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A frequently encountered problem in molecular dynamics is how to treat the long times that 
are required to simulate condensed systems consisting of mixtures of light and heavy particles. 
Standard methods require the choice of time step sufficiently small to guarantee stable solution 
for the low mass component with the consequence that these simulations require a very large 
number of central processing unit cycles to treat the relaxation of the heavier component. In 
this note, we present a new method that allows one to use a time step appropriate for the heavy 
particles. This method uses a similar idea to numerical analytical propogator algorithm, an 
algorithm we invented to treat high frequency oscillators interacting with low frequency baths 
and is based on a choice of a reference system for the light particle motions. The method is 
applied to the case of a liquid containing 864 Lennard-Jones spheres, 824 of these particles 
having a mass, M = 100 and 40 spheres picked at random have a mass m = 1. It is shown that 
molecular dynamics using the new algorithm runs seven to ten times faster than standard 
methods and this approach as well as suitable generalizations should be very useful for future 
simulations of quantum and classical condensed matter systems. 

I. INTRODUCTION 

Consider a system consisting of a mixture of light 
(mass = m) and heavy spheres (mass = M). In such sys- 
tems, there is a disparity in the molecular dynamic time 
scales. If one wishes to simulate such systems using the stan- 
dard integrators of molecular dynamics, then the maximum 
time step that can be used to integrate the equations of mo- 
tion must be chosen to insure accurate integration of the low 
mass component with the consequence that a very small time 
step is needed.When a large disparity in time scales exists, a 
very large number of central processing unit (CPU) cycles 
will be required to allow the slow degrees of freedom to fluc- 
tuate enough to obtain converged time averages for the 
whole system. 

In this paper, a method for accelerating the simulation 
of such systems is presented. This method, called RESPA 
[reference system propogator algorithm), is a variant of the 
numerical analytical propogator algorithm (NAPA), algo- 
rithm that we invented for treating the problem of high fre- 
quency oscillators coupled to low frequency oscillators. ’ The 
RESPA method is based on numerical solutions of the refer- 
ence system equations. The gist of the method is to define a 
dynamical reference system for the fast motion and to derive 
equations of motion for the deviation S(t) of the fast coordi- 
nates from the reference system coordinates.These devia- 
tions are coupled to the equations of motion of the slow co- 
ordinates. The fast dynamical system is integrated for n 
small time steps nSt holding the slow coordinates fixed. The 
time dependence of the reference system is then fed into the 
coupled equations for S(t) and the slow coordinates and the 
resulting equations are integrated for one large titie step 
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At = n&. The initial conditions for each large time step are 
then chosen so that this deviation 6( t) is zero with the conse- 
quence that the deviation is always kept small. The only ap- 
proximation in this algorithm springs from the numerical 
integrator used to integrate the equations of motion of the 
reference system and the coupled equations. Otherwise, the 
method is self-correcting and exact. For simplicity, the refer- 
ence system is taken to be the Hamiltonian of the original 
system with the slow coordinates held fixed at their values at 
the beginning of the time step. 

Teleman and Jiinsson’ have proposed a multiple time- 
step (TJMTS) method in which the forces are separated into 
slow and fast components. This separation yields a set of 
coupled equatibns of motion for the slow and fast degrees of 
freedom. TJMTS uses a small step 2% to advance the fast 
degrees of freedom n steps holding the slow variables fixed. 
The slow degrees of freedom are then updated using a time 
step At = n&. This method does not correct for the errors 
incurred in the approximate factorization of the equations of 
motion, a fact which shows up in poor energy conservation. 
This is well illustrated when we compare the results of 
RESPA, TJMTS, and velocity Verlet3 (using a small time 
step). Swindoll and Haile4 have proposed a more accurate 
multiple time-step method than Teleman and JGnsson, but 
their method requires high-order spatial derivatives of the 
potential and is therefore more computationally intensive 
than RESPA. 

