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Two energy estimators, the Barker estimator and the Berne virial estimator, commonly used in
path integral simulations of quantum systems are compared with respect to statistical
accuracy. It is found that the accuracy of these estimators is strongly affected by the algorithm

used. Four common algorithms are considered here:

(1) the pure primitive algorithm, (2)

the primitive algorithm augmented by whole chain moves, (3) the normal-mode algorithm,
and (4) the staging algorithm. The error of the mean of the Barker energy estimator is found
to grow as P, where P is the number of discretization points of the quantum paths (or the
number of chain particles in the isomorphic classical chain), for all of the algorithms above.
The error of the mean of the Berne virial energy estimator is independent of P for algorithms 2,

3, and 4, and increases as /P for algorithm 1. It is concluded that the virial estimator is far
more accurate than the Barker estimator for algorithms 2, 3, and 4, and is at least as accurate
for algorithm 1. Because the error analysis depends strongly on the temporal correlations in
the sequence of values of the energy estimator generated during Monte Carlo or molecular-
dynamics simulations, we review the general question of error analysis in simulations.

I. INTRODUCTION

Path integral Monte Carlo based on a discrete represen-
tation of the path integral is very useful for simulating quan-
tum and mixed quantum-classical systems.! In the discre-
tized approximation of the path integral the partition
function of a quantum particle moving in a potential field,
V(x), is isomorphic to the partition function of a P particle
classical cyclic chain polymer in which each atom is coupled
to its two nearest neighbors through harmonic springs and is
acted on by an attenuated external potential ¥ (x)/P. Phys-
ical properties of interest can be expressed as estimators in
terms of the coordinates of the classical polymer. Averaging
the estimators over the sampled chain configurations gives
the ensemble average of the quantum operator.

Two energy estimators are now commonly used: namely
the Barker estimator? of Eq. (3.1), and the Berne virial esti-
mator of Egs. (3.2) and (3.8).*>* Herman et al.? showed that
the variance of the Barker estimator grows as P, the number
of discrete points in the isomorphic chain polymer, and thus
becomes less and less accurate as the isomorphic chain is
made a more accurate representation of the quantum parti-
cle. Because of this, Herman ez al. proposed a new estimator
based on the virial theorem. Both the virial and the Barker
estimators give the correct energy, but the variances are dif-
ferent. The variance of the virial estimator is almost indepen-
dent of P. Hence, the authors state that the virial estimator is
superior to the Barker estimator.

The variances calculated analytically by Herman et al.
are

s ——
B=—=Y(—¢)? (1.1)
i=1

wfl-

where ¢; is the value of the energy estimator after move /, and
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the averaging is done over the total number of moves, S, ina
Monte Carlo run. This definition of the variance provides an
accurate determination of the error only if the sequence of
values {¢;} are uncorrelated, an assumption that should be
supported by a correlation analysis. A series of configura-
tions in the Metropolis importance sampling is usually not
statistically independent but is correlated; the error esti-
mates should thus account for this correlation. To compare
the convergence of the two energy estimators the correlation
lengths should be evaluated and included in the standard
deviation in the mean. Giansanti and Jacucci’ have shown
that the correlation length of the “virial estimator” displays
a more than linear growth with P while the correlation
length of the “estimator” increases weakly with P, and they
conclude that the virial estimator is not superior to the Bark-
er estimator.

In this paper we show that the error is very strongly
dependent on the Monte Carlo (or molecular dynamics)
algorithm used. Four common algorithms are considered
here.

(1) The pure primitive algorithm, where a move for
each bead is sampled independently and accepted or rejected
using the usual Metropolis importance sampling scheme
with the pure primitive action.’

(2) The primitive algorithm augmented by whole chain
moves, where in addition to moving each bead, a move of the
center of mass of the whole chain is attempted and accepted
or rejected based on the Metropolis importance sampling
scheme again using the primitive action.’

(3) The normal-mode algorithm, where the part of the
primitive action corresponding to the kinetic energy opera-
tor; that is, the harmonic spring part, is resolved into normal
modes. Each normal mode is sampled using a Box—Mueller
technique, and the result is accepted or rejected based on the
usual importance sampling criteria. Because one of the nor-
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mal modes is the center-of-mass position, this method incor-
porates the advantages of the preceding method.?

