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We study the nature of the excess electronic states in fluid helium by calculating the excess
electron energies and wave functions for a set of configurations of solvent atoms taken from
path integral Monte Carlo calculations on the solvated electron system. The eigenvalues and
eigenfunctions for the different configurations of the solvent are used to calculate the
inhomogeneously broadened density of states and absorption line shape of the excess electron
over a range of fluid densities. The predictions of a simple theory of the excess electronic states
in fluid helium due to Springett ez al. [B. E. Springett, M. H. Cohen, and J. Jortner, Phys. Rev.
159, 183 (1967)] are found to agree quite well with our computer simulation results. This
simple theory, however, predicts an inhomogeneously broadened elecronic absorption
linewidth which is much narrower than that obtained from simulation. It is found that the
RISM-polaron theory of Nichols and Chandler [ A. L. Nichols IIT and D. Chandler, J. Chem.
Phys. 87, 6671 (1987)] gives an absorption line shape which is in better agreement with our
simulations. We observe a transition from lower energy states in which the electron is bound to
density fluctuations in the fluid to the situation where the excess electron scatters through the

fluid in continuum states at higher energies.

I. INTRODUCTION

The equilibrium behavior of excess electrons in simple
fluids has been the subject of several recent theoretical stud-
ies”” in which the quantum nature of the electron is treated
using discrete path integral methods. In this paper we pres-
ent the results of some calculations which go beyond these
equilibrium treatments and explore the nature of the excited
states of excess electrons in simple fluids. One of the aims of
this paper is to demonstrate that at high densities a very
simple theory of solvated electrons due to Springett ez al.!
can give quite reasonable predications concerning the nature
of some of the excited excess electronic states.

The system we shall consider in detail here is an excess
electron in helium. At fluid densities, and over a wide range
of temperatures, the electron becomes localized in cavity-
like density fluctuations in this system. In this study we have
made the assumption that the fluid structure is not per-
turbed from that of the equilibrium solvated electron system
upon electronic excitation. Thus, we use a series of solvent
configurations obtained from path integral Monte Carlo cal-
culations on the electron-solvent system to provide a sample
of the different sorts of potential field which the electron
experiences in the fluid. This Born—~Oppenheimer-like ap-
proximation has been used recently to calculate the inhomo-
geneously broadened excess electronic absorption line shape
in various polar fluids such as water®” and ammonia.® In
these polar systems the electron also becomes localized in
small “bubbles” in the solvent. The main interest in these
studies on polar fluids has been to try to understand the
phenomena which give rise to the band shape of the experi-
mental solvated electron absorption spectrum. These studies
are complicated by the fact that the pseudopotentials de-
scribing the electron—solvent interaction in these polar sys-
tems are complex and not well understood. As such these
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studies have not yet resolved, e.g., what processes give rise to
the high energy tail observed in the experimental absorption
spectra for these systems.

The helium system considered here is much simpler
than the polar solvents discussed above, thus a more detailed
understanding of the behavior of the excess electronic states
in this simple fluid can be obtained from our studies. In Sec.
I1 we describe the computational techniques used to obtain
the energies and wave functions of the excess electron in the
“frozen” solvent configurations. In Sec. III we outline the
simple theory of the excess electronic states in helium due to
Springett et al. In Sec. IV we present the results of our calcu-
lations and compare them with the predictions of this simple
theory. Finally, in Sec. V we discuss the implications of these
studies and compare the excited state behavior of excess elec-
trons in helium with the behavior observed in polar solvents.

Il. METHODS

The method we use to calculate the energies and wave
functions of the excess electron in a frozen fluid configura-
tion is based on the split operator technique for solving the
Schrodinger equation which was presented by Feit, Fleck,
and Steiger.® Their procedure for calculating the eigenvalue
spectrum involves following the evolution of a mixed quan-
tum state in real time using the split operator approach, then
employing a “spectral method” to analyze the trajectory.

They define a time correlation function of the evolving
mixed state solution and show that by Fourier analyzing this

oscillatory function, the eigenvalues, and mixing coefficients
of the eigenstates contained in the initial wave function can
be extracted. The eigenfunctions can also be obtained from
the time evolution of the mixed state solution once the eigen-
values have been determined.

