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For computer simulations of systems in which particles must cross large potential energy
barriers, slow convergence is a problem. Basically there are two very disparate time scales: one
characterizing motion in the potential wells and one characterizing the rare jumps from one
stable well to another. Multiple time scale problems like this sorely test computer resources,
and stand in the way of progress on simulations of chain folding, glass transitions, nucleation
phenomena, activated barrier crossing, and quantum tunneling processes. Here several new
methods are developed and tested on classical and quantum barrier crossings in double welt
problems. These new methods, called the anti-force-bias and variable step methods, lead to
much faster convergence than standard methods. Convergence is tested by studying the
deviation in the mean of the cumulative spatial distribution function from the exact

distribution function.

I. INTRODUCTION

The simulation of system with rare events continues to
be a thorny problem in the computer simulation of physical
systems.' A paradigm for this problem is a particle moving
in a double well potential with a large energy barrier separat-
ing the stable states. In Metropolis Monte Carlo sampling,
the particle will very rarely cross the barrier, and the system
will take an enormously long time to equilibrate. There are
two time scales characterizing this problem: the time it takes
the particle to sample one of the potential wells, and the time
it takes the particle to cross the barrier. The first time scale is
analogous to vibrational relaxation and the second time scale
is analogous to the mean first passage time for barrier cross-
ing in dynamical systems. For very large barriers, the barrier
crossing time will be exponentially longer than the vibration-
al relaxation time by the inverse Arrhenius factor exp[E /
kT1], where E is the activation energy. Although a quantum
particle moving on a double well potential can tunnel
through the barrier, the tunneling period also increases dra-
matically with barrier height, leading to very slow conver-
gence for quantum problems. To simulate bai'rier crossing
one must therefore invent new rapidly converging sampling
methods.

In this paper we present methods for treating problems
of this kind. Building on techniques developed several years
ago, namely, force-bias (FB) and smart Monte Carlo
(SMC) methods,>” it is possible to achieve rapid conver-
gence in such problems. We call the new method the anti-
force-bias (AFB) method. A special case of this method is a
variable step Monte Carlo algorithm that is very promising
for simple problems. Although these methods can be applied
to a wide variety of problems in physics and chemistry, here
they are applied to the simple problem of equilibration in a
double well for illustrative purposes. For both classical acti-
vated barrier crossing and quantum barrier tunneling it is
shown that these methods are far superior to standard meth-
ods.

1980 J. Chem. Phys. 92 (3), 1 February 1990

0021-9606/90/031980-06$03.00

Il. FORCE-BIAS, ANTI-FORCE-BIAS, AND VARIABLE
STEP ALGORITHMS

The basic idea in this paper is to choose a sampling func-
tion for a Monte Carlo move,

1 13 [x,—x; —ﬁ’liAiFi]Z
T(x/|x;) =|——] exp— ,
(xr[x;) [47Ai] *P 44,

2.1)

where x; is the initial position of the particle, x; is the new
position after a step, F; is the force acting on the particle
initially, 4, is a parameter to be defined later which depends
on the initial position, 8 = 1/kT. The parameter A, depends
upon the method used. In the force-bias method (FB),
A; = 1; for the anti-force-bias technique (AFB),

_V(x)
L)
is the sign of the second derivative of the potential energy
function at the initial position of the particle.
If no biasing is used, then 4; = 0 and the force term is

ignored in Eq. (2.1). The sampling function becomes

[x,—x]* ]

44;

i

2.2)

T(xlx) = [ 23
X|x;) =|——| exp— .
4 [47,4,.] P 23
This sampling function allows for variable step size moves as
discussed later.