For simplicity, we apply this new method to the simula- 
tion of a mixture of Lennard-Jones spheres consisting of 824 
heavy spheres of mass M = 100 and 40 light spheres of mass 
m = 1. For Lennard-Jones (LJ) spheres, the two time scales 
are At, = m/e, and At, = dm, where ai and E,. 
are the Lennard-Jones parameters for component i. For iI- 
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lustrative purposes, we take u, = (TV and E, =,E. The fluid is 
simulated at the triple point (pd = 0.86 and T = 0.67). For 
this system, the fast motion is ten times faster than the slow 
motion. Of course if the ds or E’S are different, one can pro- 
duce even greater disparities in time scale. We compare the 
CPU times required to generate a given amount of self-diffu- 
sion and a given accuracy for the following algorithms: 

(i) straightforward molecular dynamics (MD) using 
the velocity Verlet integrator with a time step chosen to pro- 
duce the given accuracy; 

(ii) MD using RESPA with time step adjusted to give 
the given accuracy; 

(iii) the TJ (Ref. 2 ) multiple time-step method ( MTS ) 
using identical time steps as in RESPA. 

We find that straightforward velocity Verlet integration 
takes seven times longer than RESPA to generate the same 
mean-square displacement for the given accuracy for the 
system defined above. For this same system, TJMTS com- 
pared favorably in time, but is three orders of magnitude less 
accurate in energy conservation.The poor energy conserva- 
tion in the TJMTS calculation is due to a systematic drift in 
the energy. In implementing TJMTS, one must rescale the 
velocities periodically in order to avoid this, although this 
will not yield true dynamics. It is worth noting that for a 
fixed number of light particles, the acceleration increases 
with the number of host heavy particles. 

The RESPA and MTS methods may also be based on 
the Gear predictor-corrector algorithm. In fact, numerous 
molecular dynamics packages (e.g., the MUMOD program 
of Teleman and Jiinsson2) employ this integrator as the 
method of choice. The use of second-order algorithm is, of 
course, equivalent to velocity Verlet. When a higher-order 
predictor-corrector procedure is used in the presence of a 
large mass disparity, then it becomes necessary to iterate the 
corrector step in order to insure accurate integration in the 
higher-order time derivatives. For example, if a third-order 
predictor-corrector algorithm is used, we find that three 
iterations of the corrector step are necessary to yield accepta- 
ble results. Significant degeneration of accuracy occurs 
when the number of iterations is decreased, a fact which 
should be considered when using packages which integrate 
by the Gear algorithm. 

With this method, there are many problems that are 
now feasible. Diffusion of light particles in polymer solu- 
tions, solid state diffusion of light impurity atoms are just 
two kinds of problems that can be approached in this way. 
Clearly RESPA can be combined with NAPA to treat prob- 
lems involving light molecules with stiff vibrations. In addi- 
tion, it may be possible to treat the time-scale disparity due to 
a very low moment of inertia with concomitant fast rotations 
and slow translations in water by similar methods. 

II. METHOD 
To illustrate the method, consider a set of differential 

equations of the form 

R=lFJx,y), 
m 

(2.1) 

where m<M, x and y represent, respectively, the positions of 
the light and heavy particles, and F, and F,, represent the 
forces of these fast and slow degrees of freedom. If F, and FY 
are of the same order, x will change much more rapidly than 
Y* 

We must solve this set of equations subject to the initial 
conditions {~(0),~(0),y(0>,~(0)}. To proceed, we detine a 
“reference system” equation of motion 

Z. =+Fx[xo,J) (2.2) 

which must be solved subject to the initial conditions 

-%(O) =x(O), 
io (0) = k(O), (2.3) 

while keeping the position of the slow coordinate fixed at 
some valuey ]e.g., v = y( 0) the value at the beginning of the 
interval]. The solution of the reference system equations of 
motion (2.2) denoted 

x0 (f> =x0 [WO),~o W,J) 1. (2.4) 
The true position of the light system deviates from the refer- 
ence system position and can be expressed as 

x(t) =x0 (0 + S(t). (2.5) 
Substitution of this into Eq. (2.1) and elimination ofZo using 
Eq. (2.2) then results in the set of equations 

“=f [Fxbo +&Y) -Fx(xos7)], 

j=~Fy(x, -tS,y). G.6) 

To solve Eq. (2.6) subject to the initial conditions 
[which follow from Eq. (2.3) ] 

S(0) = 0, 

6(O) = 0, (2.7) 
we propose the following scheme: 

( 1) numerically integrate Eq. (2.2) for a sequence of Iz 
small time steps St(At = nSt) with the background of heavy 
particles fixed at 7, thus generating x,(t) for O<t<At [the 
choice of7 = y(0) the value at the beginning of the interval 
lends itself easily to integration by the velocity Verlet algo- 
rithm]; 