The main problem with this approach is that the resolu-
tion of the eigenvalues obtained by Fourier transforming the
finite sequence of time correlation function measurements is
2m/T where T is the total time for which the solution is
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propagated. Thus to obtain reasonably fine resolution for the
energy spectrum, a long trajectory is required. This problem
can be overcome by following the solution in imaginary time
7= it.'° Now, instead of being a sum of oscillatory func-
tions, the imaginary time solution is a sum of exponentially
growing or decaying terms

Y(r,r) =Y a,¢,(r)exp[ — E,7/%], (2.1)
where E, are the eigenvalues, ¢, (r) are the eigenfunctions,
and a, are the mixing coefficients. As 7— o the spatial de-
pendence of 3 will be dominated by ¢,(r), the lowest energy
eigenfunction with nonzero amplitude in the propagating
wave function. All the higher energy eigenstates will have
exponentially smaller amplitudes compared to the lowest en-
ergy state as 7 becomes large. Under these conditions the
amplitude of the wave function will exhibit a single exponen-
tial growth or decay at a rate determined by the lowest eigen-
value E,. At the end of each incremental propagation we
calculate the normalization constant

[

and renormalize the solution. If the wave function was nor-
malized to unity at the beginning of each propagation step
then the new normalization constant after a time step A7 can
be used to estimate the lowest eigenvalue

_111./1/
Ar

This result is true only at long times when the solution be-
comes dominated by the lowest energy state. When the
eigenvalue estimate becomes constant within some tolerance
from one time step to the next, the solution is converged.

Once the lowest energy state is determined, the next
highest state can be obtained by propagating a new solution,
but now “filtering out” the previously determined lowest
energy state. This is achieved by forcing the propagating
solution to be orthogonal to the lower state at the end of each
time step.'® In general, if we have a set of previously deter-
mined orthonormal eigenstates {¢, (r)} and a normalized
wave function ¢ (r), we can construct a linear combination
¢/, of these functions which is orthogonal to the eigenstates
{¢, (r)} and normalized by using Schmidt orthogonaliza-
tion

¢I= [¢_2nSn¢n] )
VI=2,1S,]

Here S, = f{*¢,dr are the overlaps between the current
solution and the previously determined eigenfunctions. All
the lower energy states are thus removed from the propagat-
ing solution and the relative amplitudes of the higher energy
states will decay exponentially giving a specific excited state
solution.

One advantage of the procedure outlined above over the
real time spectral analysis method of Feit ez al. is that the
imaginary time approach can be applied selectively yielding
only those states of interest. The spectral method gives all
the states within a large energy interval, the size of which is
determined by the reciprocal of the time step. In systems

(2.2)

E,= (2.3)

(2.4)

where the eigenvalues of interest are fairly well spaced, the
excited state contributions will damp out very rapidly thus
accurate energies and eigenfunctions can be determined us-
ing relatively short runs. As mentioned earlier, the uncer-
tainty in the spectral analysis of the real time results falls like
1/T. With the imaginary time approach, the major compo-
nent of the error comes from the residual contributions of
the higher energy states which damp out exponentially. Con-
sequently, when only a few quantum states which are well
separated in energy are required with high accuracy the
imaginary time procedure will be considerably more effi-
cient than the real time spectral analysis approach. When the
band structure in a continuum of states is of interest the real
time spectral analysis technique may be more useful. A vari-
ational procedure recently presented by Vanhimbeeck ez
al."! may also be useful in treating very closely spaced states.
When the density of states involves both bound and contin-
uum states a technique combining the imaginary time proce-
dure to get the bound states followed by real time propaga-
tion of a mixed state which is held orthogonal to these bound
states may be a useful way to proceed.

The method outlined above requires a procedure for
propagating a solution of the Schrédinger equation in time.
If we are interested in imaginary time propagation of a
many-body wave function, the diffusion or quantum Monte
Carlo methods'?'® could in principle be applied. Excited
states of systems containing two and three quantum particles
have been studied using this technique together with an orth-
ogonalization procedure similar to that discussed above.'” If
we are interested in the wave function of a single quantum
particle moving in three dimensions, the split operator fast
Fourier tranform (FFT) method® provides a very efficient
technique for propagating the solution. We assume that over
a small time step A7 = /At the propagator can be split into
kinetic and potential parts which operate independently.
Thus, at a time 7, + A7 we write the wave function as

Y(r,7o + AT)~exp [ A7 V(r)] exp [:—hA—T VZ] (r,7,).
#i 2m
(2.5)

This result is accurate to order (A7)2.

