Structure and energetics of Xe, : Many-body polarization effects
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In a previous paper, Martyna and Berne, J. Chem. Phys. 88, 4516 (1988), diffusion Monte
Carlo simulations were performed to determine the absolute binding energies of an excess
electron to small clusters of xenon atoms (7<19) using a pair additive pseudopotential. In this
approximation, the electron-xenon polarization energy is treated as pair additive and therefore
ignores the induced dipole~induced dipole interactions. Here we treat the many-body
polarization problem in the dipole approximation. It is found that while the smallest stable
cluster anion is Xeg for the pair polarization model this increases to Xe; for the many-body
polarization model. In fact, the electron binding energy corresponding to the pair-polarization
model was found to be a factor of 2.7 larger than for the many-body polarization model for all
the clusters studied. In accord with this very large destabilization of electron binding energy
(induced by many-body polarization), the spatial extent of the electronic ground state in the
many-body polarization model increases compared to that of the pair polarization model.

We also compare our results for both the many-body polarization and the two-body
polarization models to corresponding dielectric continuum models developed by Stampfli and
Bennemann, Phys. Rev. A 71, 1674 (1988). In the many-body polarization case, the
continuum model agrees well with our results. However, the agreement in the pair polarization
case is rather poor for all cluster sizes. If parameters of the continuum model are adjusted to
obtain agreement for small clusters sizes, the model is found to break down for large clusters
sizes where the spatial extent of the electron is small enough that the microscopic details of the
cluster become extremely important. A new variant of the fast Fourier transform projector
method suitable for use in problems involving electron attachment to clusters is also developed.
The results obtained with this new method are shown to agree with those of diffusion Monte

Carlo.

L. INTRODUCTION

Recently we have studied the electron binding energy
and structure of xenon cluster anions Xe_ ,'where the elec-
tron was assumed to interact with each of the xenon atoms
independently through a pseudopotential presented by
Coker et al.? The electron-atom pseudopotential contains a
polarization term — e’a,/2r*, which is the interaction
between the electronic charge and the induced dipole mo-
ment on the xenon atom. It is necessary to go beyond this
pair polarization model and to include many-body polariza-
tion effects because the polarizability @, of xenon is very
large. Although many-body polarization effects on the sol-
vation of classical cations in Xe clusters have been treated
before,? this paper adresses the solvation of a quantum me-
chanical electron. Recently, Wallqvist e# al.* showed that
inclusion of many-body polarization contributions shifts the
absorption spectrum of an excess electron in liquid water to
the blue by approximately 0.2 eV and also gives rise to signif-
icant structural changes in the electron distributions.® Given
the much larger polarizability of xenon than water, we ex-
pect much larger effects here.

It is easy to predict the qualitative effects of many-body
polarization on the stability of Xe,” . The polarization energy
will increase (become less negative) in going from the pair
polarizability to the full many-body polarization calculation
because the local electric field is smaller than the unscreened
Coulomb field due to the electron. That is, the pair polariza-
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tion model ignores the induced dipole-induced dipole inter-
actions (i.e., considers only the unscreened Coulomb field)
which are repulsive for near neighbor xenon atoms. There-
fore, many-body polarization is expected to lead to a much
weaker binding energy of the electron to the cluster. This
destabilization of the cluster anions will cause the electron to
become more extended than was found in our previous pub-
lication.'

In this paper the diffusion Monte Carlo method is used
to compute the binding energy and structure of an excess
electron to Xe, as a function of cluster size » using a many-
body polarization pseudopotential. The xenon atoms
(n < 19) were frozen in the minimum energy geometries de-
scribed by Hoare and Pal.%” Finite temperature calculations
performed on the full electron xenon system for the pair
polarization model have shown that for small clusters the
electron does not effect the xenon distribution.’ A frozen
xenon model is therefore perfectly adequate to determine
ground state properties of the electron. The results of the
diffusion Monte Carlo simulations of an excess electron in
the frozen xenon system for the many-body polarization
model are herein compared to those for the two-body mod-
el.! In agreement with qualitative predictions the electron is
destabilized by the addition of many-body polarization. The
smallest cluster found to bind an electron is Xe,, with the pair
additive polarization but is Xe, with many-body polariza-
tion. The binding energy, corresponding to the many-body
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polarization model is found to be reduced by a global factor
2.7 from the pair polarization model and the electron is
found to exist in a more diffuse surface state. As the electron
is even more weakly bound in the many-body polarization
model, we expect it to be even less likely to perturb the xenon
distribution than the pair polarization model which again
for small clusters caused no discernable changes in the distri-
bution.