( 2 ) introduce the numerical solution for x,(t) into Eq. 
(2.6); 

(3) solve Eq. (2.6) subject to the initial conditions [ Eq. 
(2.7) ] for one, time step At using a suitable integrator to 
obtain S(At), S(Aht), y(At), andp(At); 

(4) calculate 

x(Af) =x0 (Af) + &At), 

5z(At) = 1, (At) + &At). (2.8) 

This process is repeated using x( At), z?( At), .y(At), and 
I( At) as initial conditions. In general, at each step, the out- 
put is used as- the initial conditions for the next step.The 
advantage of this method lies in the resetting of the initial 
conditions on S(t) and &(t>)to 0 at every step. Since S and & 
never deviate much from 0 in the given step, the force term 
F, (x0 + 6,~) - F, (x0 J) in Eq. (2.6) is prevented from be- 
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coming too large, thus allowing the use of a larger time step 
in the numerical integration than could be used in the stan- 
dard integration schemes. It is worth noting that, in contrast 
to Eqs. (2.2) and (2.6), the TJMTS method’ uses the ap- 
proximate set of equations 
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equivalent to the standard algorithms. Finally, since the zi/‘s 
all vary in approximately the same way with density, we 
expect that r will be relatively insensitive to density varia- 
tions. 

Ill. RESULTS 
jio = L F, (xoJ), 

m 

and is thus not self-correcting. 
The integration of Eq. (2.6) can be done by any integra- 

tor suitable for equations with explicit time dependence.5 
The Runge-Kutta (or predictor-corrector) method are 
such integrators. In particular, the velocity Verlet3r5 integra- 
tor can be adapted straightforwardly for Eq. (2.6). 

The major reason that RESPA saves~so much time is 
that during a small time step St Eq. (2.2) is integrated keep- 
ing the background of heavy particles constant. Thus it is not 
necessary to recompute the forces between the heavy parti- 
cles. These have to be updated only once every large time 
step At when Eq. (2.6) is integrated. If there are many more 
heavy particles than light particles, this saving in force com- 
putations can be dramatic. For a mixture containing N, light 
particles and N2 heavy particles interacting with central 
forces, one often uses spherical bookkeeping methods. Let zij 
denote the average number of particles of typej that interact 
with a particle of type i.The number of forces that must be 
calculated during the n time steps St, during which the slow 
particles kept fixed are then nN, (z,;+ z, i/2) and the num- 
ber that must be calculated for the integration of Eq. (2.6) is 
N,(z,, + 2;?,/2). Thus the total CPU time for one large time 
step using RESPA, assuming that the calculation of the 
forces is the time-consuming part of the calculation, is pro- 
portional to [nN, (z,~ + z, ,/2) + NZ(z,, + z,,/2) 1. On the 
other hand, if the calculation is done by standard integrators 
to compute n steps of length & moving all of the particles 
during each cycle, the total number of forces that must be 
calculated in n [N, (z,~ -I- .z, ,/2) + N,(z,, + z&2) 1. This 
leads to the prediction that the ratio of CPU times for the 
usual methods to that of RESPA will be 

r= 
n[N*(z,, +z,,/21 +N,cG, +2*,/2)-j 
[ni, (.q2 -I-z,,/2) + N2 (z?~ + zz2/2)] . (2*10) 

Equation (2.10) allows us to predict a number of things. We 
see that 

lim r= n. 
N,/N, - m 

(2.11) 

Thus RESPA will be at best n times faster than straightfor- 
ward methods.For the liquid simulated in this paper n = 10, 
but for fluids in which the light mass particle has a much 
smaller a, n can be much larger than 10. The optimal limit 
r = n can be achieved only for infinitely dilute solutions 
where the solute is light. For finite concentrations, r<n and 
the gain will be smaller, but still nonnegligible. For the case 
considered here, we predict r-7. Furthermore, for this case, 
r decreases from its the.oretical upper limit as the mole frac- 
tion of the light species increases at fixed system volume. It 
reaches a theoretical minimum of r = 1, which is exactly 