To proceed, we consider evaluating the one particle
wave function on a rectangular grid with ¥V points on a side
in abox with sidelengths L, ,L ,,L, . The split operator meth-
od involves performing the kinetic part of the propagation in
momentum space and the potential propagation in position
space. Since we have the wave function at a discrete set of
points in position space, the momentum space wave function
can be obtained by a discrete Fourier transform. The two
wave functions are thus related as follows:

N/2
¢(r9T) = W(P,T)
Ilmn= —N/2+1
Xexp [2mi(Ix/L, + my/L, +nz/L,)],
(2.6)

where W (p,7) is the wave function in momentum space and
the discrete momentum vectors have components
p= (2wl/L,,2rm/L,,2mn/L,). The split operator tech-
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nique involves performing the potential and kinetic parts of
an incremental propagation step separately in the position
and momentum spaces, respectively. When the kinetic part
of the propagator is applied to the wave function in momen-
tum space we find

@lpz] . 2.7

¥(p,7o + A7) = ¥(p,7)exp [ -
2m

In a similar fashion, when the potential part of the propaga-

tor is applied to the wave function in position space we ob-

tain

Y(r,7o + A7) = ¢(r,m)exp [ — ATV (r)/%]. (2.8)

The algorithm which we use in these calculations can
thus be summarized as follows:

(1) The normalized position space wave function at

time 7,, ¥ (r,7,), is Fourier transformed to give a mo-

mentum space wave function, ¥ (p,7,), according to Eq.

(2.6).

(2) Equation (2.7) is used to perform the kinetic part of

the propagation on ¥ (p,7,).

(3) The partially propagated momentum space wave

function is then backtransformed and propagated in po-

sition space according to Eq. (2.8) completing the in-
cremental propagation of the solution.

(4) Next we calculate the new normalization constant

and determine the eigenvalue estimate according to Eqgs.

(2.2) and (2.3), then renormalize the wave function.

(5) If eigenfunctions have been previously determined

we evaluate their overlaps with the new wave function

and use Eq. (2.4) to maintain the orthogonality of the
current solution to the lower energy states.

(6) We repeat the above steps many times until the

eigenvalue becomes constant to within some tolerence.

Details of the path integral calculations which were per-
formed to obtain a set of configurations of the equilibrium
solvated electron system can be found in the work of Coker
et al.> We conducted systematic studies of the time step size
and coarseness of our spatial grid. The time step used was
A7 = 0.5 a.u. Grids with 8, 16, and 32 points on the side of
our periodic simulation box were tested and we found that
the results of 16 and 32 points agreed to better than four
significant figures. To determine the importance of long
range corrections to the electronic eigenvalues, we reduced
the size of the FFT box relative to the simulation box by
~25% and observed a systematic increase of a few percent
in all the electronic eigenvalues. The differences in eigenen-
ergies used in the spectrum calculation, however, did not
change appreciably. Thus, any long range corrections seem
about the same for all the eigenvalues of interest and they
cancel when the excitation energies are calculated.

Except for the details, the imaginary time procedure
outlined in this section was introduced by Rossky and his co-
workers®!? and has been used by them and Wallqvist ez al.”
in studies of the hydrated electron. Sprik and Klein® have
performed similar calculations on electrons in ammonia us-
ing an optimized Gaussian basis set technique which may be
more efficient for studying localized states than the plane
wave basis employed here. One might expect that the plane
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wave basis will be more useful for studying extended quasi-
free states. Recently, Selloni e/ al.'® have used the plane wave
basis to obtain solutions of the time dependent Schrodinger
equation for an electron moving in a molten salt. This adia-
batic dynamics involves propagating the motion of the sol-
vent classically thus providing a time varying potential field
for the quantum dynamics.

Ili. THEORETICAL MODEL

About 20 years ago, Springett et al.' developed a simple
theoretical model for predicting how the equilibrium radius
of the electron bubble in fluid helium should vary with pres-
sure. Their model gave results which agreed well with ex-
perimental measurements of the bubble radii. We have used
this theory to study the excited states of an excess electron in
helium. In this section we present a brief description of the
so-called Wigner-Seitz model' of the excess electron in a
fluid.

Inside the bubble the electron moves through a region
devoid of fluid atoms and outside, we assume that the elec-
tron scatters through a lattice of solvent particles. Figure 1
shows schematically the situation envisioned here. Follow-
ing Springett et al. we first estimate the electronic energy
barrier to penetration of the undisturbed fluid of scatterers.
In the undisturbed fluid, beyond the region of the bubble, the
delocalized electronic wave function u(r) satisfies

[—_—ﬁzvu V(r)] u(r) = Vu(r). (3.1)

2m

In the equivalent sphere of radius r, = (4/3mp) '/
centered on each solvent atom, we assume that the electron
experiences a spherical potential

FIG. 1. Schematic diagram of the Wigner—Seitz model of the excess electron
bubble and the surrounding lattice of scatterers representing the fluid.
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V(r) = 0, r<a,
Viry=0, 4>a. (3.2)

where a is the scattering length of the electron—solvent inter-
action and for helium ¢ = 1.13 a.u.’

The lowest energy radial electronic wave function in the
equivalent sphere is

u(r) = [Msin(Kyr) + Ncos(Kor) 1/, (3.3)

where the constants M, N, and K, are fixed by normalization
and the boundary conditions

u@) =2 (r,) =0 (3.4)
dr

giving u(r)~sin[K,(r —a)]/r and the eigenvalue,
V®=#K2/2m, is an estimate of the energy required to
force the electron to penetrate into the fluid at this density.
These undisturbed fluid results are now used to treat the
bubble problem.