Recently, a dielectric continuum model was developed
to calculate the electron binding energy to xenon clusters.® It
is based on a model used by Cohen et al. to study surface
states in liquid helium.® First, the electron—cluster interac-
tion potential is determined from the electrostatic potential
of a system consisting of a dielectric sphere and a point
charge. The resulting “continuum” pseudopotential is then
substituted into the Schrédinger equation which is solved to
obtain ground state energies and wave functions. We com-
pare this simple model and our microscopic model, and find
that it gives reasonable agreement when a proper choice is
made for the dielectric constant. Why should a continuum
model which ignores the details of the electron—xenon poten-
tial surface agree with a microscopic model? A cluster may
be approximated by a continuum model if the cluster is small
enough that the associated electronic ground state is very
diffuse, extending to large radial distances from the cluster,
and therefore has small amplitude in the interatomic spaces.
In this case, inaccuracies inside the cluster may not have
large effects on the wave function. We expect that for much
larger clusters, where the ground state is a bulk state, the
dielectric continuum model will not agree with the micro-
scopic model. Although we have not studied larger clusters
here, we have compared the results of a pair polarization
continuum model] (defined as a limit of the many polariza-
tion model) with our microscopic pair polarization model.
Poor agreement is found for all cluster sizes indicating a
break down of the theory. If parameters are chosen to yield
adequate results for small clusters, the results for larger clus-
ter sizes n>15 become inadequate as expected. This inade-
quacy at large cluster size is observed more quickly for pair
polarization than for many body polarization because the
omission of many-body effects allows the electronic ground
state to become less extended. Again, in such cases, the chan-
nels discussed here and in previous papers play a dominant
role that is ignored by continuum theories.

In this paper we also introduce a new fast Fourier trans-
form projector method for determining the states of an ex-
cess electron bound to clusters. Previous FFT meth-
0ds'®'>!5 are not suited to such calculations. This new
method should therefore prove very useful for the study of
bound and excited states of cluster anions.

Il. METHODOLOGY
A. Many-body polarization

The many-body polarization potential for a point

charge interacting with a set of polarizable atomic centers

iSIB,M

V;’many-body)(re,r) — __;_ 2.1)

2”: J79

i=1
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where the sum is over the polarizable centers, y; is the in-
duced dipole moment of the ith polarizable center, E{”’ is the
electric field on the ith center due to the point charge which
is given by,

E'(O) = erie/r;‘e) (2.2)
where r,, is the distance from the point charge to the ith
polarizable center. The induced dipole moment of the ith
center is defined as

B = ook, (2.3)
where E,; is the local electric field acting on the ith center,
and a, is the static polarizability of atomic Xe;

n
E =E —q, T, E;
kAi=1
and T,, is the second rank tensor representing the dipole
propagator,

T = [I — ——Brikrik ]L .
' i 1rk

It should be noted that if many-body effects are ignored
one calculates the induced dipole using only the bare Cou-
lomb electric field,

24)

(2.5)

n; = o E. (2.6)

In classical electrostatics one solves Eq. (2.4) for the
electric fields at the atomic centers and computes the in-
duced dipoles. Then, the induced dipoles and the electric
fields can be used to compute the polarization energy
y panveedy This is not appropriate quantum mechanically
because the polarization interaction will be reduced as the
electron penetrates the core electrons of an atom. " In fact, in
the electron—xenon pseudopotential the two-body polariza-
tion potential® is multiplied by a switching function S(r)
such that;

VP (r) = — ea,S(r)/2r (2.7)
with
S(ry=1—[14+ (") +2(/n* +4/3()°
+2/3(fr)* + 4727(fr) Jexpl — 2fr],  (2.8)

where S(r) turns off the effective charge as r—0,
f=0.638 411 7a; ', and @ = 27.09 a}. Thus, to treat many-
body polarization in xenon, we simply allow the charge seen
by each xenon atom to be a function of the electron—atom
distance. This, of course, modifies the corresponding Cou-
lomb field in Eq. (2.4).

Elg()):es(rie)l/zrie/r?e‘ (2'9)

With this modification of the Coulomb field the many-body
polarization energy is computed in the same manner as is
described above for classical electrostatics. It is easy to see
that the resulting formulation for the polarization energy
reduces to Eq. (2.7) for the case of one xenon atom and one
electron. Finally, the full potential energy can be expressed
using our fit to the full pseudopotential,® the two-body polar-
ization energy and the many-body polarization energy.

V(re’r) = 2 [Vt(t?tt)(rie) - V;Pﬂi")(r’_e)]
i=1

+ V‘(,many-body)(re’r). (210)
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Here ¥V { in atomic units is
4920 12.59
Vo (r) = [ — ] .
e (3793 + r°) 7
Two methods were used to simulate the Xe, anions on

this potential energy surface: diffusion Monte Carlo and the
projector method.