The move is sampled from Eq. (2.1) [or Eq. (2.3)] and
accepted or rejected according to the usual Monte Carlo pre-
scription; that is, the move to X, is accepted with probability

p=min{1,g(x/|x,)}, 2.4)
where
a(xlx) = T(x;|x,)P(x,) (2.5)

T(x/|x;)P(x;)

and P(x) = Z ' exp — B¥(x) is the Boltzmann distribu-
tion function.
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The sampling distribution given by Eq. (2.1) produces a
biasing of the moves such that

((Xf —x,)) =PLAF,
and

<(xf"‘xi)2> =64, + B> A]F. 2.7
In the FB method, A; = 1, this procedure would bias the
moves such that there would be a drift in the direction of the
initial force and a spreading of the distribution that would
depend on the square foot of the force. Thus in the double
well problem the drift would be towards the local well mini-
mum. If, however, A; is determine from Eq. (2.2), the AFB
method, the drift will be anti-parallel to F; for initial posi-
tions above the inflection point of the potential, and parallel
to F otherwise. The effect should be enhanced barrier pene-
tration.

In addition to invoking antiforce biasing it is possible to
superpose a variable step size on the Monte Carlo walk by
taking A4, to depend in the initial position. Even when the
force term in Eqgs. (2.1), (2.6), and (2.7) is neglected (4;),
this variable step size; that is, taking 4, to depend on the
initial state, may well lead to more rapid barrier crossings
than would be found with a constant step size algorithm.
One simple choice for this is

\/Z _ AxCBV(xi) + 1’
BV(x;) +1
where V; is the potential energy at the initial position, cisa
parameter that defines the variability of the step size, and Ax
is a constant step parameter. This rule allows the step size to
vary between a lower bound of Ax at low energies, and a
maximum of cAx at high energies. Clearly there are many
possible functional forms for the variable step size. Gold-
man® has discussed another variable step procedure for
treating fluids. In his method the step is uniformly sampled
between — A/2and + A/2, where A is chosen to depend on
the deviation of the particles energy from the average energy
of a particle. After correcting for problems with detailed
balance, Goldman applied his algorithm to simulations of
simple liquids and concluded that it did not accelerate con-
vergence of these systems over what could be attained using
ordinary Metropolis sampling. Here we show that a different
implementation of a variable step algorithm based on the
above leads to greatly accelerated convergence for barrier
crossing.

All of the foregoing can be summarized by defining A,

(2.6)

(2.8)

as,
0 no force-bias
1 1 force-bias (2.9)
'. —3 V » .
L anit-force-bias
|V(x;)"|

Although the foregoing is formulated in terms of a con-
tinuous function Eq. (2.1) as in SMC, it is possible to imple-
ment this in the original force-bias formulation. The only
difference is that instead of sampling Gaussians one would
sample square mound distributions. One must be careful in
using the variable step idea in this way to guarantee detailed

balance because otherwise one runs into the same problem
encountered by Goldman.®

In this paper we compare no force-bias, force-bias, and
anti-force-bias algorithms with and without variable steps
with respect to the rapidity of convergence of classical and
quantum double well problems. Quantum double well prob-
lems involve tunneling through the barrier. In the path inte-
gral simulation of tunneling one studies the motion of iso-
morphic chain polymers. The quantum barrier crossing
problem requires more computer time than the correspond-
ing classical problem. Moreover, there is the fundamental
problem of instanton relaxation. The anti-force-bias method
with variable step size allows this problem to be treated very
effectively.

In order to compare these methods it is necessary to
define criteria for convergence. Usually one studies the time
required for the convergence of the cumulative averages of
various observables to converge to equilibrium. We find it
useful to study the time dependence of y where

PO = [ Ao —powa 0T (2.10)
where p(x,?) is the cuamulative normalized spatial probabili-
ty distribution function (or diagonal density matrix in the
position representation). The decay constants of y (¢) give a
good indication of the rate of convergence of the algorithm.
The exact function, p...(x), is known to be Z~!
exp—BV(x) for classical systems, and Z~!
(x|exp — BH |x) for quantum systems. The latter can be de-
termined using NMM.