If the region from which the solvent atoms are excluded
is of radius R we write the localized electronic wave function
as follows:

Y =f(r), r<R,
Y =f(r)u(r), r>R,

and the Schrodinger equation becomes

(3.9)

[‘—hz Vz]f(n = Ef(r), r<R,

2m

[—%—h—z Vi V]f(r)u(r) = Ef(r)u(r), r>R. (3.6)
m

Equation (3.6) for r> R simplifies by using Eq. (3.1)
and assuming that f(r) varies slowly over the Wigner—Seitz
cell’ giving

[;—ﬁz V2 4+ V°]f(r) = Efir), r>R. (3.7
m
The general radial solutions are

Si(r) =ji(qr), r<R,

fi(r) =A,k,(x;r), r>R, (3.8)

where ¢, = (2mE,;/#*)"? and k, = 2m[V° — E,)/#)"/%

The electronic energies E, are determined by averaged
boundary conditions at the edge of the bubble. An appropri-
ate average' must be performed since the boundary of the
bubble can cut through the Wigner—Seitz cells of the sur-
rounding atoms anywhere the equal probability. The aver-
age boundary condition which determines the localized ex-
cess electronic energy levels is

(dlnjz(qzr) ) _ (d In kz('r,r))
R N R '

39
dr dr G:9)

It is important to note that this simple theory gives only
information about states in which the excess electron is
bound to the solvent cavity and ¥ ° is identified as the disso-
ciation energy of the potential well provided by the cavity.
Above this energy the electron will scatter through the fluid
in a continuum state.

We will consider the situation at sufficiently low tem-

perature and high density so that it can be assumed that the
equilibrium size of the cavity is determined by a balance
between the ground state electronic energy E,(R) and the
pressure-volume and the surface work W(R) required to
form a bubble of radius R. Scaled particle theory'® gives the
following expression for W(R) for a hard sphere fluid:

W(R) =Cy+ C,R+ C,R*+ C,R>. (3.10)

The constants C, are simple functions of the hard sphere
diameter, the fluid density, and the temperature.'® In order
to use the hard sphere fluid result for W(R) given in Eq
(3.10) to approximate the behavior of our Lennard-Jones
fluid we must scale the density appropriately so that the
structure of the two fluids are comparable.>?° Figure 2
shows the minima in the total bubble energy E,(R)
= Ey(R) + W(R) for various Lennard-Jones fluid densi-
ties at 7= 309 K and the positions of the minima give the
equilibrium bubble radii R, at these densities. Finally, we
use the values of R, together with Egs. (3.8) and (3.9) to
determine the excited state energies and wave functions for
an electron bubble with the equilibrium radius. To calculate
the inhomogenously broadened line shapes we used
exp[ — BE, (R)] as the distribution function for finding an
electron in a bubble of radius R in the fluid.

IV. RESULTS AND DISCUSSION

In order to compare the electron density obtained from
our computer simulations with that predicted by the
Wigner—Seitz model, in Fig. 3 we display the radial projec-
tion of the square of the ground state electronic wave func-
tion averaged over many solvent configurations. The
Wigner—Seitz result for the averaged ground state wave
function for the equilibrium bubble radius is also displayed.

4.0

3.0 —

& /e

2.0 —

1.0

20 4.0 6.0 8.0 10.0

FIG. 2. Total bubble energy as a function of bubble radius. The total bubble
energy is composed of the pressure-volume and surface work done against
the surrounding fluid and the ground state electronic energy. Three differ-
ent fluid densities are displayed p* = 0.9 (solid), p* = 0.7 (short dashes),
and p* = 0.5 (long dashes).
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FIG. 3. Comparison of the average ground state radial electron density ob-
tained from simulations (points) with the results predicted by the Wigner—
Seitz model (curves) at various densities.

These projections are consistently normalized so that the
integral of the density in three dimensions is unity. For the
computer simulation results, the radial projection was calcu-
lated using the center of mass of the path integral “beads” in
each configuration as the origin. Similar results are present-
ed for the first excited state in Fig. 4. The agreement between
the simulation and theory for both the ground and first excit-
ed state for all densities is very satisfactory considering the
simplicity of the Wigner—Seitz theory. Indeed, some of the
differences observed, particularly for the excited state at
lower densities, may result from the poor definition of the
origin as the center of mass of the path integral isomorphic
chain polymer.