(2.11)

B. Diffusion Monte Carlo

Difffusion Monte Carlo'>~"" is based on solving the
imaginary time Schridinger equation. For an electron mov-
ing in a potential field of # frozen xenon atoms this equation
is

ap(r,7) _

37- _I/\Jlﬁ(rﬂ-)

ﬁz
2m,
where V.. is a reference energy and ¥ (r) is described above.
This equation can be transformed from an equation for
¥(r,7), the wave function, to an equation for
fr,7) = ¢(r,7)¢¥ (r), where ¢ is an arbitrary function of
the electron coordinates.'®'°

Ser) _ o grpery :—ZV[f(r,T) V log (1) ]

ar 2m,
ref ].[(r T)

Hyr(r)
Yr(r)

This equation is simulated by dividing 7 into small intervals
A7 such that each term in the equation can be considered
independent. An ensemble of electrons representing f(r,7) is
then propagated according to the independent pieces of Eq.
(2.12). Such a procedure that allows large values of A7 to be
used is outlined by Anderson.”® At large values of 7 = nA7
the ensemble will have decayed to ¥,1¥,, where ¢, is the
ground state wave function.

As in the previous paper' a pair product form was taken

for ¥ ..

Yr(r) =

v [V(l‘) - Vref] 1//(1‘,7'), (2.12)

(2.13)

II Ar—R:D)
i=1

Again, two different functional forms for 4 (7) were used in
the present calculation. The first is the zero energy s-wave
solution to the Schrodinger equation for the interaction of an
electron with a single xenon atom.?!

ﬁZ

5
h(r) was chosen because it has no variational parameters.
Simulations based on Eq. (2.13) using A,(r) as the impor-
tance sampling function, were performed to determine the
set of clusters that would bind the electron. Having deter-
mined which electron—cluster systems were bound, vari-

ational calculations were performed on these systems using a
second function

(2.14)

V- Ve-xe(r)]rh.(r)=0, (2.15)

1 v
h,(r) =—-—ex [——
2 pl/n p

— ar|.
r7r +c¢)

(2.16)
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The additional term 7'/" added to 4, of the previous paper’
was found to improve the variational energies considerably.
All constants are variationally adjusted. The variational in-
tegrals were evaluated numerically using a three dimension-
al quadrature.” The resulting ;- was sufficiently close to
the ground state wave function that potential and kinetic
energy and structure could be calculated using the interpola-
tion formula.'®

() =2(4),—(4) .
The total energy E, can be calculated by averaging " Y/t

(2.17)

<?1¢T> _ St (HY)/rds 5 yoHpdy
Yr iy S fdv Sfav o
(2.18)

The coarse simulations using 4, were run for 15 000
times steps of length 0.6 a.u. Averages were kept over the last
10 000 steps. The simulations using importance sampling
function 4, were run for 50 000 time steps of length 0.4 a.u.
Averages were kept over the last 40 000 steps of a run.

C. Projector method

Another method for determining the allowed energies
and energy eigenfunctions of a given Hamiltonian is to rec-
ognize that if ¢ is a function that is strictly orthogonal to all
of the first n energy eigenstates 1,...1, _, the

—BH1y = exp[ — BE, ¥,

(Note that this relationship is used in diffusion Monte Carlo
with n = 0).

In order to utilize Eq. (2.19) a way must be found to
apply the propagator to a given wave function. One method
is to expand the wave function in a complete set of states
which are eigenfunctions of Hamiltonian H; and use a
“short time” split operator approximation to evaluate the
propagator.

lim exp| (2.19)
B~

B A~ A A P
exp[ — —(H— H, + Ho)]

= H exp[ ~£—(H fl(,)]

i=1
Xexp[ ——gﬁo]exp [ —f—P(I/}——fIO)].
(2.20)

If I?IO is chosen such that (I? — f]o) contains no differential
operators, it is easy to evaluate Eq. (2.19). One simply trans-
forms between two Hilbert spaces, position space and the
space of the eigenfunctions of H, and at each step modifies
the resulting distribution at each point in the given space by
exp] —B(H — H,)/2P] and exp[ — BE,/P ], respective-
ly. However, because we cannot, in general, perform the
transformations analytically on the full Hilbert space we
must truncate both spaces. That is we use a finite number of
eigenfunctions and a finite number of points in position
space. However, in order for Eq. (2.19) to converge, the
eigenfunctions must be strictly orthogonal in the finite Hil-
bert space.

The usual choice to take for Ho is the kinetic energy
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T 10-15 : 10-15
operator. T. The wave function can be expanded as

N
¢= Y exp[2mikx/L],
k=1
where L is some cutoff in position space. The finite position
space is defined to be

x;=(j—1)L/Nj=1,N. (2.22)

It is easy to show that the basis wave functions are orthogo-
nal on this finite space. We are not, however, limitedAby this
choice. The most useful extension of this is to choose H, such
that its eigenfunction are orthogonal polynomials. Gaus-
sian-type quadrature points (degree n + 1) can then be used
to define the finite position space. The harmonic oscillator,
the morse oscillator (bound states), and the rigid rotor
Hamiltonian (specifically the associated legendre polynomi-
als) all come to mind. The advantage of using Fourier repre-
sentation is that the number of operations for a transform is
only Nlog(N), however, the gain in efficiency by using a
more appropriate basis may be considerable.

