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When there are high and low frequency motions in systems with long and short range forces a 
judicious choice of reference system leads to very large accelerations in molecular dynamic 
(MD) simulations. Building on our previous work where we have developed reference system 
methods for systems with high frequency oscillators, disparate masses, or long range forces, we 
present a double reference system method which leads to acceleration of as much as 20 in 
systems consisting of 864 molecules with Leonard-Jones (12-6) forces. Much larger savings 
should be achieved when this method is applied to longer range forces and larger systems. 

1. INTRODUCTION 

In our recent work we have addressed the problem of 
multiple time scales in molecular dynamics (MD) simula- 
tions. 1,53 The most obvious cases involve either “stiff oscil- 
lators” dissolved in “soft fluids”’ (e.g., N, in Ar) or low 
mass solutes dissolved in high mass solvents2 (e.g., He in 
Xe) . In such cases, standard MD methods require very short 
integration time steps, St, to guarantee stable integration of 
the fast degrees of freedom. Thus, to follow the relaxation of 
the slow degrees of freedom requires the generation of a very 
large number of interactions. 

We have invented reference system methods such as nu- 
merical analytical propagator algorithm (NAPA) ’ and ref- 
erence system propogator algorithm ( RBSPA)273 for inte- 
grating such systems. When the systems are dilute in the fast 
degrees of freedoms these methods greatly accelerate the 
simulations largely because forces for the slow coordinates 
are recalculated much less frequently than in the standard 
algorithms. The acceleration factor for RESPA over 
straightforward velocity Verlet is defined to be 

tq (&) srverlet (St) 
TRESPA (St) ’ 

.(l.l) 

where Tverlet (St) is the cpu time required to carry out a 
direct simulation using the straightforward velocity Verlet 
integrator4 with a time step St while TREsPA (St) is the cpu 
time required by RESPA (or NAPA) to simulate the same 
amount of real time, integrating the reference system with a 
time step St. We have achieved up to eightfold accelerations 
in systems we have simulated to date. 

intermolecular forces can be subdivided into short and 
long range parts. The short range component varies much 
more rapidly than the long range component, and thus de- 
termines the integration time step. Too large a time step will 
lead to an error in the new positions with a concomitantly 
large error in the short range force which subsequently leads 
to amplifying errors. Even in systems in which there is no 
obvious separation of time scales this leads to a de facto mul- 
tiple time scale problem. One is forced to use small integra- 
tion time steps and to recalculate the full force after every 
small time step. Judicious choice of a reference system (RE- 
a) Ph. D. student in the Department of Physics, Columbia University. 

SPA) has allowed us to reduce these force computations 
considerably and to thereby achieve factors as large as 6 in 
the acceleration of the simulations3 for the same accuracy as 
measured by the energy conservation, which is measured by 

&L$ E,BEo ) Ni=1 I 1 0 
(1.2) 

where N is the total number of MD steps, El is the energy at 
step i, and E. is the initial energy of the system. 

In this paper we show, for systems in which there are 
multiple time scales (stiff and soft degrees of freedom) and 
in which the forces can be subdivided into short and long 
components, that a double application of RESPA leads to 
very large accelerations of the simulation time for simple 
systems. For simplicity we treat the two systems already pre- 
sented in our previous papers: namely (a) one stiff diatomic 
dissolved in 862 Lennard-Jones (LJ) ( 12-6) atoms’ and (b) 
40 light LJ particles (m = 1) dissolved in a fluid consisting 
of 824 heavy LJ atoms (m = 100) all interacting with the 
same LJ ( 12-6) potential.2 Double RESPA solutions yield 
twentyfold accelerations in the cpu times required for the 
simulations. 

We expect that for larger systems and systems with long 
range forces double RBSPA can yield as much as a fortyfold 
acceleration. 

