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A frequently encountered problem in molecular dynamics simulations is the long runs
required to study condensed systems consisting of both high frequency and low frequency
degrees of freedom. Standard integrators require the choice of time step sufficiently

small to guarantee stable solution of the highest frequency motion with the consequence that
simulations require a very large number of central processing unit (CPU) cycles. In

this note we present a new integrator that allows one to use a time step appropriate for the
low frequency degrees of freedom without making any approximations related to the
separation of time scales. This method is based on a choice of an analytically solvable
reference system for the high frequency motion. We show how the analytical solution can be
incorporated into a numerical integrator. The method is applied to two cases which are
paradigms for this problem and it is shown that this approach and suitable generalizations
should be very useful for future simulations of quantum and classical condensed matter

systems.

I. INTRODUCTION

A problem often encountered in computer simulations
is that of multiple time scale motion.! The separation of
time scales occurs when some subset of the forces present
in a system is large compared to the rest of the forces. In
the simulation of polyatomic liquids with flexible bonds,
for example, the bond vibrations usually occur on a time
scale which is short compared to that of the translations
and rotations. In path integral simulations of electron sol-
vation, the vibrational force constants arising from the ki-
netic energy operator increase linearly with the size of the
chain (or the discretization). Hence, the vibrations of the
chain are often fast compared with any other motion in the
system. In such problems the configuration space can be
subdivided into fast and slow degrees of freedom. If one
wishes to simulate such systems using the standard inte-
grators of molecular dynamics, then the maximum time
step that can be used to integrate the equations of motion
must be chosen to insure accurate integration of the high-
est frequency motion in the system, with the consequence
that a very small time step may be needed. When a large
disparity in time scales exists, a very large number of cen-
tral processing unit (CPU) cycles will be required to allow
the slow degrees of freedom to fluctuate enough to obtain
converged time averages for the whole system. Swindoll
and Haile? and Teleman and J6nsson® have proposed mul-
tiple time-step (MTS) methods in which the force is sep-
arated into its slow and fast components. This separation
yields a set of coupled equations of motion for the evolu-
tion of the slow and fast degrees of freedom which is larger
than the original set.> Instead of solving this set of equa-
tions simultaneously, MTS integration uses a small time
step 8t to advance the fast degrees of freedom 7 steps hold-
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ing the slow variables fixed. The slow degrees of freedom
are then updated using a time step n6f. Teleman and
Jonsson® have found that n could be chosen typically be-
tween 5 and 10 in molecular simulations. We have found
that the disadvantage of the MTS methods lie in the loss of
accuracy due to the approximation of holding the slow
variables fixed while integrating the equations for the fast
variables. In addition, a non-negligible amount of CPU
time is spent in the r-step integration of the fast forces.
Ideally, one would like an exact integrator which utilizes a
time step appropriate for the slow forces without spending
too much additional CPU time.

It often happens that high frequency motion can be
approximated by an analytically integrable reference sys-
tem. In this note we show that if such an analytic solution
can be found, this solution can be incorporated into an
integration scheme for the whole system such that a time
step characteristic of the slow degrees of freedom can be
used and the system can be simulated effectively with a
much smaller number of cycles. The algorithm makes no
approximations related to the separation of time scales and
is, therefore, an exact algorithm. In addition, the CPU time
required to advance the system by one time step using this
new integrator is almost exactly the same as for any stan-
dard integrator.

For illustrative purposes we study two dynamical sys-
tems. First we discuss two bilinearly coupled harmonic
degrees of freedom, one with a very high frequency and the
other with very low frequency. We show that straightfor-
ward use of the common integrators forces one to choose a
very small time step. On the other hand, the integrator we
propose in this paper, called numerical analytical propaga-
tor algorithm (NAPA), allows numerical integration of
this system using a time step more appropriate for the
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lower frequency. Comparisons of NAPA, and the standard
integrators with the analytical solution show that NAPA is
far superior for the treatment of such problems. A more
realistic illustration is the application of NAPA to the sim-
ulation of a high frequency diatomic molecule dissolved in
a Lennard-Jones fluid. We show that NAPA leads to a
great reduction in the time required for the study of this
system. These systems are paradigms for the many systems
encountered in statistical mechanics. Although both of
these systems make use of harmonic reference systems, the
method is easily applied to other reference systems.