The Fourier basis is a poor choice for electron—cluster
systems where the electron is found in an extended or diffuse
surface state. The points of the finite position space are
spread equally throughout the interval. Since the electron
wave function only changes rapidly near the cluster and the
wave function extends far from the cluster this is very ineffi-
cient. A better choice is to expand the wave function as

N N’

N
rgy = Z Z sin(akr/L)S ['(x)exp[imé],
m= — =|m =
NI [ k=1 (2.23)

where x = cos(f) and the S7'(x) are the associated Le-
gendre functions. If we now propagate i, instead of ¢, the
propagator is

(2.21)

~ ﬁz 52 ~ A~
expl —BH ] =CXP{ -8B [ —3aan TL/0P V)”
(224)

The position space is defined by equally spaced points in »
and ¢ and standard Gaussian quadrature points in x. It can
be shown that a sine transform is orthogonal over this basis
and that the S'["(x) are orthogonal over the Gaussian quad-
rature basis for the same m. Also, these quadrature points
are spaced to efficiently reproduce the variation of the wave
function close to the origin. The short time approximation
used is

exv[—BIAi]=eXp[—ﬂ]exp —Eli] (2.25)
2 272
prt 3
: — 2.26
Xexp[ 2m 3% ( )

R

Thus, a half-propagation consists of a multiplication of the
wave function in position space, a Fourier transform from ¢
to m, an associated Legendre transform from x to / followed
by a multiplication in /, m, r space, a sine transform, and a
multiplication in /, m, k space. Note that only the associated
Legendre transform cannot be calculated with a FFT (A

sine transforms may be expressed as a FFT with twice as
many points).

The method was applied to Xe;; for both the pair polar-
ization model and the many-body polarization model. For
both models a time step of 7 = 0.03 was used with a grid size
of 256 points in 7 and 32 points in both x and ¢. For the pair
polarization model r was allowed to range from 0 to 18¢
while for the many-body polarization model » was allowed to
range from 0 to 300. In both cases the grid was centered on
the center of mass of the cluster. It was therefore easy to
calculate radial distributions centered on the center of mass.

Itl. RESULTS
A. Diffusion Monte Carlo simulations of Xe,

The ground state energy of an excess electron in each of
a series of xenon clusters was determined by diffusion Monte
Carlo simulations using the importance sampling function
h, defined in Eq. (2.15). Many-body polarization was in-
cluded explicitly using Egs. (2.1) and (2.4). Variational cal-
culations were then performed using the function 4, defined
in Eq. (2.16) (see Table I). Diffusion Monte Carlo simula-
tions using this optimized function 4, gave refined ground
state energies and allowed determination of the potential en-
ergy, kinetic energy and the structure of the electron in each
of the clusters. All calculations were performed with the xe-
non atoms frozen in their neutral lowest energy geometry. In
our first paper we have shown in finite temperature simula-
tions on the entire electron xenon system using the pair po-
larization model that the electron induces no changes in the
xenon distribution for small clusters. We expect the same
will true for the many-body polarization model as the elec-
tron will be shown to be less strongly bound than in the pair
polarization model and thus less able to induce changes in
the xenon distribution.

The ground state energy of an excess electron in xenon
cluster anions, Xe,, with n ranging from 6 to 19 are plotted
in Fig. 1(a) where they are compared to the results obtained
using the pair polarization model. The effect of many-body
polarization, is quite remarkable. Xe,, found to bind an ex-
cess electron with pair polarization, does not with many-

TABLE I. Variational calculations: Many-body polarization.

Cluster E...’K (EY/K a(a.u.)
Xe; —6+1 1 0.0013
Xe; —2442 —16 0.0015
Xe; —5042 ) 0.002
Xep 8542 —73 0.0025
Xen, —12242 — 108 0.0025
Xei —157+2 —137 0.0027
Xe; 161 +2 — 145 0.0024
Xen — 19743 — 175 0.0024
Xe;; —~23243 — 205 0.0024
Xee —269+43 — 238 0.0024
Xe; — 304+ 4 — 275 0.00255
Xes —335+4 - 303 0.00255

y =161 c=T70
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FIG. 1. The ground state energy of an excess electron in Xe,, as a function of
cluster size n. Energies calculated using the pair polarization model are
compared to those calculated using the many-body polarization model. The
second figure shows the difference between the ground state energy of an
excess electron in Xe, and Xe, . , asafunction of cluster size, again for both
the pair and many-body polarization methods.

body polarization. In fact, the ground state energy decreases
by a factor of approximately 2.7 for all clusters, but the de-
tailed features of the curve remain the same on that scale (see
Fig. 2). That is, for both the pair and many-body polariza-
tion models, the ground state energy decreases monotonical-
ly with a reduction in slope between Xe; and Xe;; [see Fig.
1(b)] due to the contraction of the cluster when it completes
a shell to become an icosohedron as discussed in the previous
paper.! Note that the energies for pair polarization are
slightly different for the larger clusters than those presented
in the previous paper. The improved form of /, (see Table I1
for variational parameters for two-body polarization) and a
faster computer allowed the use of a smaller time step 0.05
a.u. which was needed to insure convergence of the energies
of the larger clusters. (The percent error induced by the larg-
er time step decreased from 6% at Xe;, to ~0% at Xey .)