II. SUBDIVISION OF FORCES 

The starting point for combining reference systems in 
the separation of the interatomic forces into short and long 
range components according to 

F(x) = F,(x) $4(X). (2.1) 
The separation can be achieved by means of a WCA subdivi- 
sion or by using a switching function.3 We have shown that 
by choosing a reference system based on F,(x), factors of 
between 2 and 4 savings in cpu time can be achieved for 
simple LJ (12-6) systems, and factors exceeding 5 can be 
reached for ( 12-1) systems when Ewald summation is 
used.3 The RESPA algorithm is implemented by writing the 
trajectory x(t) as a sum of a reference trajectory X, (t) and a 
correction xl (t) which satisfy the equations of motion 
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mjz, =F,(x,) +F,w, (2.2) 

Mr =K(xs f+) -F,(x,) +F,(x, +x,) 
-f’,(O), C-J.31 

where Fl (0) is the value of the long range force at the begin- 
ning of the time step. The initial conditions are taken to be 

x,(O) =x(O), Z,(O) = wa, (2.4) 

Xl(O) =&(O) =o. (2.5) 
Equation (2.2) is integrated for n little time steps et subject 
to the initial conditions, Eq. (2.4) and then the correction xl 
is computed using a big time step At = nSt subject to the 
initial conditions, Eq. (2.5). The true trajectory is then given 
by x( At) = x, (At) + xl (At). The initial conditions are re- 
set so that 

x,(O) =x(At), &(O) =k(At), (2.6) 

x,(O) =&(O) = 0, (2.7) 
and the procedure is repeated for each step determining the 
initial conditions for the next step. 

Ill. DISPARATE MASS SYSTEMS 

In dilute fluid mixtures consisting of light solute atoms 
and heavy solvent atoms, there is a separation of time scales: 
the light atoms move much more quickly than the solvent 
atoms. A simple example of this is that of 864 LJ( 12-6) 
atoms consisting of 40 light spheres with m = 1 and 824 
spheres with m = 100 all with the same diameter 0 and the 
same well depth E. In this system, the time scale for the heavy 
particle is 10 times longer than that for the light particles. 
We have already shown how this system can be integrated 
using RESPA resulting ina sevenfold speedup of the simula- 
tion over standard results using the velocity Verlet integra- 
tor.2 Here we wish to combine this with another version of 
RESPA based on the subdivision of the forces into long and 
short range components. 

Consider a system consisting of a mixture of 40 light LJ 
particles with m L- 1 and 824 heavy LJ particles with 
M = 100. Denoting the set of light particle coordinates as x 
and the heavy particle coordinates as y, the equations of mo- 
tion take the form 

g= $%Y), 

j+&y). (3.1) 

As before, the forces and coordinates are broken up into 
short and long range components giving equations for the 
reference system trajectories and corrections 

% =; [Fx.s(xs,ys) +Fx,(O)], (3.2) 

j;, =$ [J--(&Y,) +r;;,CO>], (3.3) 
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Xl *- =+ [F,(x, ++Y, SY,) -F.sh~s)] 

+; [F&s +x,,ys +~r) -MO)], (3.4) 

j;, =a [F,(x, +w+Y,) -F&,~Y,)] 

+m [FJx, fx,,y, +Y,) --Fy#VJ. (3.5) 

The initial conditions on x,, ys, xI, and y, are given by Eqs. 
(2.4) and (2.5). To handle the mass disparity, we make a 
further subdivision of x, and xz according to 

x, = XZOj + s,; XI = xi”’ + SI, (3.6) 

where XL”’ and S, are chosen to satisfy the equations of mo- 
tion 

$0’ _ 
s - -!- @ ‘xs [x:“‘,Js] + F,,(O)h (3.7) 

m 

;i‘ s = i -@,s [xl’) + &,ys ] - F,, [x6”‘,A] 3, (3.8) 

wherejjX indicates that the heavy particle reference system is 
held fixed while xl”’ is integrated. A simple choice is to fix, 
at its initial value. The initial conditions are taken to be the 
same as in Eqs. (4.5) and (4.10). Similarly, XI(‘) and S, satis- 
fy the equations of motion 

2;” = f {F, [xs + x:“,Y, + PI ] - F.s (x,,ys > 3 

+;{F&, +x;“,y, -I+ Y-%(O)), (3.9) 

8, =; @‘xs [xs +x:0) -I- 4,~s +YZ] 
-F, [xs + x:“,Y, +R]3 

+ + {Fx, [xs + xl”’ + 4,~s +YZ] 
-F&s +x~“,Y, +P1]3. (3.10) 

Because of the initial conditions on xl, xj”(O), 2;‘) (O), 
S, (0), and b, (0) are all 0. The procedure is to integrate Eq. 
(3.7) for n, time steps St, and then to correct according to 
Eq. (3.8) while simultaneously integrating Eqs. (3.9) and 
(3.3) with a time step Stz. The initial conditions are reset 
and the procedure is repeated n2 times. Finally the correc- 
tions 6, and y, are computed from Eqs. (3.10) and (3.5), 
respectively using a big time step At - n,St, = II, n, St, . We 
have already shown how to adopt the velocity Verlet algo- 
rithm for use with RESPA,3 and the extension to double 
RESPA follows straightforward from this treatment. Let vi 
be the acceleration from the light particle reference systems 
and v2 be the acceleration from the short range reference 
system. We expect the overall acceleration to be 17 I q2. 