In all the low energy electronic states considered so far,
the electron is bound in the potential well provided by the
cavity in the fluid. When the electronic energy exceeds the
dissociation energy of this potential the electron will be in a
“continuum” state and thus able to scatter through the fluid.
In a macroscopic system there will be many other cavities
which may act as deeper potential wells and trap the electron
at these sites. Because our simulation results are obtained by
averaging over an equilibrium distribution of density fluctu-
ations for a single isolated cavity, we cannot see this “elec-
tron hopping” conduction process in our calculations.
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r/ ou

FIG. 4. Comparison of the average first excited state radial electron density
obtained from simulations (points) with the results predicted by the
Wigner-Seitz model (curves) at various densities.

However, there is evidence in our simulation results of a
transition of the excess electron from bound to continuum
states. In Fig. 5 we present the averaged radial projections of
the electron density in the lowest five states obtained from
our simulation studies at p* = 0.9 and p* = 0.5. Generally it
is found that, after some short range behavior, the electron
density in the lowest energy states decays to zero very rapid-
ly as we move radially outwards from the center of the bub-
ble. However, above a certain energy the radial density ex-
hibits qualitatively different behavior. In these higher energy
states the electron density no longer decays to zero, rather,
we find that the density levels off to an appreciable nonzero
value at large distances from the center of the bubble. This
characteristic long tail signals the onset of continuum state
behavior. Further, we see that at the lower density the onset
of continuum state character occurs at smaller excitations
indicating that, on average, the potential well produced by
the bubble in the lower density fluid can support fewer
bound states than at higher densities.

In Fig. 6 we display the density of excess electronic
states obtained from our simulations. The density of states is
resolved into different bands according to the order of the
energy. Bands corresponding to states which have average
electron density which decays to zero at large distances (i.e.,
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FIG. 5. Radial electron densities for different energy states obtained from
simulations. Left column is for p* = 0.9 and right column is for p* = 0.5.
The appearance of the nonzero tail at large r indicates the onset of contin-
uum state behavior.

bound states) are displayed with solid lines while the bands
associated with the continuum states which exhibit a long
range tail in the average electron density are presented as
dashed lines. The barrier to electron penetration in the fluid
V9 obtained from the Wigner—Seitz model gives an estimate
of the dissociation energy of the potential well provided by
the solvent cavity, i.e., it approximates the electronic energy
at the bottom of the “conduction band” of the fluid. The
values obtained from the theory at the various densities
p* =0.9,0.7, and 0.5 are, respectively, V° = 3.55,2.54, and
1.65 eV and these results are also displayed in Fig. 6. From
this figure we see that these theoretical dissociation energies
agree quite well with the onset of the continuum bands in the
density of states.

In Fig. 7 we compare the calculated density of states
with the predicted by the Wigner—Seitz model according to
the following expression:

p(E) =de exp[ —BE,(R)] Z
1

XS8[E — E,(R)]/de exp[ —BE,(R)].
4.0
Only the bound state bands obtained from our simulations

are shown in this figure. The first excited state band predict-
ed by the Wigner-Seitz model is actually threefold degener-

4.0
P =09
3.0 —
g
-8
g
a
g
[-%

E/ov'

FIG. 6. Density of excess electronic states in helium. The envelope curve is
the total density of states and the component break up is based on the ener-
gy. Solid lines are the bound state contributions and dashed lines are contin-
uum state contributions. Note the change in energy scale for the different
fluid densities.

ate so we have reduced the amplitude by a factor of 3 to
enable comparison with the shape of the component bands in
the simulation results. The scaled particle theory gives a rea-
sonable description of the distribution of cavity sizes in the
fluid since the shape of the ground state band agrees quite
closely with the results of our calculations. In the version of
the Wigner—Seitz model employed here we can say nothing
about the density of states above the dissociation threshold
so the theoretical densities of states are cut off above this
point. From the figure we see that the theory predicts disso-
ciation in the first excited state band at all fluid densities
considered. As the density is decreased, the dissociation en-
ergy moves down through the first excited state band. Simi-
lar behavior is observed in our simulation results as the num-
ber of bound states observed decreases at lower densities.
The Wigner—Seitz model predicts only a single excited state
band and its shape agrees reasonably well with the lowest
energy band obtained from the simulations at the higher
densities. The theory assumes that the cavity is perfectly
spherical. Nonspherical fluctuations in the shape of the cav-
ity lift the degeneracy of the excited state giving the different
energy bands we observe in the simulation results.