Figure 1(b) shows the, AE; = E,(n + 1) — Ey(n), in-

-200

E/K

-800

-1000
5

Xen

FIG. 2. The ground state energy of an excess electron in Xe,, as a function of
cluster size n. Energies calculated using the pair polarization model are
compared to those calculated using the many-body polarization model mul-
tiplied by a constant (¢ = 2.7).

crement (rate of change) in the ground state energy on add-
ing one more xenon atom to the cluster as a function of clus-
ter size n. After an initial rapid decrease, the rate of change
begins to level off and become relatively constant except at
n = 12,13 as previously discussed. Linear least squares fits of
the energy as a function of cluster size »,

Ey(n)y=an+b (3.1)

are summarized in Tables III and IV for many-body and pair
polarization, respectively. Briefly, the slopes are approxi-
mately — 35 K/atom for many-body polarization and — 89
K/atom for pair polarization. Of course, for very large clus-
ters where the electron becomes fully solvated; that is, forms
a bulk state, the addition of one xenon atom to the cluster
should not change the electron binding energy. However, for
the small clusters studied here, the electronic ground state

TABLE II. Variational calculations: Pair polarization.

Cluster E,../K (EYK a(a.u.)
Xeg —-12+2 -6 0.0008
Xe; 4042 —34 0.0017
Xey —90+2 — 83 0.0025
Xey — 15242 — 145 0.003
Xejo —23543 — 226 0.0035
Xep —323 43 —312 0.0039
Xep; —418+4 — 401 0.0042
Xes —4554+-4 — 439 0.004
Xern —535+4 — 515 0.004
Xe; 620+ 4 ~ 599 0.0041
Xers —709+4 — 687 0.0042
Xep; —809+5 - 780 0.0043
Xep —903 45 — 871 0.0043
Xep —983+6 — 948 0.0044

y=92 c=40
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TABLE III. Linear least squares fits to the ground state energetics (many-
body polarization) y(n) = a-n + b and ris the correlation coefficient.

- TABLE IV. Linear least squares fits to the ground state energetics (pair

polarization) y(n) = a'n + b and ris the correlation coefficient.

Quantity Xe; a b 7| Quantity Xe, a b 7|

n= 9-12 —355 269.0 0.999 n= 9-12 — 88.6 648.3 0.999

Ey/K n=13-18 — 347 288.9 0.999 E/K n=13-19 —89.6 717.4 0.999
n= 9-18 —30.7 223.0 0.996 n= 9-19 —82.1 591.2 0.998
n= 7-18 — 144 619.1 .0.987 (VY/K n= 7-19 —332 1601 0.996

(VY/K n= 7-12 —203 1160 0.995
n=13-18 — 136 5279 0.997 (TYK n= 7-19 252 — 1049 0.994
n= 7-18 115 —409.4 0979

{TYK n= 7-12 175 —961.9  0.995
n=13-18 103 —257.1 0.994

has a large, diffuse, surface component as shown later, and
the binding energy changes linearly with cluster size.

The monotonic increase of binding energy with cluster
size and the dramatic decrease in binding energy with the
addition of many-body polarization can be explained by mi-
croscopic considerations. Deep channels of electronic poten-
tial energy run through a xenon cluster. The channels are
formed because the minimum of the electron xenon pseudo-
potential occurs at r, . = d,;,/2 where d,,;, is the mini-
mum of the xenon—xenon potential. Thus, for xenon atoms
placed at the lowest neutral cluster energy configuration
(though as previous stated the electron should not modify

these positions), the minima of the electron xenon pseudo-
potential overlap forming a chnnel. The channels of Xe;™ are
displayed in Fig. 3. The binding energy of the electron will
increase with the number and depth of the channels. The
addition of a xenon atom to a cluster, provides just this ef-
fect. Therefore, the binding energy of the excess electron
increases with cluster size. Many-body polarization lowers
the binding energy by changing the depth of the channels.
Essentially, the many-body polarization ansatz allows the
dipoles induced on the xenon atoms by the presence of the
electron to interact through the dipole tensor. Pair polariza-
tion does not include these induced dipole-induced dipole
interactions. These interactions add repulsive energy to the
system and substantially decrease the depth of the channels.
This can be seen in Fig. 4 where the absolute minima of the