HI. RESULTS

The methods presented in the preceding section are test-
ed on the following simple symmetric double well potential:

(x2 _ a2)2

V(ix) = oy

; (3.1)

where units are chosen such that # =1 and « is a constant.
The two potential minima (¥ = 0) are located at x = a and
x = — a and the local potential maximum (¥ = a%/2) is
located at x =0. The parameters are taken as m = 1.0,
B=1.0, and a = 4.0, and the step size Ax of Eq. (2.8) is
adjusted to give an acceptance rate of 50%. To compare the
speed of convergence of different algorithms, the time de-
pendence of y(?), defined in Eq. (2.10), is plotted vs the
number of passes z. It suffices for our purpose to determine
x(2) over 10° passes.

A. Barrier crossing in classical systems

The variable step algorithm without FB or AFB
(A4, = 0) in Eq. (2.9) is first investigated. The step variation
is defined in Eq. (2.8). The three curves corresponding to
(a) c= 1.0, (b) ¢ =2.0, (¢c) c =5.0in Fig. 1 clearly show
that the variable step method converges much more rapidly
than the standard constant step MC algorithm.

The biasing algorithms, for which 4, #0 in Eq. (2.1),
are next considered. In Fig. 2 we compare (a) FB with con-
stant step size (4; = 1, ¢ =1.0), (b) AFB with constant
step size [4, = V" (x;)/|V " (x;)]|, ¢ = 1.0], and (c) AFB
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FIG. 1. A plot of y vs the number of passes. The three curves are for the
variable step Monte Carlo simulations of the classical double-well potential
defined in the text. No FB or AFB is used [A, = 0in Eq. (2.9)]. The step
variation is determined using Eq. (2.8). The three curves correspond to (a)
c=1,Ax=<15,(b) c=2, Ax=1.2,and (c) c=35, Ax=0.7. Ax is the
constant step size parameter appearing in Eq. (2.8)."

with variable step size [4; = V" (x;)/|V"(x;)|, ¢ =2.0].
Because in the FB method the force tends to draw the parti-
cle towards the well minima and away from the barrier, it is
expected that this method will lead to slower convergence
for multiple-well potentials than does standard Monte Carlo
methods. Because the AFB algorithm often pushes the parti-
cle into the barrier it corrects for this shortcoming and
should accelerate the convergence in barrier crossing simu-
lations. When AFB is combined with variable step size the
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FIG. 2. A plot of y vs the number of passes. Again, the three curves are
various Monte Carlo simulations for the same classical double-well poten-
tial. The three curves correspond to (a) FB with constant step size (4, =1,
c=1, Ax=1.5), (b) AFB with constant step size [4,=V"(x;)/
|V*(x)|, e=1, Ax=1.5], and (c) AFB with variable step size
[A;, = V" (x)/|V"(x)],¢=20,Ax=1.2].
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convergence should be more rapid than for AFB with con-

stant step size. These expectations.are corroborated in Fig. 2.

In Figs. 3 and 4 the no-bias constant step algorithm

(A; =0, c=1.0) and the AFB with variable step size

[A; =V"(x;)/|V"(x;)|, ¢ =2.0] are presented. Each fig-

ure consists of three curves. The topmost curve shows the

position as a function of the time. Each run starts in the left
well (x ~4.0) and the coordinate samples this well and then
jumps over the barrier, (x =0) samples the right well
(x~ + 4.0) and jumps again ad infinitum. The middle

curve shows how the corresponding y(¢) decays with time.
The bottom plate shows how the cumulative distribution
builds up after (b) 1x 10* passes, (c) 4 X 10* passes, and (d)
10° passes compare to the exact distribution for the potential
function of Eq. (3.1) given by curve (a). Comparison of
Figs. 3 and 4 clearly shows that the AFB with variable step
size generates many more independent barrier crossings and

much more rapid convergence than the constant step size
method.
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FIG. 3. This figure is a simulation of a classical activated barrier crossing
using a constant step size algorithms without biasing (4, =0, c=1,
Ax = 1.5). The top curve gives the position versus the number of passes.
The middle curve gives y vs the number of passes. The bottom plate shows
how the cumulative distribution builds up after (b) 1< 10, (c) 4 10, and
(d) 10° passes. Curve (a) gives the exact distribution.
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FIG. 4. This figure is the same as Fig. 3 except that a variable step size AFB
algorithm is used [A, = V" (x,)/|V " (x,)|, ¢ = 2.0, Ax = 1.2].