(4) The Ceperley—Pollock staging algorithm,® where
segments of the chain are moved using a Levy-walk algo-
rithm. This technique leads to greater amoeba-like mobility
of the chain.

When Monte Carlo (MC) is performed using method 1,
both the Barker estimator and the virial estimator have er-
rors that grow with the number of beads on the chain, and
are equally bad in predicting the kinetic energy, as first
pointed out by Giansanti and Jacucci.®* When MC is per-
formed using methods 2, 3, and 4 the chain is able to move
more freely over the potential-energy surface so that the cor-
relation length of the virial estimator is significantly reduced
and is no longer strongly dependent on P. Now the virial
estimator is clearly superior to the Barker estimator. Corre-
lation lengths depend not only on the form of the estimator
but also on the Monte Carlo algorithm used. We conclude
that when optimum methods are used to move the chain the
virial estimator is clearly superior to the Barker estimator.

Il. ERROR ESTIMATES FOR CORRELATED DATA

In this section we summarize how error estimates are
made for averages over the consecutive steps in molecular-
dynamics (MD) and MC simulations which are correlated.
This subject has received considerable attention lately.”

If a run of length S = nNis divided into N blocks with n
steps per block, X {? denotes the value of the estimator of a
macroscopic property at the time steps {a = 1,2,...,n} of the
ith block {i = 1,2,...,N}, X, denotes the average over the ith
block, X, = (1/n)2%_, X? and X = (I/N)Z_, X, de-
note the average over all blocks, that is, over all the data;
then the standard deviation of the block average is, for N> 1,

02-—2(11’ X) (2.1)
1—1
and the error in the mean, A is
=o’/N. (2.2)

It is a simple matter to show that A can be expressed as

A _A0[1+l"f(n—k)ak)] (2.3)

k=1
where

° 2N2 Z 2 (X(l) 2

i=la=1

(2.4)

is the standard error in the mean of the uncorrelated data
defined in Eq. (1.1), and

n ) Z:Il‘(aX 5Xa+k>
n—k/ Z;_,(6X,6X,)
is the normalized autocorrelation function of the fluctu-
ations, X P =X’ — X.

1t is of considerable interest to determine how this de-
pends on the length of the run, S = nN, and on the size of the
blocks used in the averaging process. To gain some insight
into this behavior we consider the following three models.

Case (a). There are no correlations between successive

(2.5)

C(k) =(

fluctuations in each block. Then C(k)
of this into Eq. (2.3) then gives

A, = A}, (2.6)

where A} is the one standard deviation error in the mean of
uncorrelated data [see Eq. (1.1)].

Case (b). All fluctuations are completely correlated for
n. steps and uncorrelated thereafter; that s,

=.0, 0. Substitution

C(k) = 6(n, — k). Substitution of this into Eq. (2.3) yields
s {nA%,, n<n,
T A3 [+ 2n) —no(n 4+ D)/n), m>n.
2.7)

This increases linearly with n for n<n_, and saturates at
2n.A; for n>n,.

Case (c). The correlations die off exponentially with the
correlation function C(k) = exp( — Ak), where A = 1/n,.
Substitution of this into Eq. (2.3) yields

(n_e—-,{(n—l)) (l_e—,{(n—l)) ]
yy [1 +2 -
0 n (—1) (e —1)2
(2.8)
For n» n, it follows that
A% = A2 coth( 1 ) (2.9)
2n,

This result shows that for n> n_ the error of the estimator
depends on the correlation time 7, of the fluctuations. If in
addition n_.> 1, Eq. (2.8) reduces to

A= (2n,)AZ, (2.10)

in which case the variance of the estimator is a linear func-
tion of the correlation time. In general, Eq. (2.3) reduces to
Eq. (2.10) for n»n_ if n.=3yr_, C(k) and 27_, kC(k)
are finite.