FIG. 3. The potential energy surface
(z=0) of Xe; for the polarization mod-
el.
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FIG. 4. The absolute minimum of electronic potential energy as a function
of cluster size n. Minima calculated using the pair polarization model are
compared to those calculated using the many-body polarization model.

electron—-xenon potential energy surface for many-body po-
larization and two-body polarization are plotted vs cluster
size. It must be stated that despite the change in depth of the
channels, their general shape remains unchanged. The shape
of the channels is determined by the xenon—xenon potential
energy (which determines the xenon position) and the
“hard core” of the pseudopotential which is not effected by
many-body polarization. Thus, the depth of the potential
energy surface is changed only around the minima. The
many-body polarization potential is, again, less attractive
than the two-body polarization potential in the channels. We
therefore expect that the electron will be more extended, and
from the virial theorem we expect it to have a smaller kinetic
energy in the system with many-body polarization. The de-
crease in Kinetic energy does not spring from the short range
repulsive interactions (which are unchanged) but from the
trivial delocalization effect caused by the reduction in the
channel attractions.

The spatial distribution of the electron on the xenon
clusters was also markedly changed by the inclusion of
many-body polarization. The electron is much more ex-
tended with many-body polarization than is the case when
only pair polarization is considered. As in our previous
work, we define P(#) to be the probability distribution func-
tion of the electron position with respect to the center of
mass of the xenon cluster, and g(r) is defined as the electron
density at a distance r from a xenon atom averaged over all
xenon atoms [ f 477°g(r) = n]. In Fig. 5, P(r), is shown for
a number of clusters both with and without many-body po-
larization. The effect of many-body polarization is again to
delocalize the electron. For example, P(r) for Xe; with pair

polarization the electron probability peaks at 0.42 while with
many-body polarization, the probability peaks at 0.29 and
extends much further from the cluster. The g(#) shown in
Fig. 6 also exhibits the decreased localization. Again the
peak heights are noticeably smaller when many-body polar-
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FIG. 5. The electron probability distribution function of electron position
with respect to the cluster center of mass P(r) for three cluster sizes. Distri-
butions calculated using many-body polarization are compared to those cal-
culated using pair polarization.

ization is included, due to the increase in the potential energy
in the channels. Note, the effect of the channels may be seen
in the g(r) as the first peak occurs at d,;, /2 and the second
peak occurs at 3d,;,/2.
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FIG. 6. The electron—xenon pair distribution functions g(#) for three clus-
ter sizes. Distributions calculated using many-body polarization are com-
pared to those calculated using pair polarization.

The effect of many-body polarization on the potential
and kinetic energy of the electron in xenon clusters is com-
mensurate with the effect on the structure. Both the kinetic
and potential energy are reduced from their values when
only pair polarization is considered. This can be observed in
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FIG. 7. The potential and kinetic energy of an excess electron as a function
of cluster size n. The potential and kinetic energy calculated using many-
body polarization are compared to those calculated using pair polarization.

Fig. 7. The kinetic energy is reduced from its value with pair
polarization because the electron is less localized than with
pair polarization. The potential energy is reduced both be-
cause the electron is less localized in the potential channels
within the cluster and because the channels are not as deep.
A linear least square fit of the potential and kinetic energies
vs cluster size is given in Tables III and IV.

B. Projector method

The projector method outlined in Sec. IT was applied to
Xe; for both the pair polarization and many-body polariza-
tion models. The energies obtained by diffusion Monte Carlo
and by the projector method for the two models agree well as
do estimates of the potential and kinetic energies (see Table
V). Note also that the virial theorem

(TY + (V) =E,
2T) =(r'VV) (3.2)

applied to the wave functions obtained by the projector
method holds ( + 2 K), an indication of the quality of the
wave functions. A comparison of the electron xenon com
P(r) produced by the two different methods are shown in
Figs. 8 and 9. Figure 8 presents the comparison for the pair
polarization and Fig. 9 for many-body polarization. Again
the agreement is very good. The differences can be account-
ed for by time step error and noise on the diffusion Monte
Carlo data. The advantage of the FFT method is that it gives
the total wave function and there are no statistical fluctu-
ation inherent in the method. However, only for the mnay-
body polarization does it become computationally competi-
tive. The additional advantage of this method is that excited
states can be examined with no additional complications.
However, bound excited states are only likely to exist in larg-
er clusters than those studied here. The need for a variational
wave function is not eliminated as the algorithm is much
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TABLE V. Comparison of diffusion Monte Carlo (DMC) and the projector method (PM) for both the pair

and many-body polarization models.

Quantity Pair(DMC) Pair(PM) Many-body(DMC) Many-body(PM)
Ey/K — 45314 — 453 —159+3 — 157
(V)/K — 2687 + 100 —2711 — 1209 £+ 50 — 1180
(TY/K 2257 1025

more efficient if a reasonable approximation to ¢, is used to
begin the propagation.