The variable step size algorithm defined by Eq. (2.8) is
only one of many possible choices. An alternative function
for A, is

JA; =max[1,1+ BV, — (V') ], (3.2)
where (V') is the running average of the potential energy,
and c is a constant which determines the linear growth rate.
This form allows for a large step when the potential exceeds
the average potential energy but does not give an upper
bound on the step size. Although we do not present the data
for this case, it is worth mentioning that it also displays rapid
convergence.

B. Barrier crossing in quantum systems

It is of considerable interest to study the tunneling of a
quantum particle in a multiple well potential. For simplicity
we investigate the tunneling of a particle moving in the sym-
metric double well potential defined in Eq. (3.1). The same
strategy used on the classical particle can be applied to the
quantum particle using the path integral Monte Carlo meth-
od’ where, as usual, the quantum particle is represented by a
classical isomorphic chain polymer consisting of P beads, in
which each bead is harmonically coupled to its nearest
neighbors with force constant (mP /28 *#*) and movesin the

1983

potential defined in Eq. (3.1) attenuated by a factor 1/P.
This isomorphic classical system is described by the poten-
tial energy function

V(x:X00Xp) = Vi(X1,X50..Xp) + Vo(X1,X55.000%p), (3.3)
where

P P
Vi(X1:X20eeXp) = ( 2;'%2) ';l(x, —x,01)° (3.4)
and
l P
Vo( XX 0000 Xp) = 7 z Vix,). (3.5)
t=1

Here x, is the position of bead ¢, and ¥, and ¥, spring, re-
spectively, from the kinetic and potential energy parts of the
Hamiltonian for the quantum particle. Monte Carlo meth-
ods are easily applied to the study of this problem. The stan-
dard approach is to uniformly sample a trial move for each
bead which is then accepted or rejected according to the
usual Metropolis algorithm. One pass consists of trial moves
for all the P beads. This method involves a constant maxi-
mum step size. One of the problems with this approach is
that for P sufficiently large, the chain becomes very stiff and
the beads can only be moved by very small amounts. Then it
will take an enormous amount of time to sample all regions
of the double well potential. One way to speed up conver-
gence is to augment the moves such that after every pass the
center of mass of the chain is moved and the move is accepted
or rejected by a Metropolis criterion.® Another approach is
to transform to the normal modes® of the quadratic part of
the potential, V), defined in Eq. (3.4). One of these modes
corresponds to translation of the center of mass (c.m.) of the
chain. The remaining modes correspond to various collec-
tive vibrations of the chain. The normal modes can be direct-
ly sampled using a Box-Mueller technique'® such that the
low frequency modes are moved through much larger dis-
placements than the high frequency modes. This method
allows for large excursions of the chain with a concommitant
rapid equilibration rate.

One can apply the variable step, the FB and the AFB
methods to the Monte Carlo simulation of tunneling using
direct sampling of {x, } or normal mode sampling. These are
now compared.