In Fig. 8 we present x—y projections of the bound excess
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FIG. 7. Comparison of the excess electronic density of states predicted by
the Wigner—Seitz model (solid curve) with that obtained from simulation
(short dash curves indicate bound states and long dash curve is the total
envelope). The first excited state band predicted by the Wigner-Seitz model
is scaled down by a factor of 3.
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FIG. 8. Projections of the excess electronic wave functions onto the x-y
plane for a configuration of fluid helium at the state point 7= 309 K and
p*=0.9. The lowest energy bound s- and p-like states are displayed.
Dashed contours are negative values. The side length of the box is ~25.2 A

electronic wave functions obtained from our simulations for
a typical configuration of the fluid atoms surrounding an
excess electron in helium at 7= 309 K and p* = 0.9. The
ground state electronic wave function is roughly spherical
being s-like in character. The three excited states shown here
are roughly cylindrical and they are each cut by a single,
fairly complicated, nodal surface. These excited states are
thus p-like in character. If the electron was moving in a per-
fectly spherical cavity then the three p-like states would be
degenerate. Since in our simulations the cavity is randomly
distorted from one solvent configuration to the next, this
degeneracy is removed and we see three different energy
states. As mentioned above, the Wigner-Seitz mode] as-
sumes a perfectly spherical cavity so these p-like states are
degenerate. Since the theory ignores nonspherical fluctu-
ations it cannot predict the true inhomogenous linewidth. As
we have already observed the theory can however give infor-
mation about the contribution of spherical fluctuations to
the linewidth from the scaled particle theory distribution of
cavity sizes.

The bound state energies for an electron in a bubble of
radius R, predicted by the Wigner-Seitz model at various
fluid densities are presented in Table I where we also display
the average eigenvalues of the bound s and p-like states ob-
tained from our computer simulations. We see that the ener-
gies predicted by the Wigner—Seitz model lie within a few
percent of our simulation results.

We have calculated the excess electronic absorption line
shape by accumulating a histogram of the excitation energies
of the electron in which each entry is weighted by the square
of the dipole matrix element | {i;R{r|R)|?. This histogram
was averaged over many different fluid configurations R.
The Wigner—Seitz model can also be used to calculate the
line shape. Again, the distribution of bubble sizes will give us
an inhomogeneous broadening. We have only considered
transitions from the ground state to excited states in these
spectrum calculations. This ground state dominance as-
sumption is justified at the state points considered here as we
have seen that the ground state is well separated from the
excited states on the scale of thermal energies. This assump-
tion will not be true at lower densities.

The comparison between the simulated and theoretical
absorption line shapes is shown in Fig. 9. In general, as the
density is decreased the solvent cavity becomes larger and

TABLE 1. Comparison of average eigenvalues obtained from numerical
simulation with the equilibrium energies predicted by the Wigner-Seitz
bubble model.

eV p*r=09 p*=0.7 p*=075
Simulation

E, 1.90 1.48 1.08
E, 3.17 2.40 1.64
E, 3.49 2.61

E, 3.76 2.74

Theory

E, 1.68 1.35 1.05
E, 3.07 2.37 1.65
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FIG. 9. Calculated absorption spectra for excess electrons in helium at
T = 309 K for three densities: p* = 0.9 (solid), p* = 0.7 (short dash), and
p* = 0.5 (long dash). The broad bands are the simulation results while the
narrow smooth curves are the predictions of the Wigner—Seitz model scaled
down by a factor of 3. Absolute intensities in a.u.’

spacing between the electronic energy levels is smaller. This
explains the red shift in the band center with decreasing den-
sity. The theory reproduces the density dependence of the
band center quite accurately and also does reasonably well
predicting the relative intensities at the different densities.
As might be expected from our discussion of the density of
states we see that the theoretical line shape is much narrower
than that obtained from simulation due to the importance of
nonspherical fluctuations in the cavity as discussed above.
In Fig. 10 we show how the broad electronic absorption
line obtained from our simulation studies is in fact composed
of several bands which result from transitions from the s-like
ground state to various excited states. Transitions ending in
continuum states are presented as dashed bands. At the low-
est density we see that the continuum states are extremely
important in determining the high energy tail of the absorp-
tion band.
The Thomas--Reiche-Kuhn sum rule states that for a
Z electron system the oscillator strengths f,,
= 2m,/# (E, — E,)|x,,|* for all the transitions originating
from a given state |s) satisfy the following result:

gfks =Z,

wherex,, = (k |x|s). The sums of the oscillator strengths for
the transitions between the ground state and the bound ex-
cited states in our one electron system at p* = 0.9, 0.7, and
0.5 are, respectively, 0.86, 0.69, and 0.23. These results are
averaged over the three Cartesian directions and over many
configurations of the solvent. Thus bound to continuum
state, transitions become important in the electronic absorp-
tion line shape as the solvent density is reduced. In fact if we
sum the oscillator strengths over all the ten states included in
our calculations at p* = 0.9, 0.7, and 0.5 we find that the
total oscillator strength associated with these states is 0.90,
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FIG. 10. Breakup of the spectra presented in Fig. 9 into the component
bands associated with the various eigenvalues. Total envelope and bound
state component bands are displayed as solid curves and the dash curves
indicate continuum contributions. Absolute intensities in a.u.”