IV. DISCUSSION

Many-body polarization has been shown to be extreme-
ly important consideration in electron attachment to xenon
clusters. Though the xenon atoms were held fixed in their
energy lowest neutral configuration this was shown in our
previous paper' to be quite reasonable and the results de-
scribed herein can be considered valid. Many-body polariza-
tion increases the minimum number of xenon atoms needed
to bind an electron from six to seven and drastically changes
the binding energy of the electron to larger clusters. The
excess electron charge distribution as well as its kinetic and
potential energy are also dramatically changed. Xenon does
perhaps represent an extreme limit in polarization effects
both because it is very polarizable and has no permenent
dipole moment. (The polarization interaction is the sole
mechanism for binding the electron.) It also suggests that
many-body polarization effects are in general of importance
in electron attachment and solvation problems.

We have reported here that the ratio of the binding ener-
gy calculated in the pair polarization approximation to the
binding energy including total many-body polarization is

0.5 T T T t

Diffusion Monte Carlo

04F [\ ceeeeeeeees Projector Method -

P(r)

10

r/o

FIG. 8. The electron probability distribution function of electron position
with respect to the cluster center of mass P(r) for Xe;; modeled with pair
polarization. The results of the projector method are compared to those of
diffusion Monte Carlo.

approximately a constant (equal to 2.7) as a function of
cluster size. The kinetic energy and the potential energy also
separately scale such that the potential energy correspond-
ing to many-body polarization is a factor of 2.14 smaller than
for pair polarization and the kinetic energy corresponding to
many-body polarization is a factor of approximately 2.04
smaller than for pair polarization (although the scaling of
the potential and kinetic energies is less precise than the scal-
ing of the total energy). Again, linear least square fits of the
potential and kinetic energies versus cluster size are given in
Tables IIT and IV. Why should these simple scaling relation-
ships exist? This is a difficult problem to tackle analytically
and is not yet resolved. However, it will be shown that a
dielectric agrument with no adjustable parameters does not
predict the correct scaling.

It is interesting to determine how well a dielectric con-
tinuum model of a xenon cluster can estimate the structure
and binding energy of an excess electron. This problem was
considered by Stampfli ef al.” Their approach was to deter-
mine the electrostatic potential for a dielectric sphere of radi-
us R for two cases: the electron outside the sphere (7, > R)
and the electron outside the sphere (7, < R). The potential
energy felt by the electron, determined from the electrostatic
potential, is then found to be

0.4 T T T T T

Ditfusion Monte Carlo
------------ Projector Method

P(r)

0.0 L ' ' .
00 25 50 75 100 125 150

r/o

FIG. 9. The electron probability distribution function of electron position
with respect to the cluster center of mass P(r) for Xe; modeled with many-
body polarization. The results of the projector method are compared to
those of diffusion Monte Carlo.

J. Chem. Phys., Vol. 90, No. 7, 1 April 1989

Downloaded 04 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



G. J. Martyna and B. J. Berne: Structure and energetics of XE,"

62(6—-1) © k R2k+1
1% S . >R,
>(re) 2 k=1k6+k+1 r§k+2
(4.1)
Fle—1) & k+1 nrtt!
4 = <R,
<(r2) 2€ kZo ke+ k+1 R2k+2r <
4.2)

where € was taken to be unity outside the media. Since the
potential energy diverges at r, = R Stampfli et al.” propose
the following modification:

Vir,)=V_ (r), r.>R+d,
V(r,)=V_(R+d), R—d<r,<R+d,
Vir, )=V _(r,)—V_(R—d)+V, (R+4d),
r,<R—d.
This is reasonable because dielectric models break down for
distances on the order of the molecular size and the diver-

gence is simply a consequence of this fact. d is therefore cho-
sen to reflect the molecular size.

1/3
d= (i) .
4mp

In order to account for the repulsive interactions ¥ and
interactions with neighboring atoms ¥, which occur inside
a real cluster a small constant is added to the potential de-
fined in Eq. (4.13) for r < R. A reasonable estimate of these
effects is

4.3)

(4.4)

2
Ve + Vy=Vo+——(1—€), (4.5)
4d
where V,, is ground state energy of an electron in fluid xenon
and — e?/4d(1 — e ') is a dielectric continuum estimate of
the potential energy of the fluid.? The dielectric constant is
then chosen to be given by the Clausius Mossotti relation
which is correct for a structureless fluid

e (1 + 8mpa/3)
(1 —4mpas/3)