First we consider MC based on the primitive algorithm
consisting of two kinds of moves. In the first kind, a move for
each bead is sampled from Eq. (2.1) and accepted or reject-
ed on the basis of Eq. (2.4). In the second, the average force
onthec.m., 2*_, F,(x,)/P,is computed and a move of the
c.m. of the chain is sampled from Eq. (2.1) with this force
and accepted or rejected on the basis of Eq. (2.4). If the
move is accepted, this displacement is added to the positions
of each of the beads. Note that in the biasing algorithms it is
the force corresponding to ¥, the double well part, that is
used; otherwise, because the quadratic part V, is very stiff, it
would dominate the biasing and would not accelerate barrier
crossing. Figure 5 shows the results of several simulations
based on this mode of sampling. Curve (a) corresponds to
no-biasing with constant step size moves (1 =0, ¢ = 1.0)
for both the individual bead moves and for the c.m. moves.
Curve (b) corresponds to no-biasing with a constant step
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FIG. 5. y vs the number of passes for the primitive path integral Monte
Carlo simulation of a quantum particle moving in the potential defined in
the text. The AFB and the variable step size methods are based only on ¥, in
Eq. (3.5). And we treat individual beads and center of mass differently. The
number of beads is 10. The exact normalized distribution p,,, (x) in the
calculation of y is determined from NMM with P = 10. The three curves
correspond to (a) no-biasing with constant step size for individual bead
moves (4; =0, ¢ = 1.0, Ax = 0.15) and no-biasing with a constant step for
c.m. move (4, =0, ¢ = 1.0, Ax = 1.5); (b) no-biasing with a constant step
size for individual bead moves (4, =0, ¢ = 1.0, Ax = 0.15) and no-biasing
with the variable step size for c.m. move (1, =0, ¢ = 2.0, Ax = 1.2); (¢)
AFB with a constant step size for individual bead moves [4, = V" (x,)/
|¥"(x;)],¢ = 1.0, Ax = 0.15] and AFB with the variable step size for c.m.
move [A, = V*(x,)/|V"(x;)|, c=2.0, Ax = 1.2].

size for the individual bead moves (1 =0, ¢ = 1.0), and no
biasing with variable step size for the c.m. moves (4., =0,
¢ = 2.0). Curve (c), on the other hand, corresponds to AFB
with a constant step size for the individual bead moves
[, =V3(x/|V5(x,)|, c=1.0], and AFB with variable
step size for the c.m. moves (A., = V5 (Xom )|V (X))l
¢ =2.0). It is clear from this figure that the anti-force-bias
technique is superior to no biasing and when combined with
the variable step size method results in a very powerful meth-
od for studying tunneling phenomena.

Next we turn to normal mode techniques.® Here the real
coordinates of the beads {x, } are tranformed to

2 172 ]
X, =X, + [?] ; sin(wkt /P)Q;.

After tranformation to normal modes Eq. (3.1) is becomes

e ) -2

—1‘; g Vix, {Q 1)

New steps are generated by Box-Mueller sampling of Q,
from the Gaussian distribution, exp[ — B¥;], where V, is
defined in Eq. (3.7). The c.m. position x, is sampled using
biasing and constant and variable step moves as before. Fig-
ure 6 gives 4 summary of results using the normal mode

(3.6)

(3.7
and

(3.8)
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FIG. 6. y vs the number of passes for the normal-mode path integral Monte
Carlo simulation of a quantum particle moving into the potential defined in
the text. The AFB and the variable step size method are used to sample the
translation move of the whole chain. The number of beads is 10. The exact
normalized distribution p,,,,, (x) in the calculations of y is determined
from NMM with P = 10. The four curves correspond to (a) no-biasing and
constant step size [4; = 0, c = 1.0, Ax = 1.5], (b) AFB and constantstep
size [4; = V" (x,)/|V"(x;)], ¢ = 1.0, Ax = 1.5], (c) no-biasing and vari-
able step size (4; =0, ¢ = 2.0, Ax = 1.2], and (d) AFB and variable step
size [4, = V" (x,)/|V"(x;)|, c=2.0, Ax =1.2].