. METHOD

To illustrate the method, consider a differential equa-
tion of the form

X =f(x)+g(x). (2.1)
We write the solution to Eq. (2.1) in the form
x(8) =xo(2) + 8(2), (2.2)

where x,(¢) is chosen to satisfy the “reference system”
equation of motion,

Xo=f(xp), (2.3)
subject to the initial conditions
x0(0) =x(0),
(2.4)

Xxo(0)=x (0).

The analytical solution to Eq. (2.3) subject to the initial
conditions is then of the form,

xo(8) =xo[£:x(0), % (0)]. (2.5)

Substituting Eq. (2.2) and Eq. (2.5) into Eq. (2.1) then
gives an equation for §(#):

8 () ={flxo(1) +8()]1—fx(D)]}

+ glxo(2) +6(0) ], (2.6)
with initial conditions
8(0)= 4 (0)=0. (2.7)

Because the analytical solution of Eq. (2.3) is used di-
rectly, Eq. (2.6) has an explicit time dependence.

To solve Eq. (2.1) we propose the following scheme:

1. Substitute the analytical solution for x,(#), Eq.
(2.5), into Eq. (2.6).

2. Solve Eq. (2.6) subject to the initial conditions, Eq.
(2.7), for one time step At using a suitable integrator to
obtain 6(At) and 5(Atr).

3. Calculate

x(A1) =xo(A?) + 5(Ar),
(2.8)
x (At) = xo(Az) + & (Ar).

This process is repeated using x(A¢) and x(A¢) as initial
conditions. That is, we solve the combined problem Eq.

(2.3) and Eq. (2.6) with initial conditions Eq. (2.7), but
with initial conditions Eq. (2.4) replaced by

x0(0) =x(A1),
(2.9)

*o(0)= x (A?).

In general, at each step, the output of the previous step is
used as the initial conditions for x, and X, in the next step.
The key point of this method lies in the resetting of the
initial conditions on 8(¢) and 5(7) to O at every step. Since
8 and & never deviate much from 0 in a given step, the
force term f(x, + 8)—f(xp) in Eq. (2.6) is prevented
from becoming too large, thus allowing the use of a larger
time step in the numerical integration than could be used
in the standard integration schemes.

The integration of Eq. (2.6) can be performed by any
integrator suitable for equations with explicit time depen-
dence. The Runge-Kutta and Gear predictor-corrector
methods are such integrators. In some cases, a suitable
integrator can be obtained from only a minor modification
of the standard integrators. In particular, the velocity
Verlet* integrator can be adapted for Eq. (2.6) by a
straightforward extension of the usual derivation with the
result

x(Af) =xo(At) + (A1) ?g[x0(0) ],

At
X (Ar)=xo(An) + 5 {g[x0(0)]

At
+ glxo(At) + 8(A8) 1} + 5 {flxo(AL)

+8(AD) ] —flxo(AD)1]. (2.10)

ill. RESULTS

To assess the accuracy of the different integrators we
plot some or all of the following quantities in the figures:
1. The quantity,

E(t)—E(0)

£0) |’ (3.1)

~ 1 (T
AE(At):T f dt‘
0

where T is the total time of the run, gives a measure of the
average deviation of the total energy from its initial value
as a function of the time step Az used in the integrator. This
gives a measure of how well the integrator conserves en-

ergy.
2. The quantity,

Ax(t) =[x, () — xF2U()1? + [x,(1) —

Exact(t)]z
(3.2)

gives the Cartesian distance between the position in con-
figuration space of the numerical trajectory and that of the
exact trajectory as a function of time (in units of the period
T, of the fast coordinate).

3. The quantity,

Ap() = [p (D) =P ]2 +

[2(8) =2 (1) 1%, (3.3)
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gives the Cartesian distance between the position in mo-
mentum space of the numerical trajectory and that of the
exact trajectory as a function of time (in units of the period
T, of the fast coordinate).
Consider the case of two bilinearly coupled harmonic
degrees of freedom with Hamiltonian
n B,
=2m, + 2m, T 5 M@X] + 5 MawpX) + 8X1 X
(3.4)

where m; and w; are, respectively, the masses and frequen-
cies of the two oscillators and g is the coupling strength. By
convention we take w, as the higher of the two frequencies.
Of course this dynamical system can be solved analytically.
In this case NAPA is based on choosing the high frequency
oscillatory coordinate x, to satisfy

(3.5)