A good example of the foregoing is furnished by a Monte
Carlo simulation (using staging) of a linear harmonic oscil-
lator. Figure 1 shows a record of the virial energy estimator
(see the next section). The whole run consists of S = 10*
passes. For this data A, = 6.74X 107>, The data is divided
into N blocks of n steps each and A? is determined using Eq.
(2.2). This s plotted in Fig. 2 as a function of block size n for
fixed S = nN, and from this the saturated error is found to be
A =125%10~2. Assuming that the correlation function
decays exponentially and using Eq. (2.9) allows us to esti-
mate the correlation length as n, = 1.67. A plot of A deter-
mined from Eq. (2.3) is in very good agreement with A de-
termined from Eq. (2.8), indicating that the correlation
function is exponential.

The preceding evaluation of the error is based on deter-
mining how A depends on the number of steps per block and
computing the error from the saturated value of A thus ob-
tained. An alternative approach is to evaluate the correlation
length from direct numerical determination of the correla-
tion function C(k) from the energy record using Eq. (2.5).
The result shown in Fig. 3 appears to be an exponential func-
tion of k, as in case (c) above, with n, = 1.71. The value of
the square error A? for n> n, is then determined from Eq.
(2.9). Substitution of A, =6.74X10"3  gives
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FIG. 1. A part of the record of the virial energy estimator consisting of 10>
steps. The system simulated is LHO defined above.

A = 1.26 X 10~2, which agrees with the saturated value of
A? determined above.

Usually, plotting the block error is an economical way
to do error analysis, although direct determination of the
correlation function allows the determination of
n. =2p_, C(k) directly, and together with Eq. (2.10) al-
lows one to calculate the error A.

lll. THE ENERGY ESTIMATORS

The two energy estimators mentioned in the Introduc-
tion are the Barker energy estimator €5 and the Berne virial
energy estimator €}:

1.50x1072 ; T T
1.25

1.00

A
0.75
0.50 |-
result of MC simuiation
............ result of the theory
025 |- -
0.00 1 | | 1
0 10 20 30 40 50
n

FIG. 2. A plot of the error A vs the block size n. The solid curve is for the
virial estimator of a staging MC run of a LHO with parameters defined
above and 10beads. For this case, A, is 6.74 X 103 and the saturated value
is A = 1.25X 10~ 2. Assuming that the correlation function decays expon-
entially, we estimate the correlation length #, = 1.67 using Eq. (2.9). The
dashed curve is the plot predicted using Eq. (2.8) with the same correlation
length n_.
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FIG. 3. The normalized autocorrelation function C(k) of the same set of
data as was used in Fig. 2. (a) k=1, 5; (b) k=1, 100.

Pd P Z 1 &
=§_—2:2/32,Z-1("’_x"‘)2+7,§,""‘)’
(3.1)
,,_i L 1 ‘aV(x,)
=7 ‘; Vix,) + 5% | (3.2)

where €} as written is for a particle moving in a localizing
potential, subscript P denotes the number of discretization
points on the chain, and d is the dimensionality of the sys-
tem. Although the averages of these two estimators are iden-
tical ((ef) = (€r)), in general, the error A,, defined in
Eq. (2.4), of the Barker estimator grows linearly with P, in
contrast to the error for the virial estimator which does not
depend strongly on P. Thus, based on the assumption of un-
correlated data, and hence the use of A, for the error analy-
sis, the virial estimator is preferred because it has less error
associated with it. In MC and MD simulations the data is
correlated, and one must use the foregoing analysis to deter-
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mine the error A associated with the two estimators. Gian-
santi and Jacucci® have shown that for Monte Carlo simula-
tions based on the pure primitive algorithm the correlation
length associated with €} grows with P, whereas the correla-
tion length associated with €2 varies slowly with P. When
these results are substituted into Eq. (2.10) itis clear that the
two estimators both have errors that grow as /P . Conse-
quently, as P is increased to ensure convergence of the dis-
crete path integral to the exact result, the errors in both of
these estimators grow without bound. In the remaining part
of this paper we show that if commonly used Monte Carlo
algorithms are used in place of the pure primitive algorithm,
the error in the virial estimator does not grow with P,
whereas the error in the Barker estimator still grows with

VP, and is thus very inaccurate.