For simplicity, we apply this new method to the simula- 
tion of a mixture of Lennard-Jones spheres consisting of 824 
heavy spheres of mass M = 100 and 40 light spheres of mass 
in = 1. For Lennard-Jones (LJ) spheres, the two time scales 
are At, = ,/s and A& = ,/%fdZ/eZ, where ui and ei 
are the Lennard-Jones parameters for component i. For il- 
lustrative purposes, we take o, = a, and e1 =jZ. The fluid is 
simulated at the triple point (pd = 0.86 and T = 0.67). The 
time steps used are 6t = 2 X 10 - 3 and At = 2 X 10 - ’ in re- 
duced units [ (Ma’/e) 1’2 1. To simulate the same real times 
50 K time steps were used in the Verlet simulation and 5 K 
time steps were used in RESPA and TJMTS simulations 
after equilibration. 

To compare the accuracy and effectiveness of the differ- 
ent methods, we compute the following quantities: 

( 1) The unnormalized velocity autocorrelation func- 
tion C, (t) of the light particles defined by 

C,,(f) = 1 -+ ,$vi(o).“i(t) , ml 1 ) 
where N, is the number of light particles and the sum is 
taken over all the light particles in the system. 

(2) The mean-square displacement (MSD) A?( t)de- 
fined by 

. . . ,_. 

A?(f) = 
( 
‘+,z [ri(t) -ri(0)]2 

). 
. (3.2) 

mr-I- 
(3 ) The average deviation of the energy from its initial 

value defined to be &=I- ‘T s I & at) - NOI 
To NO) ’ 

(-3.3) 

where T is the total time of the run. 
In Fig. 1 (a), the velocity autocorrelation functions for 

the three integration methods are plotted. From the plot, it 
can be seen that while the velocity correlation functions us- 
ing RESPA and the velocity Verlet integrators agree, the one 
calculated using TJMTS differs dramatically from these. 
Note the initial value. By definition, C, (0) = 3kT/m, a val- 
ue which is well reproduced by RESPA and velocity Verlet, 
but which is in error in the TJMTS scheme. There are also 
significant differences in the short time behavior. In Fig. 2, 
we plot the mean-square displacements, the inset showing 
the short time behavior. Interestingly, the errors in C, (t) 
from TJMTS cancel when the function is integrated over 
time and thus do not show up in the long time behavior of the 
msds. The self-diffusion coefficient of the light particles de- 
termined from the slopes of the long time limit of the msds 
are DVerler = 2.0007~ 10e2, D,,,, = 1.997~ lo-‘, and 
D TJM.rs = 2.003 x lo- ‘. These coefficients are expressed in 
dimensionless units and must be multiplied by the factor 
IZ/M to express them in cm/s2. The agreement among the 
three methods is remarkable good. Also shown in Fig. 2 is 
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FIG. 1. (a) The unnormalized velocity correlation functions defined in Eq. 
(3.1) as a function of time for the light particles in the LennardJones mix- 
ture for the light particles for RESPA (solid line), velocity Verlet (dashed 
line), and for TJMTS (dash-dot line). (b) The same as (a), but using a 
different initial configuration. 

the mean-square displacement of the light particles in a fixed 
configuration of the heavy particles, which demonstrates 
that in the fixed configuration, the light particles get 
trapped. The MSD of the light particles in this fixed matrix 
agrees with the full simulations using RESPA, etc., for short 
times, but, as expected, diffusion of the light particles can 

0.4 , I I I 
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0.0 1 I 1 I I 
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FIG. 2. The mean-square displacents defined in Eq. (3.2) as a function of 
time for the light particles in the Lennard-Jones mixture for the light parti- 
cles for RESPA (solid line), velocity Verlet (dashed line), TJMTS (dash- 
dot line), and for motion of the light particles in a fixed heavy particle ma- 
trix with the same initial conditions as in Fig. 1 (a) (dash-double dot line). 

take place only if the heavy particles can move to allow them 
to get out of their traps. Energy conservation Teasured by 
Eq. (3.3) @r the runs described aboy was AEREsPA = 2 
x 10 - ’ 2 AEv,,,,t = 2 X 10p6, and AE,,,,, = 2 X 10W3, 
which demonstrates that TJMTS is significantly less accu- 
rate with respect to energy conservation than RESPA. 