tranformation. Here the force on the c.m. coordinate,
3P_ | F,(x,)/P, is computed and a move of the c.m. of the
chain is sampled from Eq. (2.1) with this force and accepted
or rejected on the basis of Eq. (2.4). If the move is accepted
this displacement is added to the positions of each of the
beads. Curve (a) corresponds to no biasing and constant
step size (4 =0, ¢ = 1.0), curve (b) corresponds to AFB
and constant step size (A, =V5(x.n)/|V5Xem )l
¢ = 1.0), curve (c) corresponds to no biasing and variable
step size (4 =0, ¢ = 2.0), and curve (d) corresponds to
AFB and variable step size (4., = V5 (x.n)/| V5 (Xem)|,
¢ = 2.0). Once again we see that AFB with variable step size
is more rapidly convergent, but here the no-biasing algo-
rithm with variable step size is not bad.

IV. CONCLUSION

The aim of this paper is to present a simple method for
accelerating the sampling of potential wells separated by
large barriers. Standard MC or MD methods converge so
slowly that they are impractical. Of course it is a simple
matter to use umbrella sampling technique when the dealing
with a simple analytical form of the multiple well potential
function; however, in most problems of interest the wells and
barriers result from the superposition of two-body potential
functions and a simple analytic form is not available. If this is
the case the reference potential used in the umbrella sam-
pling is an almost uniform potential. In that case the same
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time is spent sampling the improbable regions as the prob-
able regions which is wasteful. Moreover, we have found
that umbrella sampling when applied to the determination of
the potential of mean force for the dihedral angle of butane
dissolved in Lennard-Jonesium, and the ST2 water gives ex-
tremely slow convergence.!' The methods outlined in this
paper can be applied to these many-body problems, for
which umbrella sampling techniques are not adequate.

Variable step sampling has been tried before on classical
simulations of Lennard-Jonesium, albeit with a different
sampling function, where it did not accelerate the sampling
of the Boltzmann distribution function.'? Because of this
problem it has not been used much in the literature. Here we
have shown that variable step methods are quite useful for
simulations involving barrier crossing, because the steps
made are large enough to allow the new position to be on the
other side of the barrier with an acceptable potential energy
change. It is very likely that other algorithms for the variable
step size would give even better results than ours.

Force-bias methods have been used before with consid-
erable success, especially on aqueous systems.’> These
methods are very simple and rapidly convergent. It is even
possible to go beyond force-bias and to include biasing using
the second derivatives of the potential energy function. We
show here that the FB method tends to move the particle
towards the minimum of the well it starts from and therefore
does not lead to rapid barrier crossings. In unpublished work
of 10 years ago, we also found that the higher order biasing
algorithms using ¥ " do not do any better. In fact, the usual
constant step MC method often leads to faster convergence
than do these biasing techniques.

In this paper we proposed an anti-force-bias technique
that biases the move to be in a direction antiparallel to the
instantaneous force, whenever the sign of V" is negative.
This method generates moves into the barrier region and
leads to a much larger number of uncorrelated barrier cross-
ings than the standard and FB methods produce. When a
variable step size is used in conjunction with this AFB meth-
od, it achieves rapid convergence in double well and multiple
well problems.

Path integral MC methods for studying localization
phenomena often involve bottlenecks arising from the slow
time scale connected with barrier crossings. The methods
described here are quite useful in accelerating convergence
of such problems. We have chosen to study only the simplest
algorithm- such as primitive and normal mode sampling.

There are, of course, other methods. For example, following
Barker’s lead,'® Ceperley and Pollack' have shown that
staging with drift terms gives a rapidly convergent method
for studying many-body problems such as the properties of
quantum liquids. Sprik et al. have devised a different kind of
staging algorithm. Do these methods accelerate barrier
crossing? We have applied the Ceperley staging algorithm to
the systems studied in this paper and find that it performs as
badly as the constant step MC. The Sprik staging method,'>
although not studied here, should perform even worse.

We conclude that the AFB technique with variable step
size leads to a significant acceleration of equilibration in
multiple well problems. In the future we plan to apply this
method to many-body problems involving large energy bar-
riers. Clearly the search for improved methods should not
stop here.
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