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A frequently encountered problem in molecular dynamics is how to treat the long times that 
are required to simulate condensed systems consisting of particles interacting through long 
range forces. Standard methods require the calculation of the forces at every time step. Because 
each particle interacts with all particles within the interaction range of the potential the longer 
the range of the potential the larger the number forces that must be calculated at each time 
step. In this note we present a variant of the RESPA (reference system propagator algorithm), 
which we developed for handling systems with multiple time scales like disparate mass 
mixtures. This version of RESPA greatly reduces the number of forces that must be computed 
at each time step and thereby leads to a dramatic acceleration of such simulations. The RESPA 
method uses ideas similar to NAPA, an algorithm we invented to treat high frequency 
oscillators interacting with low frequency bath. The method is based on a choice of a reference 
system in which the particles interact through short range forces. The reference system is 
numerically integrated for n time steps St and the error incurred by using short range forces is 
corrected by solving a rigorous set of equations once every At = &it. This method reduces the 
cpu time dramatically. It is shown that this approach and suitable generalizations should be 
very useful for future simulations of quantum and classical condensed matter systems. 

1. INTRODUCTION 

Consider a system consisting of Nparticles in which the 
particles interact through forces with a cutoff distance R,. 
Each particle then feels the forces from LV, apR 2 neighbors 
and the cpu time required to advance the system one time 
step St is proportional to the number of forces, NN,/2, that 
must be calculated. Clearly the simulation time grows as the 
cube of the cutoff distance. 

In this short note a method for accelerating the simula- 
tion of such systems is presented. This method, which is 
related to the NAPA algorithm that we invented for treating 
the problem of high frequency oscillators coupled to low 
frequency oscillators, ’ is a variant of the RESPA algorithm 
that we invented for treating systems with multiple time 
scales like disparate mass mixtures.’ The gist of the method 
is to define a dynamical reference system involving only 
short range forces and to derive equations of motion for the 
deviation, S(t), of the coordinates of the system from those 
of the system containing the full forces. The reference system 
equations of motion are integrated for n time steps r&t. The 
time dependence of the reference system is then fed into the 
coupled equations for S(t) and the resulting equations are 
numerically integrated for one large time step At = n&. The 
initial conditions for each large time step are chosen so that 
this deviation S(t) is zero at the start of each new time step 
with the consequence that the deviation is always kept small. 
The only approximation in this algorithm springs from the 
numerical integrator used to integrate the equations of mo- 
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tion of the reference system and the coupled equations. Oth- 
erwise the method is self correcting and exact. 

It should be noted that as the range of the interaction 
increases, the ratio of the number of long range forces to the 
number of short range forces which must be computed will 
increase. We thus expect that RESPA will grow more effi- 
cient as the range of the interaction grows. By studying two 
systems with different ranges, we verify that this expectation 
is in accordance with our results. 

II. METHOD 

To illustrate the method, consider a set of differential 
equations of the form 

Z=LF(x), (2.1) 
m 

where m and x are, respectively, the mass and positions of 
the particles in the system. We must solve this set of equa- 
tions subject to the initial conditions {x( 0)) jc( 0) 1. To pro- 
ceed we subdivide the forces F(x) into short and long range 
components F, and F,, respectively. We define a “reference 
system” equation of motion 

Z. =IF,(x,) 
m 

which must be solved subject to the initial conditions 

x0 (0) = x(O), 
i. (0) = i(0). (2.3) 

The solution of the reference system equations of motion Eq. 
(2.2) denoted 
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x,(t) =x0 (t;x(O),~(O) 1. (2.4) 
The true position of the system deviates from the reference 
system position. This can be expressed as 

x(t) =x0(t) + S(t). (2.5) 
Substitution of this into Eq. (2.1) and elimination of Z. us- 
ing Eq. (2.2) results in the set of equations 

&=f [F,(xo(t) +a) +4(x,(t) +S> -F,(x,(t))]. 

(2.6) 

If FI is derived from the long range part of the potential, it 
will be slowly varying compared to I;;. 

To solve Eq. (2.6) subject to the initial conditions 
[which follow from Eq. (2.3)] 

S(0) = 0, 
h(O) = 0 (2.7) 

we propose the following scheme. 
( 1) Numerically integrate Eq. (2.2) for a sequence of n 

small time steps 6t (At = n&) generating x0 (t) for O( t<At. 
(2) Substitute the numerical solution for x0 (t) into Eq. 