0.81,and 0.61. Thus, at the lowest density the absorption line
shape displayed in Figs. 9 and 10 is missing nearly 40% of
the oscillator strength because the technique we use here
only considers a small range of energy states in the contin-
uum.

V. CONCLUSIONS

One result we have observed in this study is that the
fluctuating potential wells experienced by an electron in a
simple fluid become, on average, more shallow and able to
support fewer bound states as the solvent density is de-
creased. At p* = 0.9 in helium, e.g., we saw that the bubble
could support the ground s-like state and three p-like excited
states. At p* = 0.5, on the other hand, only a single bound
excited state was observed. For even lower solvent densities
we expect that the ground state will also be enveloped by the
continuum and that, on average, the density fluctuations in
the fluid will be unable to support any bound excess elec-
tronic states. Under these circumstances the electron will
have high mobility. This situation must arise in systems such
as dense fluid xenon and other polarizable liquids where the
electron mobility is observed to be very large at higher liquid
densities.?!?2
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An interesting experiment which will give information
about the validity of the Born—Oppenheimer-like approxi-
mation which we have made in these studies is to measure
the excitation induced electronic mobility. When the elec-
tron is in a state which is bound to a density flucutation, the
mobility will be determined by the motion of the entire bub-
ble through the fluid. If we excite the electron to a higher
energy bound state and the average cavity geometry does not
change then the mobility should remain close to the value
determined by the bubble motion in the ground electronic
state. Deformation of the solvent cavity on electronic excita-
tion and thus breakdown of our approximation would be
signaled if the mobility was strongly dependent on the par-
ticular bound state into which we excite the electron. This
experiment could be performed in helium at p* = 0.9 since
the three p-like states which are strongly dipole connected to
the ground state are bound to the cavity. At p* = 0.5, on the
other hand, excitation could take the electron from a bound
to a continuum state and high mobilities may be observed.

The Wigner—Seitz model makes some rather extreme
approximations including treating the solvent as an ordered
lattice of scatterers, thus ignoring the disorder and fluctu-
ations in the fluid. Use of the averaged boundary condition
at the edge of the bubble is analogous to turning the Born-
Oppenheimer approximation upside down which should
have rather serious dynamical consequences. However, de-
spite all its inadequacies, we have demonstrated that this
simple theoretical model gives a reasonable description of
the bound states of an excess electron in fluid helium. A
variety of properties calculated in our simulation studies
compare quite well with the results predicted by the Wigner—
Seitz model. The model is even able to predict the density
dependence of the average electron bubble dissociation ener-
gy with reasonable accuracy.

Nichols and Chandler®® have recently extended the
equilibrium RISM-polaron theory, using analytic continu-
ation techniques, to give excited state and dynamical infor-
mation for electrons in simple fluids. The equilibrium ver-
sion of this approximate theory gives results which agree
quite well with computer simulation calculations®* provided
the hard sphere distance of closest approach d, describing
the electron-solvent interaction, is adjusted appropriately.

The dynamical consequences of the approximations
made in this theory have not yet been explored. In Fig. 11 we
present a comparison between the absorption coefficient ob-
tained from our simulations and that predicteed by the
RISM-polaron theory. The theory treats the solvent as a
hard sphere fluid, thus the density must be scaled appropri-
ately, as disucssed earlier (i.e., ps ~0.6p%; ), so that a com-
parison with the Lennard-Jones system can be made. We
present the results of the RISM-polaron theory”® with
A =#(B/m,)"? = 6.620 corresponding to the same tem-
perature as our simulations and d = 0.48¢. Laria et al**
found that this value of 4 gave reasonable agreement
between RISM-polaron theory and simulation for the equi-
librium properties of an excess electron in fluid helium.
From the figure we see that the agreement betweeen simula-
tion and theory for this dynamical property is generally very
satisfactory. The band position, absolute intensity, and low
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FIG. 11. Comparison of RISM-polaron theory absorption coefficient ob-
tained with d = 0.48¢ (points) with our simulation results (curve). pfy
= 0.5 and T = 309 K. Absolute intensities in a.u.2, »* = Shw.

energy behavior are in good agreement. However, there is a
discrepancy in the linewidth due to the appearance of a dis-
tinctive high energy tail in the RISM-polaron theory results
which is not observed in our simulations.