The solution of Eq. (3.5) subject to the boundary condi-
tions (as outlined in the previous section) for
nAr<t<(n+1)At is

. 2
X 20= — WX 0

x20(t) =x3(nAt)cos[w,(t—nAt)]

X ,(nAt) |
+ ————sin[w,(t—nAt)],
@

(3.6)

and the resulting equation of motion for 6(#) is then
8 (1) =—w}8(1) + Flxy0(2) + 8], (3.7)

where F(y) = —mywiy—gx,. Note that in Eq. (3.6), since
Xy is only required at r=(n + 1)At, repeated calls of spe-
cial functions are not necessary; one need only calculate
cos(w,At) and sin(w,At?) once.

For illustrative purposes consider the case where the
high frequency mode has a frequency that is a factor of 100

larger than that of the low frequency mode; that is, m;

= 1, oy =3, 0, =300, and g=2. In Fig. 1 we see that
AE(Ar) for the velocity Verlet integrator (solid curve)
increases much faster than for the NAPA integrator
(dashed curve). From this curve we see that to achieve an
accuracy of AE (At) = 1 X 1077 the time steps required
are Atyees = 5X 1075 and Atyapa = 1X 1072, This clearly
illustrates a major advantage of NAPA which is that it can
be run with a much larger time step, in this case
Atnapa/Alyene = 20. Figure 2 shows that for these time
steps both algorithms are stable. Interestingly, despite the
fact that the two time steps are chosen to give the same
energy conservation, NAPA generates trajectories much
closer to the exact trajectory than does Verlet. In particu-
lar, Verlet gives a much less accurate evolution of the mo-
menta than NAPA. Although it is not shown in the figure,
when the two integrators are compared for equal time steps
of At = 5 X 107°, AExapa = 4 X 107% and
AE vy =1X107> In general, for a given time step,
NAPA is more accurate than Verlet. More importantly,
NAPA allows one to set the time step according to the low
frequency vibration and still generate a relatively accurate
trajectory. To get the same accuracy in energy converva-

log(AE)
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FIG. 1. The normalized energy deviation, defined in Eq. (3.1), as a
function of time step for the coupled harmonic oscillator system defined
by Eq. (3.4) (@, =3.0, @, =300, g=2, and averaging time 7'=3000
periods of oscillator 2), for the NAPA integrator (dashed), and for the
pure velocity Verlet integrator (solid line).

tion using the standard Verlet, a time step 20 times smaller
would be required. Of course, different choices of the pa-
rameters will have correspondingly different time steps as-
sociated with the two integrators. As an additional test, we
measure the CPU time required to carry out one step of
Verlet and one step of NAPA for this system. Expressed in
CPU seconds per 10° steps, the results are 1.42 for Verlet
and 1.6 for NAPA. Thus, NAPA gives a significant in-
crease in accuracy without requiring significantly more
CPU time.

In the foregoing we based NAPA on the harmonic
trajectory of the uncoupled high frequency oscillator. Of
course it is a simple matter to base it on harmonic trajec-
tories of the uncoupled low and high frequency oscillators.
It is worth noting that this doesn’t work as well. This
follows from the fact that for moderate coupling strength
the higher normal mode frequency is relatively unchanged
from w, whereas the lower normal mode frequency exhib-
its a relatively large shift from the uncoupled ;. In this
case the uncoupled low frequency reference trajectory is a
poor approximation to the exact trajectory and thereby
requires a much shorter time step when used in NAPA.
From this, we conclude that NAPA should be used only on
those degrees of freedom weakly coupled to the rest of the
system. These are often characterized by frequencies in-
commensurately large compared to the other degrees of
freedom in the system.

As a second example, we consider the problem of a
flexible diatomic with harmonic potential buried in a
Lennard-Jones fluid. If r; and r, denote the coordinates of
the two atoms, and if all masses in the problem are set
equal to 1, then we may transform to center of mass,
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FIG. 2. The configurational and momentum deviations from the exact
trajectory as defined in Eq. (3.2) and Eq. (3.3) for the coupled harmonic
oscillator system defined in Eq. (3.4) for the NAPA integrator (dashed),
and for the pure velocity Verlet integrator (solid line).