(2.6). 
(3) Solve Eq. (2.6) subject to the initial conditions, Eq. 

(2.7), for one time step At using a suitable integrator to 
obtain S( At) and 8( At). 

(4) Calculate 

x(At) =x,(At) +&At), 
i(At) = f, (At) +&At). (2.8) 

This process is repeated using x( At), ,k( At) as initial condi- 
tions. In general, at each step, the output is used as the initial 
conditions for the next step. The advantage of this method 
lies in the resetting of the initial conditions on S(t) and 8(t) 
to 0 at every step. Since S(t) and s(t) never deviate much 
from 0 in a given step, the force term F, (x0 + 6) - F, (x0 ) 
in Eq. (2.6) is prevented from becoming too large, thus al- 
lowing the use of a larger time step in the numerical integra- 
tion than could be used in the standard integration schemes. 
It should be emphasized that the equations of motion Eqs. 
(2.2) and (2.6) forx, (t) and S( t) are exact, i.e., no approxi- 
mation has been made related to the disparity in range of the 
forces and that the physical properties of the system (e.g., 
pressure, internal energy, etc.) will be the same for RESPA 
as for straightforward integration of the equations of mo- 
tion. 

The integration of Eq. (2.6) can be done by any integra- 
tor suitable for equations with explicit as well as implicit 
time dependence.3 The Runge-Kutta (or predictor-correc- 
tor) method are such an integrators. In particular, the veloc- 
ity Verlet3s4 integrator can be adapted straightforwardly for 
Eq. (2.6)) as we will later demonstrate. 

The major reason that this method saves so much time is 
that only at the end of a large time step At Eq. (2.2) does one 
have to compute all of the forces. Thus it is not necessary to 
recompute the long range forces after every short time step. 
These have to be updated only when Eq. (2.6) is integrated. 
This saving in force computations can be dramatic. Let z, 
and z[ denote the average number of particles that interact 

with a particle through short and long range forces, respec- 
tively. The number of forces that must be calculated during 
the n time steps St during which the reference system is 
evolving is nN(zJ2) and the number that must be calculat- 
ed for the integration of Eq. (2.6) is Nz,/2. Thus the total 
cpu time for one large time step using the new method, as- 
suming that the calculation of the forces is the time consum- 
ing part of the calculation, is proportional to [ nrVz, + Nz, 1. 
On the other hand if the calculation is done by standard 
integrators to compute n steps of length St moving all of the 
particles during each cycle the total number of forces that 
must be calculated is nN(z, + z,)/2. This leads to the pre- 
diction that the ratio ofcpu times for the standard method to 
that of the RESPA method will be 

n(z, + z[) r= n(pR :I 
(nz, +z,lz(nz, +pR:) ’ 
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(2.9) 

where R, is the cutoff distance for the long range force, andp 
is the number density. 

It should be noted that 

lim r = n. 
RJR,- m 

(2.10) 

Thus the new method will be at best n times faster than 
straightforward methods. The size of n will be determined by 
the magnitude of F, compared to F,. The longer the range of 
the potential the smaller F, will be compared to F, and the 
larger will be the number of time steps n for which the refer- 
ence system trajectory will be close to the true trajectory. 

The subdivision of the forces into slow and fast compo- 
nents can be made in a variety of ways. One possibility is to 
base the subdivision on the WCA approximation. If rm is the 
position of the minimum of the pair potential, then the sub- 
division is 

V(r) = V,(r) + V,(r), 
where 

(2.11) 

V,(r) = 
VW - Ur,), rgr, 
0, 

(2.12) 
r> r, 

and 

V,(r) = 
l 

Ur, 1, r<r, 
V(r), r>r, 

(2.13) 

so that the corresponding forces are 

and 

I;,(r) = 
F(r), r<r,,, 
0, r>r, 

(2.14) 

F,(r) = 
0, r<r, 
F(r), Or, . 

(2.15) 

As will be seen in the foregoing, the choice of subdivision 
leads to a considerable reduction in cpu time over standard 
methods, but may not be optimum because the long range 
force can still be large in the neighborhood of r,. In this 
eventuality, n must be chosen small in order to insure accu- 
rate integration of the equations of motion. 