In path integral Monte Carlo one samples the configura-
tions according to the density matrix,' the relevant part of
which is e ~## where the Euclidean action is

1 P
zﬂzhz 2 (‘xt xt+])2+_1—)'l;1V(‘xt)'

For simplicity of comparison, we drop the pure poten-
tial part 2F_, V(x,)/P and concentrate on the kinetic part
of the energy estimators:

Pd mP L
p= E w2

) ,)
; (x ) (3.5)

Obviously, the Barker kinetic energy estimator a? is
related to the relative position of the beads; while the virial
kinetic energy estimator a}, is related to the gradient of po-
tential felt by each bead. As we increase the number of beads,
the harmonic coupling mP /2# B* between the beads grows
with P, and the chain becomes stiffer.! In the standard Me-
tropolis importance sampling using the pure primitive algo-
rithm, beads are moved individually, and since the first term
of Eq. (3.3) allows only small moves of the individual beads
and thereby only small excursions of the average potential,

P V(x,)/P, and of the average virial,
=P X, [@V(x,)/0x,]/P. By the same token, because the
moves that are being sampled are controlled by the first term
of the action on the right-hand side of Eq. (3.3), we expect
large changes of the Barker estimator, Eq. (3.4), per move.
These effects are expected to introduce large correlation
lengths into the virial estimator, correlation lengths that
grow with P because the chain becomes stiffer, but should
leave the correlation length of the Barker estimator relative-
ly insensitive to P, a finding first observed by Giansanti and
Jacucci. If the pure primitive algorithm is augmented by ran-
domly moving the chain as one stiff unit, the Monte Carlo
moves will then not only change the position of the individ-
ual beads but will also move all beads together by a much
larger displacement than would be allowed by stiff harmonic
bonds in the action. This whole body move does not change
the first term of the action but does allow large changes in the
potential and the virial. Such moves should therefore have
no effect on the correlation time of the Barker estimator, but

(3.3)

a (3.4)

2
t+1)’
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should decrease the correlation time of the virial estimator
enormously, as will now be shown. In general, movement of
the whole chain generates more efficient sampling, and has
often been used in path integral simulations of liquids.

The Monte Carlo simulations of the linear harmonic
oscillator with potential ¥ = mw?* x* /2 reported below use
the following parameters: fmw? /2 = 1.0 and Bfiw = 3.0.
All runs are performed for S = 10* moves. The step sizes
and the number of moving beads are adjusted to reach an
acceptance rate of approximately 50%. In all the plots, the
squares ([1) indicate the data for the Barker estimator and
the circles (Q) indicate the data for the virial estimator or
when applicable the generalized virial estimator. The corre-
lation length n,. is determined from the exponential decay of
the respective autocorrelation function. The error in the
mean is taken to be the saturated value of A using Eq. (2.9).

In Fig. 4 the step size of the whole chain is gradually
increased. The correlation length of the virial estimator de-
creases drastically and the correlation length of the Barker
estimator is not very much affected as anticipated above.
Therefore, the MC moves of the whole chain provide enough
mobility to reduce the correlation length and the error of the
virial estimator.

Figure 5 shows how the error and the correlation length
of the Barker estimator and the virial estimator vary with the
number of beads, P, in the above MC simulation with whole
chain moves. Clearly, the Barker estimator has an error
which increases with /P, and the virial estimator has an
error that does not increase with P . Thus, simply by incor-
porating whole body moves in the algorithm, a common
technique, the virial estimator now becomes superior to the
Barker estimator.

200 T T T B T
c the barker estimator
o the virial estimator
150 .
havs
100 .
50 4
0
0 1 2 3 4 5 6

step size of the whole chain

FIG. 4. The correlation length n, of the Barker estimator and the virial
estimator as a function of the step size of the whole body moves in the aug-
mented primitive algorithm. The system simulated is the LHO defined
above. The squares indicate the data for the Barker estimator and the circles
indicate that for the virial estimator.
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FIG. 5. (a) The correlation length n, vs the number of beads, for the Barker
estimator and the virial estimator using the primitive algorithm with aug-
mented whole chain moves where the step size is chosen to yield an accep-
tance probability of 50%. The system simulated is the LHO defined above.
(b) The error A in the mean vs P for the same run in (a). The squares
indicate the data for the Barker estimator and the circles indicate that for
the virial estimator.