R = (r; 4+ r,)}/2, and relative, r = r;—r,, coordinates in
the usual way. If the relative position is transformed to
normal coordinates there will be two zero frequency modes
corresponding to the rotations and one corresponding to
the molecular vibration. This reference system can be in-
tegrated exactly and can be used directly in NAPA. How-
ever for illustrative purposes we simplify the problem by
constraining the diatomic to be at a fixed spatial orienta-
tion. This is equivalent to writing the relative position vec-
tor in the form r = ur where u is a unit vector specifying
the fixed orientation of the molecular axis. Then only the
relative distance r evolves with time according to the equa-
tion of motion

¥ =—w*(r—a) + F(r), (3.8)

where F(r) is the total force on the relative coordinate due
to the presence of the fluid. To mtegrate Eq. (3.8), we
choose ry(2) to satisfy

(3.9)

where a is the equilibrium bond length. The solution of Eq.
(3.9) subject to the conditions of NAPA for
nAi<t<(n + 1)At is

o= —w?(ry—a),

ro(t) =[r(nAt) —alcos[w(t—nAt)]

r (nAt)
+ ———sin[w(t—nAt)] 4+ a

(3.10)

and the resulting equation of motion for 6(¢) is then

8 =—w?8 + F(ry+ 8). (3.11)

The system simulated consists of a single homonuclear
diatomic molecule 4, dissolved in a solvent consisting of 62
A atoms. The solute-solvent interaction potential is taken
to be a site-site LJ(12-6) potential and the solvent—solvent
potential is taken to be pairwise additive with atom—-atom
interactions also given by the same LJ(12-6) potential;
that is an LJ potential with the same € and 0. (All quan-
tities are expressed in Lennard-Jones units so that
€ = o =1.) The intramolecular potential is taken to be
harmonic with bare frequency wg=300 {in LJ units
[(e/md?)"/?] and equilibrium bond length x, = 1.25}. The
system is solved subject to cubic periodic boundary condi-
tions using the NAPA integrator for the harmonic poten-
tial. u is chosen to be the vector (1/V3, 1/Y3, 1/Y3). The
simulation is performed for a reduced temperature of T
= kgT/e = 2.5 and a reduced density of # = po’
= 1.05. At this temperature and density, the peak of the
spectral density of the neat fluid is around wpey = 20, a
value small compared to the oscillator frequency wg (300
in this case). Hence, this is a good test of NAPA under
extreme conditions. Equation (3.8) was integrated by
straightforward velocity Verlet while Eq. (3.11) was inte-
grated using the velocity Verlet modified for NAPA in Eq.
(2.10). All the other equations of motion were integrated
with velocity Verlet. For straightforward integration of Eq.
(3.8), we find that under these conditions a time step of
1x107* is required to insure stability. But when the
NAPA method is used with Eq. (3.11) the same stability
can be obtained with a time step of 810~ In Fig. 3 the
energy deviation defined in Eq. (3.1) is plotted versus time
step for the NAPA (dashed line) integrator and for the
velocity Verlet integrator (solid line). The curves are not
as smooth as for the coupled harmonic oscillators because
the averaging time used there was 3000 periods of the fast
oscillator whereas here it is 150 periods of the fast oscilla-
tor. Nevertheless the curves are similar and the conclusions
are the same. NAPA allows one to use a much larger time
step than does Verlet integrator (and presumably the other
standard integrators).

IV. CONCLUSION

The NAPA method can be most efficiently used when
part of the force is analytically solvable and weakly cou-
pled to the rest of the system. We have seen that NAPA
gives rise to a significant increase in integration efficiency
when stiff oscillators are involved. This should allow one
greater ease in simulating liquids with polyatomic mole-
cules using flexible bonds. In general, for such simulations,
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FIG. 3. The normalized energy deviation (averaged over 150 periods of
the high frequency oscillator), defined in Eq. (3.1), as a function of time
step for a harmonic diatomic molecule with frequency wo, = 300 and bond
length x; = 1.25 dissolved in a LJ fluid at reduced density 1.05 and re-
duced temperature 2.5 for the NAPA integrator (dashed) and for the
pure velocity Verlet integrator (solid line) defined by Eq. (3.4).

one would need to find a suitable set of coordinates (e.g.,
normal modes) to specify the reference system. We expect
the NAPA method to be especially useful in simulation of
quantum mechanical systems by path integral molecular
dynamics techniques.

In a subsequent paper we have applied NAPA to the
determination of the phase relaxation of a high frequency
diatomic molecule in solution and to the determination of
the dynamic friction on intramolecular bonds.®
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