A more flexible subdivision is to introduce a switching 
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function S(r) which varies monotonically between 1 and 0 
as r increases and to express the interparticle force as 

F(r) = S(r)F(r) -+- (1 - S(?))F’(Y). (2.16) 

Then the short and long range components of the force are 
taken to be 

F,(r) = S(r)F(r) (2.17) 

and 

F,(r) = (1 -S(r) )F((r). (2.18) 
One can vary the position of the inflection point and width of 
S(r) so as to minimize the cpu time for the given model. 

Let us now consider the implementation of this method 
using the velocity Verlet integrator. Although the discussion 
outlined before is perfectly acceptable it is possible to im- 
prove it. It would be useful to have the algorithm satisfy the 
following two requirements: 

( 1) For F, -0 the algorithm should reduce to the stan- 
dard velocity Verlet algorithm for F+[ using a time step 
At = n&. 

(2) The method should work for long range forces even 
when they are large, but slowly varying. 

The method as outlined does not satisfy condition ( 1) 
and becomes inefficient when the long range force is large. 
An algorithm that satisfies these two conditions is the fol- 
lowing. Replace the reference system equation, Eq. (2.2), by 

a,(t) =LF,(X,w) +-1-F,w)), (2.19) 
m m 

where the last term is constant in time for the integration 
interval. If the long range force is strong but slowly varying 
this term will make an important contribution to the refer- 
ence system’s acceleration, thereby allowing a larger choice 
of n for the same energy conservation. Following the same 
steps leading to Eq. (2.6) leads to 

6=$ [F,(x,(t) +a -F,(xo(t)) +F,(Xo(t) 

+ S(t)) - F,wN)] , (2.20) 

an equation which contains the constant F, (x(O) ). One then 
carries out the same proceedure outlined following Eq. 
(2.6). When the velocity Verlet integrator is used to solve 
this new set of equations it is a simple matter to show that for 
F, = 0 condition 1 is satisfied. It is also a simple matter to 
show that the use of velocity Verlet on Eq. (2.20) gives 
S( At) = 0. In general, velocity Verlet applied to Eqs. (2.19) 
and (2.20) gives the following iterative equations for com- 
puting the trajectory x(t) and k(t) from Eq. (2.8) : 

x( At) = x0 (At), 

itAt) =&(A0 +g [Fs(x(At)) - F,(x,(At))] 

+z [f’,MAt)) ---F/(x(O))]. (2.21) 

III. RESULTS 

In the following examples we require a measure of the 
accuracy of the algorithm. One good measure is the degree to 

which energy is conserved. In a run of length T we define 

A&L 

T 

s I 

(it E(t) - E(O) 

To E(O) ’ 
(3.1) 

where E(0) and E(t) are the initial energy and the energy at 
time t. Clzarly, the more accurate the algorithm the smaller 
will be AE. We shall compare cup timekrequired for differ- 
ent algorithms for the same values of AE. 

Although we study fluids with different potential mod- 
els here, the general approach will be to choose a standard 
integrator (e.g., velocity Verlet) with a given time step 6t 
ch2sen to give a specified accuracy in energy conservation 
AE. For comparison, the new algorithm RESPA is used to 
integrate the equations of motion for the same system, first 
using a WCA subdivision and then using a switching func- 
tion 

1, r<r, -/z 

S(r) = 

i 

1 + R *(2R - 3), r, - R<r<r, , (3.2) 
0, r, cr 

where R = [ r - (r, - R) ] /;1 and where r, is the cutoff dis- 
tance and ,l is the healing length (the effective width of 
S’(r) ). Of course, the choice of switching function is arbi- 
trary, the above having been used in a different context by 
Watanabe and Reinhardt.’ For the WCA subdivision n is 
chosen to give the same energy conservation used in the full 
velocity Verlet integration. For the switching function sub- 
division, r,, il, and n are chosen to give the same energy 
conservation and to optimize the cpu time. In each of these 
simulations, the small time step St is taken to be the time step 
used in the velocity Verlet algorithm. 

A. Lennard-Jones (12-6) fluids 

First we study the well worn problem of the LJ ( 12-6) 
potential. Clearly, this is not a long range force problem. 
Nevertheless, even for this model, we find an impressive re- 
duction in cpu time when RESPA is used. 

