq. (3.15) of a maximum in « of 0.578 (0.165).
Therefore, our estimate of the maximum in the transmission
coefficient is accurate, showing good agreement with the
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simulation results. These values are marked by arrows in
Fig. 2.

The nonadiabatic rate constants show excellent agree-
ment with our statistical theory, indicating that Eq. (3.15)
accurately represents the dynamics of the stochastic simula-
tion. The question of the physical validity of the model will
be discussed in the section which follows.

V. DISCUSSION

While our theory accurately predicts the simulation re-
sults, it is not clear if the model of Cline and Wolynes, while
an excellent first step, is a realistic one for measuring nona-
diabatic curve crossing effects on activated barrier crossing.
Below we focus on a number of specific problems.

(1) The Landau—Zener theory assumes that the velocity
of particles in the curve crossing region is constant, or that
the excess kinetic energy is large. This assumption is certain-
ly a bad one for barrier crossing with reasonably high bar-
riers. The average energy of those states crossing the barrier
will be close to the barrier energy. It is likely that the barrier
maximum will be located at the point of curve crossing
which will be very close to the turning points of the diabatic
surfaces. At high collision frequency, where the trajectory is
diffusive, there are many reversals of the velocity in the
crossing region. Zusman has extended the Landau-Zener
analysis to treat such diffusive trajectories.>’

(2) The classical trajectory method assumes that there
are no interference effects for trajectories which remain in
the excited state and oscillate for long times. Child has calcu-
lated the probability of curve crossing for the case when the
slopes of the diabatic surfaces at the point of crossing are of
opposite sign. He finds that interference effects can be im-
portant.?® Cline and Wolynes recognize this and have pro-
posed a quantum mechanical model which attempts to in-
clude interference effects important in the crossing region.®
Of course, at high collision frequency it is likely that random
collisions will wipe out this phase coherence.

Note that the Landau—Zener calculation is asymptotic
in time. It involves the calculation of the probability that a
wave function, initially at g = + oo, willbeatg = — oo at
t = + o.Inthis application, the double well potential leads
to bound states where the asymptotic limits used to separate
states are not appropriate.

(3) Those trajectories which move in the curve crossing
region should be propagated on the appropriate electronic
surface. For nearly adiabatic systems, the best approxima-
tion would be to propagate the nuclei on the ground or excit-
ed state adiabatic surfaces.® This surface hopping model may
breakdown for strongly nonadiabatic systems as the adiaba-
tic surfaces will not be a good representation of what the
nuclei see. Also, all these models allow for surface hopping
only at the transition state. A more accurate representation
would allow for curve crossing over a transition region.*°

(4) This model ignores the effect of solvation on nona-
diabatic transitions. This may well be an essential considera-
tion in the calculation of the rate constant.! A sound deriva-
tion is needed which incorporates the effects of solvation
consistently in a dynamic calculation of the Landau—Zener
type.

6115

The main result of this paper, namely Eq. (3.15), allows
one to determine the nonadiabatic transmission coefficient
K, in terms of the adiabatic transmission coefficient «, for
symmetric and asymmetric potential energy surfaces. Since
K, can be determined either by computer simulation, or
from analytical theories such as the Kramers theory, the
sudden collision model, or the Grote—Hynes theory for non-
Markovian baths, it is now possible to determine the nona-
diabatic rate constant for these models, using Eq. (3.15) and
the simple Landau-Zener probability.
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33This connection formula can be understood as the sum of times for energy
activation, to the barrier energy, and spatial diffusion, through the barrier
region, added to the condition that the rate should not exceed the transi-

tion state theory value. For cusped barriers, the rate constant for spatial
diffusion [Eq. (4.2)] is the inverse mean passage time for traveling from
the reactant well minimum to the minimum of the product well (Ref. 26).
Therefore, if the regions of spatial and energy diffusion overlap, Eq. (4.3)
will overestimate the total reaction time and underestimate the total rate
constant.
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