It is of interest to investigate the normal-mode method.
The zero-frequency normal modes of the chain correspond
to translations and/or rotations and should lead to short
correlation times in the virial estimator as above. The real
coordinates of the beads {x,} are transformed to the Fourier
coordinates Q, according to the following transformation:

X, =X + (2/n)”2;sin(1rkt/P)Qk. (3.6)

With the help of this transformation, the kinetic part of S is
diagonalized, and

6363
e sl o
+%§1V(x,<{gk}». (3.7)

New steps are generated by the direct sampling of Q,
from the Gaussian distribution of the diagonal first term in
Eq. (3.7) and random movement of x,,. This allows for larg-
er moves of low-frequency modes than would be allowed in
the primitive algorithm. Figure 6 compares how the correla-
tion length and error of the Barker and the virial estimators
depend on P for the normal-mode simulation. Clearly, the
behavior here is similar to the results shown in Fig. 5. Again,
the virial estimator is superior to the Barker estimator.

4 T T T T T
i / T
n. /\/
2+ -
1 .
0 1 1 1 ] 1
0 10 20 30 40 50 60
(a) P
0125 T T T T L}
0.100 | b
0.075 |- .
a
0.050 |- s
0.025 | ~ -
—_—— . "
0.000 . L 1 L —l
10 20 30 40 50 60
(b) P

FIG. 6. (a) The correlation length n, vs the number of beads, for the Barker
estimator and the virial estimator using the normal-mode MC algorithm.
The system simulated is the LHO defined above. (b) The error A in the
mean vs P for the same run in (a). The squares indicate the data for the
Barker estimator and the circles indicate that for the virial estimator.

J. Chem. Phys., Vol. 91, No. 10, 16 November 1989

Downloaded 04 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6364

In the staging algorithm moves of segments of the chain
are generated from the first term of the action, S, in Eq. (3.3)
using a Levy walk, and are accepted or rejected according to
the second term.® This procedure is equivalent to the scheme
devised by Ceperley and Pollock®® with the drift terms
omitted. The stiffness of the chain is thereby removed, mak-
ing the chain much more mobile than in the primitive algo-
rithm, and thus allowing the potential energy and the virial
estimator to fluctuate by large amounts from one staging
pass to another. Once again we expect that the correlation
length of the virial estimator will be very short. In Fig. 7 the
results for the linear harmonic oscillator (LHO) potential

3.0 T T T T T

20 -
e

1.5 F -

0.5 | -

0.0 1 ! 1 1 1

(a) P

0.10 T T T T T
0.08 | b
0.06 r— -1

0.04 - .

0.02 |- -W

0.00 L 1 ] L J
0 10 20 30 40 50 60

{b) P

FIG. 7. (a) The correlation length n_ vs the number of beads, for the Barker
estimator and the virial estimator using the staging MC algorithm. The sys-
tem simulated is the LHO defined above. (b) The error A in the mean vs P
for the same run in (a). The squares indjcate the data for the Barker estima-
tor and the circles indicate that for the virial estimator. :
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show that for the staging algorithm the virial estimator is
again more accurate than the Barker estimator.

It is of interest to see if anharmonicity will change these
conclusions. Figure 8 shows the results using staging MC on
a quartic oscillator ¥ = mw? (x* + x*/2)/2, where B, m,
and o take the same values as for the LHO. Again, A? grows
with P but AV is essentially constant.