It is interesting to compare the velocity autocorrelation 
functions and mean-square displacements above with those 
for the heavy particles. The unnormalized correlation func- 
tion for the heavy particles computed by RESPA and 
TJMTS is shown in Fig. 3 (a) and the corresponding MSD in 
Fig. 3 (b) . The differences between RESPA and TJMTS in 
the light particle dynamics do not show up for the heavy 
particles. The reason for this is the RESPA and TJMTS treat 
the heavy particle dynamics in the same way and the light 
particles do not significantly influence the dynamics of the 
heavy particles. In particular, there is substantially more ef- 
ficient backscattering of a light particle from its cage of 
heavy particles than a heavy particle from a cage of light 
particles. This can be seen by noting that the light particle 
velocity autocorrelation function has a much deeper nega- 
tive region than the heavy particle one. The diffusion coeffi- 
cients calculated from the long time dependence of the MSD 
for RESPA and TJMTS also agree, giving a value of 
D = 1.72~ 10d2. The diffusion coefficients for light and 
heavy particles are quite similar (a result expected from the 
Stokes-Einstein relation D = kT/2mp). Note also that the 
decay time of the heavy particle correlation function is essen- 
tially ten times longer than for the light particles in accor- 
dance with the hundredfold mass disparity. 

It should be mentioned that the TJMTS results for the 
light particles are extremely sensitive to initial conditions. 
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FIG. 3. (a) The velocity autocorrelation function for the heavy particles as 
computed by RESPA (solid line) and by TJMTS (dashed line). (b) The 
mean square displacement for the heavy particles as computed by RESPA 
(solid line) and TJMTS (dashed line). 
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FIG. 4. (a) The instantaneous deviation in the energy from the initial value, 
normalized by the initial value for RESPA (solid line) and TJMTS (dashed 
line). (b) The cumulative average temperature of the light particles for 
RESPA (solid line) and TJMTS (dashed line). 

To see this, we carried out an additional set of simulations 
using a different initial configuration. We plot the resulting 
velocity autocorrelation functions from these simulations in 
Fig. 1 (b). This time, we see that TJMTS gives an initial 
value which is too large. In addition, energy consepation 
measured by Eq. A3.3) for these runs yielded A&sPA 
= 1.5x10-“, Everlet = 1.6xF7 and A&,,, 
= 8 X 10 - 3 . The large value of AE,,,,, is due to a system- 

atic drift in the energy during run. To see this, we plot 
AE(t) z [E(t) - E(O)]/E(O) vs t for RESPAandTJMTS 
in Fig. 4(a). Here we see that TJMTS has a significant drift 
in the energy. In Fig. 4(b), we plot 7’(t), the cumulative 
average of the temperature of the light particles correspond- 
ing to the results in Fig. 4(a). Since there are only 40 light 
particles, one expects large fluctuations about the equilibri- 

urn temperature as can be seen in the RESPA curve, how- 
ever, the cumulative average does converge to the correct 
value. The TJMTS curve does not converge, but drifts to a 
value too large as expected from the initial value of the veloc- 
ity autocorrelation function. Because dynamic quantities 
were sought, TJMTS was done with no velocity resealing. 

IV. CONCLUSION 

In this paper we have presented a method which acceler- 
ates molecular dynamics simulations of systems consisting 
of light and heavy particles. This method, called RESPA, an 
extension of the NAPA method is based on a set of exact 
equations which greatly reduces the number of force calcula- 
tions that are required for the simulation. Since it is the com- 
putation of the forces that dominates the CPU time required 
to simulate systems, this reduction in the number of pair 
forces that have to be evaluated leads to a saving in CPU 
time. The ratio of the time required for the simulation using 
the RESPA method to that for a standard method is given by 
r in Eq. (2.10). For solutions very dilute in the light parti- 
cles, r = n, where IZ is the number of time steps for which the 
fast coordinates,are integrated keeping the slow coordinates 
fixed in the reference system. For the Cennard-Jones mix- 
ture in which there is a light particle in a large bath of heavy 
particles n = m%, a number that can be large. The meth- 
od presented here is much more accurate than the TJMTS 
method which is based on an approximate set of equations 
and leads to poor energy conservation. 

It is a simple matter to generalize the RESPA method to 
treat the problem of simulating systems with both long and 
short range forces. This will be presented in a forthcoming 
paper. 
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