This difference may result from the approximations
made in the RISM-polaron theory. To obtain dynamical
properties from the theory, Nichols and Chandler? analyti-
cally continue the so-called mean square displacement cor-
relation function which depends on the spatial extent of the
electronic distribution. Sprik, Klein, and Chandler* have
compared path integral Monte Carlo calculations of this cor-
relation function with RISM-polaron theory predictions for
the hard sphere system. They find that the RISM-polaron
theory overestimates the spatial extent of the electronic dis-
tribution in the regime of densities relevant to our compari-
son. By adjusting the hard sphere interaction diameter d to
give agreement between the RISM-polaron theory predic-
tions and equilibrium simulation results, Laria and Chan-
dler have obained an effective potential which, when used in
their approximate theory, gives a reasonable description of
the average spatial extent of the electronic distribution. Once
these geometrical considerations are well represented, the
theory should give a good description of the band position.
The line shape is determined by fluctations in the solvent and
the electron distribution. In the RISM-polaron theory, fluc-
tuations are represented using a mean field approximation .
The accuracy of this approximation and the influence of ad-
justments in d on the fluctuations are not clear. Inadequate
treatment of fluctuations may be the source of the difference
in spectral line shape. The RISM-polaron theory involves
several approximations and it would be useful to assess the
accuracy of each one of these, where possible, using comput-
er simulation.

Another explanation for this difference may be that our
calculations give a poor representation of the high energy
continuum states which may contribute to a tail. As noted
earlier, and observed in Fig. 10, these states become very
important at lower solvent densities. The experimental ex-
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cess electronic absorption spectra in polar fluids such as wa-
ter and ammonia all show a characteristic high energy tail.
Simulation studies on these systems®® have failed to repro-
duce this feature. By virtue of the use of periodic boundary
conditions, these calculations all suffer from the same prob-
lem we have encountered when describing the continuum
states and this inadequate treatment of the continuum states
may be responsible for the failure to give the experimentally
observed tail.

We would have liked to have made a more extensive test
of the RISM-polaron theory. It is difficult to extend our cal-
culations to much lower densities because of the inadequate
treatment of the continuum states discussed above. We are
developing new methods which should enable us to treat the
continuum states more accurateley. Unfortunately, one en-
counters numerical problems when attempting to use the
RISM-polaron theory to study systems at higher densities.
The problems apparently result from the extreme differences
in the various time scales of the electronic motion.”> The
electron moves very rapidly bouncing back and forth inside
the bubble but the center of charge diffuses very slowly
through the lattice of fixed scatterers. It is hoped that these
problems with application of the RISM-polaron theory can
be overcome so that a more complete test of the theory can be
made by comparing its predictions with simulation over a
wide range of densities. ,

It is important to note that all the theoretical and com-
putational models discussed in this paper invoke the adiaba-
tic approximation. When we did our path integral Monte
Carlo calculations to obtain the various solvent configura-
tions, the nuclei were moving over individual Born—-Oppen-
heimer electronic energy surfaces with a Boltzmann prob-
ability distribution based on the electronic eigenvalues. The
RISM-polaron theory calculations also make this approxi-
mation.?® Nonadiabatic effects will become important when
the energies of the different electronic states are close as they
are for electrons in low density solvents.

In the polar fluids water®’ and ammonia® a detailed
study of the onset of continuum state behavior with elec-
tronic excitation has not yet been conducted. However, the
electronic wave functions in these polar fluids show well
shaped contours localized around the region of the cavity
even for states higher in energy than four to five excitations.
Thus, the potential well which binds the electron to the cav-
ity in these polar liquids must be considerably deeper than in
helium. This is not really surprising as it has been observed
that the polar molecules around the electron orient to form a
clathrate cage on solvation. The electron attractive ends of
the surrounding molecules arrange themselves to produce a
deep negative potential region outside which the repulsive
ends give rise to a high potential barrier. This structural or-
ganization of the fluid gives the very high bubble dissociation
energies expected in these liquids.

The main extension of this work which we are currently
pursuing is the development of both numerical and theoreti-
cal treatments of the continuum. From the energies listed for
the states in Fig. 5 we see that the continuum states obtained
from our simulations are in fact separated by a finite energy
spacing on the order of the energy of the free particle state
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with wavelength equal to the periodic box dimension. This
value gives the energy resolution of the technique. The rea-
son we only explore a very small portion of the continuum
band in our studies is because of the method we use to work
our way sequentially up through the energy states. When we
hit the continuum we spend all our time finding low lying
states which are orthogonal to all those previously deter-
mined and there will be effectively an infinite number of such
states. A more efficient approach which should give the ma-
jor features of the band structure is to propagate a solution in
real time which is held orthogonal to the bound states of the
bubble and employ a spectral analysis of the real time corre-
lation function similar to that described by Feit, Fleck, and
Steiger.® We are currently developing this technique for per-
forming band structure calculations in fluids. Similarly, we
are extending the Wigner—Seitz model so that it might also
handle continuum states.
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