The resulting potential can be inserted into a radial Schro-
dinger equation which we solved by a shooting method due
to Johnson.** The results of this model for both the energy
and the strucutre [ P(r)] are in remarkable agreement with
our results for the following parameters: (p = 0.014 A’,
Vo= —0.65 eV, a = 4.05 A?). Figure 10 shows the com-
parison of both the ground state energy as a function of clus-
ter size n = p'/>R and the ground state wave function of
Xe,; for the two models. Why is the agreement so good?
Simply, there is very little electron amplitude inside the clus-
ter and therefore a continuum model might be expected to
work. However, one can see that the continuum model
misses the shoulder of the wave function which is a signature
of the channels, a microscopic feature. Since these features
will become more important in larger clusters where the
electron distribution is more structured the continuum mod-
el will begin to fail. In order to further test the applicability of
the continuum model, a pair polarization limit of the poten-
tial was taken:

(4.6)

I/two-body = Vmany-body + O(az)' (47)
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FIG. 10. The top figure shows a comparison of the ground state energy as of
function of cluster size for the dielectric model and our microscopic model.
The data for both models includes only pair polarization effects. The bot-
tom figure shows the same comparison for the ground state wave function of
Xeg;.

That is, we expanded Eq. (4.13) to first order in @. We again
solved the radial Schrédinger equation for the resulting po-
tential. Figure 11 shows the comparison of both the ground
state energy as a function of cluster size and the ground state
wave function of Xe; for the two models. The agreement is
poor for all cluster sizes indicating a break down of the theo-
ry. This implies that a dielectric model with no adjustable
parameters cannot predict the observed scaling relation
between the ground state energy calculated with pair polar-
ization vs many-body polarization. If a value of p = 0.011
A3 is chosen similar agreement similar to that found for
many-body polarization is found at small cluster size n<15
and the scaling is reproduced. However, at large cluster sizes
the model breaks down as expected. In Fig. 11, the large
shoulder in the wave function of the microscopic model can
be clearly observed, a feature that cannot be reproduced by a
continuum model. In total, these results suggest that in large
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FIG. 11. The top figure shows a comparison of the ground state energy as of
function of cluster size for the dielectric model and our microscopic model.
The data for both models includes many-body polarization effects. The bot-
tom figure shows the same comparison for the ground state wave function of
Xes;.

clusters the electron structure and binding energy should be
sensitive to the microscopic features of the cluster thus pre-
cluding the validity of the continuum model. It may also
indicate that the density is only a parameter in the theory
which may be difficult to choose a priori. It should also be
noted that the variational wave functions presented in this
paper are based on the true cluster structure and are inexpen-
sive to calculate. Therefore if one is interested in quick, reli-
able, approximate results for electron attachment to xenon
clusters one should use a variational approach, rather than a
continuum model.

The many-body polarization energy is much more ex-
pensive to calculate than the two-body polarization energy
because it requires the solution of a system of linear equa-
tions [Eq. (2.4)]. It would be convenient if a renormalized
pair polarization potential could be accurately defined to
treat the many-body polarization terms. Lekner® has sug-
gested a mean field approximation that can be used to deter-

mine such a potential. Briefly, consider the following form
for the polarization potential:
y - —aefins'(r)
P 2/ ’
where S(7) is the switching function defined in Eq. (2.8).
Now consider two xenon atoms a distance s apart, a distance
r and ¢, respectively, from an electron. In this model the first
xenon has an induced dipole moment, p along r of
aef(r)S V/2(r)/r* and the second has an induced dipole mo-
ment along ¢ of aef(¢)S /2(¢)/t 2. The field along r due to the
second atom maybe found from simple electrostatics®®

E(r)f = [3s(p-s) —plf

(4.8)

5 4.9)

/2 2 2

E .AzaeS‘ (O [3(sz+t -+ =1
(=== 2

| (4.10)

Since the field along ris equal to the unscreened field plus the
contribution due to all the other induced dipoles, if we inte-
grate Eq. (4.10) times the probability of finding a neighbor a
distance s away and add the unscreened field we have a self-
consistent integral equation for f(#). In a translationally in-
variant system the probability of finding an atom a distance s
away is pg(s)dr. Therefore,

% r+ s
SV2(rflr)y =8"3(r) — ﬂpaf dsg—g—f—)—
0 M |r— s
1/2
<t OS50 0,
K(rs.) = P +t2=—P)(P+ 7P —1t?)
»ry 2s2
+ (P +1t2=s5). (4.11)

This expression is not valid for a cluster. However, as
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FIG. 12. The radial screening function which is postulated to reduce many-

body polarization to an effective pair potential of the form of
ae*f(rS "2 (r) /2.
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K(r,s,t) is proportional to K(r,s,t) ~ 1/5°, the first neighbor
peak is the most important and Eq. (4.11) might give a rea-
sonable approximation. We therefore calculated the ground
stte properties of the electron using the modified potential
defined by Eqgs. (4.8) and (4.11) for Xe; [see Fig. 12 for
J(r)]. The results were in reasonable agreement with those
calculated using full many-body polarization (E,~ — 155
K vs E,~ — 162 K). This calculation indicates that a
screening functions can be used to reduce many-body polar-
ization to an effective pair potential.
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