For this study, the LJ fluid consists of 864 particles in- 
teracting with a pairwise additive LJ (12-6) potential 

(3.3) 

in a box of size L. The system was equilibrated for each of 
four thermodynamic states discussed below. Using the stan- 
dard velocity Verlet integrator with periodic boundary con- 
ditions and a cutoff of min (3a, L /2), the cpu time required 
to run a total length of f;eal time T = 3OOSt with energy con- 
servation tolerance AE = 10 - 5 is determined. Th,e four 
thermodynamic states studied here are (T,p-‘) 
= (1.0,0.8), (1.5, 0.9), (2.0, l.O), (2.5, l.l), where 

^r = k, T/E is the reduced temperature and pd is the re- 
duced number density. RESPA, using both the WCA and 
the switching function subdivisions defined above is com- 
pared with the standard velocity Verlet integrator for all of 
these states. In this comparison the same short time step St is 
used in the standard velocity Verlet algorithm, RE- 
SPA( WCA) and RESPA( SWITCH) for a given thermody- 
namic state. The paramzter n is chosen to give the specified 
energy conservation AE = 10 - 5 and the time required by 
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RESPA to run the same real time is determined for each of 
the two force subdivisions. In addition a search is made of 
the parameter space of the switching function (namely, r, 
and /2) to obtain the smallest cpu time. We find that 
r, = 1.7~ and /z = 0.1~ is a very good choice. Although a 
detailed optimization might lead to a different set of param- 
eters for each thermodynamic state, we find that the results 
are quite insensitive to the value of il. The results of this 
comparison are shown in Table I. It is clear from this study 
that RESPA can accelerate the simulation of even short 
range forces by as much as a factor of 3.7. This is a significant 
improvement. It can be seen from the table that the WCA 
subdivision improves as the fluid density is increased where- 
as the switching function subdivision is not strongly density 
dependent at high densities and gives superior performance 
at all densities studied. 

In the switching function algorithm there is a trade off 
between two effects. Because the short range force is 
switched off at greater distances than in the WCA subdivi- 
sion more forces must be computed for the short time steps 
therebye increasing the time required to integrate the short 
cycles over the WCA method. On the other hand the long 
range forces will be weaker when they are switched on than 
in the WCA truncation making it possible to achieve the 
same energy conservation for larger values of n, thereby re- 
ducing the number of cpu cycles to achieve a given amount 
of real time. From Eq. (2.9) 

rSWITCH 

rWCA 

%WITCH 

[ 

nWCAZs,WCA + zl.WCA 
=- 

nWCA %WITCHZr,SWITCH + ‘l,SWlTCH 
] . (3.4) 

If the numerator of the bracketed expression 
Zi,WCA % nWCAZs,WCA and in the denominator 
Zl,SWITCH % nSWITCHZs.SWITCH v 

‘SWITCH nSWITCHZl,WCA -- 

-n 
(3.5) 

rWCA WCAzl,SWITCH 

Since the short range cutoff for the switching function is 
typically chosen to be larger than the WCA cutoff, 
ZlWCA >Z,,SWITCH and nSWITCH >nWCA, and it follows that 
rSWITCH /rWCA ) 1 so that the switching function method will 
be superior to the WCA method. 

6. Lennard-Jones (12-3) fluids 

To investigate the power of RESPA we study the Len- 
nardJones ( 12-3) potential 

TABLE I. Comparison of RESPA with velocity Verlet algorithms for Len- 
nardJones ( 126) fluids. 

? PC’ nWCA rwcA “SWITCH rSWITCH 

1.0 0.8 3 2.4 6 3.4 
1.5 0.9 3 2.5 6 3.3 
2.0 1.0 4 3.0 8 3.1 
2.5 1.1 5 3.5 8 3.1 

TABLE II. Comparison of RESPA with velocity Verlet algorithms algor- 
ithms for Lennard-Jones ( 12-3) fluids. 

^r PQ3 nWCA rWCA nSWITCH rSWITCH 

1.0 0.8 3 2.6 5 3.4 
1.5 0.9 3 2.7 5 3.5 
2.0 1.0 4 3.4 6 4.1 
2.5 1.1 5 4.5 7 4.6 

6(r) = 4ea, 
K:~‘2-(:~l 9 

(3.6) 
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a long range potential. The constant a3 is chosen to give the 
same well depth E as the ( 12-6) potential. 

As before the system was equilibrated for each of the 
four same thermodynamic state using the standard velocity 
Verlet integrator with periodic boundary conditions, only 
for this system a cutoff of min(5a, L /2)^is used, and the 
energy conservation tolerance is set at AE = 10w6. Other- 
wise, the same comparison is carried out as for the LJ ( 12-6) 
system, and the same type of search through the switching 
function parameter space is done. For this system we find 
that r, = 1.9~ and ;1 = 0.170 is a very good choice. The re- 
sults of this comparison are shown in Table II. It is clear 
from this study that RESPA can accelerate the simulation of 
this long range system by as much as a factor of 4.3. This is a 
remarkable saving in cpu time and demonstrates the effi- 
ciency of RESPA in handling long range forces. 