In all of the foregoing, only true bound-state systems are
considered; that is, systems confined by a localizing poten-
tial like the harmonic or quartic potentials. The virial esti-
mator for unbound systems moving in periodic boundary
conditions can be expressed as *

3.0 T T T T T

25 -

0.0 1 i A I 1
0 10 20 30 40 50 60
(a) P
0 10 B T 1 T T
’D
."/
0.08 |- 7 .
o7
,'/
0.08 |- .
A Py
/
0.04 |- / ‘l
0.02 4
000 i 1 L 1 ]
0 10 20 30 10 50 60
{b) P

FIG. 8. (a) The correlation length n_ vs the number of beads, for the Barker
estimator and the virial estimator using the staging MC algorithm. The sys-
tem simulated is a quartic oscillator ¥ = ma? [x*> + (1/2)x*] where 8, m,
and o take the same values as the LHO defined above. (b) The error A in the
mean vs P for the same run in (a). The squares indicate the data for the
Barker estimator and the circles indicate that for the virial estimator.
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IV(x,)
ox,

s

(3.8)

where the superscript VG denotes the generalized virial esti-
mator. The first term d /23 gives the exact kinetical energy of
a classical particle; the second term gives the average poten-
tial energy; and the third term gives the quantum correction
to the kinetic energy. This last term is related to the change
of the potential over the size of the isomophic chain. Simple
algebra shows that this form reduces to €} for bound sys-
tems, and is thus also applicable to bound systems like the
harmonic and quartic systems.

ge=2 1y [V(x,) + 2 (x, — xp)
28 P& 2
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FIG.9. (a) The correlation length 7_ vs the number of beads, for the Barker
estimator and the generalized virial estimator using the staging MC algo-
rithm. The system simulated is the LHO defined above. (b) The error A in
the mean vs P for the same run in (a). The squares indicate the data for the
Barker estimator and the circles indicate that for the virial estimator.
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We apply this generalized virial estimator €3° to an un-
bound periodic potential ¥(x) = cos(x) of period of 2.
The periodicity is simulated by requiring that once the bead
drifts out of the boundary, it enters through the opposite
boundary. The effect of periodicity will become more dra-
matic as the temperature is lowered, because the chain will
then begin to sense the whole periodic interval. Because the
temperature is reasonably high here, no attempt is made to
incorporate the periodicity into the short-time propagator,
although this can be done for the normal-mode and staging
algorithms. Again the comparison of the two estimators

150 T T T T T
1.25 |- f ]
o/\
1.00 -
Ne
0.75 - 1
0.50 .
0.25 -
0.00 : . L L L
0 10 20 30 40 50 60
‘a’ P
0.12 T T T T 1
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0.08 -1
A N
v/‘
0.06 |- : -1
Ve
Ve
0.04 |- / .
002} i
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0.00 I 1 1 1 1 1
0 10 20 30 40 50 60
(b) P

FIG. 10. (a) The correlation length n_ vs the number of beads, for the Bark-
er estimator and the generalized virial estimator using the staging MC algo-
rithm. The system simulated is an unbound potential with periodic bound-
ary condition. We adopt a cosine potential ¥(x) = cos(X) with 8= 1.0,
# = 1.0, mass = 1.0. The chain is confined in the domain of one period from
0 to 2. (b) The error A in the mean vs P for the same run in (a). The
squares indicate the data for the Barker estimator and the circles indicate
that for the virial estimator.
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shows that A increases with y P for the Barker estimator and
is independent for the virial estimator.

In conclusion, we have investigated four different
Monte Carlo algorithms: the pure primitive MC, the primi-
tive MC with whole chain moves, the normal-mode MC, and
the staging MC. The correlation length not only depends on
the form of the estimator, but also on the algorithm. After
the correlation length is properly taken into account, the
results of the statistical error analysis strongly support the
conclusion that the error of the pure Barker estimator grows

with the /P while the error of the virial estimator does not
depend on P. In this sense, the virial estimator has clear
advantages over the Barker estimator as was originally sug-
gested by Berne ez al. Only when a pure primitive algorithm
is used on a true bound system, as in the paper of Giansanti
and Jacucci® is there no advantage to using it. For simula-
tions on systems with periodic boundary conditions we have
shown that the error in the generalized virial estimator also
is not dependent on P, whereas for the Barker estimator the

erTor grows as JP as before. In most modern Monte Carlo
work, either staging or whole body moves. are made, in
which case the virial estimators €, and €}° are clearly supe-
rior to the Barker estimator e5.
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