C. Lennard-Jones (12-1) fluids: Ewald summation 
To study the implementation of RESPA with the Ewald 

summation technique, we consider the Lennard-Jones ( 12- 
1 ) potential given by 

4(r) =4ea,[(:)‘*-(+)I. (3.7) 

As before, the constant aI is chosen so that this potential has 
the same well depth E as the ( 12-6) potential. Only the l/r 
part of this potential is written as an Ewald sum. This gives a 
force which has the structure 

F(r) = F”““(rp) + F(recip)(T;a,k,,,). (3.8) 
That is, the force consists of a real space part and a reciprocal 
space sum. We indicate the explicit dependence of these 
components on the convergence parameter a and the cutoff 
in reciprocal space denoted k,,, . There are several possibili- 
ties for implementing RESPA with the force in Eq. (3.8). 
One is to use the switching function on the real space part of 
the force. This would give a reference system force 

F,(r) = S(r)F’““‘~(r;a’“)) (3.9) 
and a long range residual force 

F,(r) = (1 -S(r))(F”“‘)(r,cr”‘) 

+ F (recip) (r;a”‘,k ,$, ) ) . (3.10) 
Given the different ranges of the reference system force and 
the residual, we expect that a different convergence param- 
eter and reciprocal space cutoff should be used for each 
piece, and we indicate this dependence by the s and I super- 
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TABLE III. Comparison of RESPA with velocity Verlet algorithms for 
Lennard-Jones (12-1) fluids with Ewald sum. 

“r Pd bVlTCH rSWITCH 

1.0 0.8 5 3.7 
1.5 0.9 6 4.0 
2.0 1.0 7 4.4 
2.5 1.1 8 4.8 

scripts on CY and k,,, . The choice of acS’, a(“, k 2:X) and 
k (I) max will depend on the system size. Given the large system 
studied here, we choose acS’ = acos&pk”‘, 
= k,,, in Eqs. (3.9) and (3.10). Since the reference system 
force is purely real space, the use of RESPA becomes ex- 
tremely efficient. 

To illustrate the improvement given by RESPA with 
Ewald summation, we study the same four thermodynamic 
states as in the prev@s two cases using an energy conserva- 
tion tolerance of AE = 10w5. The same values of r, and ;1 
were used as in the ( 12-3) case, and in addition to these, we 
choose k,,, = 6 and aL = 6. A cutoff of min (5a, L /2) was 
used as in the ( 12-3) case. The results are summarized in 
Table III. We see that the timing ratios are more dramatic 
than for the (12-3) case even though the same cutoff was 
used. This improvement is clearly due to the fact that in the 
ordinary Verlet simulations, the reciprocal space sum must 
be evaluated at every step in addition to the real space part, 
while in the RESPA simulations, this sum must only be eval- 
uated every n steps when doing the long range part of the 
force. The larger k,,, must be, the more these timing ratios 
will improve. 

IV. CONCLUSION 
In this paper we have presented a method which acceler- 

ates molecular dynamics simulations of systems with long 

range forces. This method, which is a variant of the RESPA 
method, is based on a set of exact equations which greatly 
reduces the number of force calculations that are required 
for the simulation. Since it is the computation of the forces 
that dominates the cpu time required to simulate systems, 
this reduction in the number of pair forces that have to be 
evaluated leads to a saving in cpu time. The ratio of the time 
required for the simulation using this new method to that for 
a standard method is given by r in Eq. (2.9). For systems 
with very long range forces r = n, where n is the number of 
time steps for which the short range forces are integrated. 
The approach taken here is similar in spirit to the method 
that we presented for solving the problem with a very stiff 
oscillator buried in a slow fluid, namely, the NAPA algo- 
rithm. 

We have introduced two of many possible schemes for 
subdividing the forces into short anfd long range compo- 
nents. We find that an optimized switching function is to be 
preferred over the WCA subdivision but it would not be 
surprising to find that a different subdivision scheme works 
even better than the above. By studying the Lennard-Jones 
(12-6) and (12-3) potentials, we saw that the cpu saving 
gained by RESPA increases as the range of the interaction 
increases. 
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