The test is carried out on two systems. One is at tem- 
perature 0.67 and density 0.86 which correspo2ds to the tri- 
ple point. The energy conservation is set at AE = 2 X lo- 6 
which requires the Verlet time step to be chosen as 
St, = 2x 10 - 3. For RESPA, we choose n, = 10 and 
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rJO’(O) = r, (0), i$O’(O) = i;(O), (4.9) 
S,(O) ==&(O) =o. (4.10) 
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n, = 5. This gives an overall cpu saving factor of 77 = 13. 
Direct measurements of 77, and v2 yield values of 7 and 2, 
respectively so that the prediction is v1 Q = 14. The second 
system is at temperature 1.0 and density 0.86. Keeping the 
sye Verlet time step gives an energy conservation of 
AE = 3 X 10 - 6. For RESPA we choose y1i = 7 and nZ = 6 
which gives an overall saving of 7 = 20. The direct measure- 
ment of qZ gives 3.3 so that the prediction is vi qZ = 23. 

IV. A STIFF OSCILLATOR DISSOLVED IN A SOFT FLUID 

Consider a fluid mixture consisting of one very stiff di- 
atomic molecule dissolved in 862 LJ atoms where the molec- 
ular atoms interact with the solvent atoms and the solvent 
atoms interact with each other through the same LJ( 12-6) 
potential. We have already shown how NAPA and RESPA 
can be used to treat the multiple time scale problem.’ These 
studies yield up to eightfold accelerations over standard 
methods for the same energy conservation. Here we show 
how to improve upon this by including the breakup of the 
force into short and long range components. 

The equation of motion for the relative coordinate r of 
the oscillator takes the form 

The procedure is to integrate Eq. (4.7) for n, time steps St, 
subject to the initial conditions, Eq. (4.9) and then simulta- 
neously to correct for ri”’ using Eq. (4.8) and evolve the 
reference system, Eq. (2.2) for the solvent atoms using a 
time step St,. The initial conditions on ry) are reset, and the 
procedure is repeated n2 times to generate the full reference 
system trajectory r, (t) and x, (t) for the oscillator and sol- 
vent atoms, respectively. Then the corrections are computed 
according to Eqs. (4.4) and (2.3) for one big time step 
At = n,St, = n, n,St, . If v1 is the cpu acceleration factor 
for the oscillator reference system alone and 7, is the cpu 
acceleration factor for the short range force reference system 
alone, then we expect the overall speedup to be the product 
771%. 

pi: =./w + F(r), (4.1) 
wherep is the reduced mass,f( r) is the oscillatory force, and 
P(r) is the force due to the surrounding solvent atoms. We 
have shown that choosing a reference system based solely on 
f(r) can lead to a factor of 8 acceleration in cpu time when a 
frequency of 300 is used for the oscillator. 

However, if we now combine this oscillatory reference 
system with short range force reference system, a substantial 
improvement can be achieved. All the solvent-solvent and 
solvent-solute forces are subdivided according to Eq. (2.1) . 
The equation of motion for the oscillator now takes the form 

pi”=.m +E(r) +E;lcr>. (4.2) 
The relative coordinate r is written as the sum of a reference 
system trajectory r, and a correction r,. r, and r, satisfy the 
equations of motion 

pys =f(r,) +I;:(<) +Fl(0), (4.3) 
pi;l =f(r, + rr> -f(r,> + F,(r, + rl’I) 

-F,(r,) +4(r, -kc) ---F,(O), (4.4) 
where F, (0) denotes the value of the long range part of the 
force at the beginning of a time step. The initial conditions 
are chosen to be 

We have tested this prediction on an oscillator for which 
f(r) = -,ud(r - a) with p = 1, w = 300, and a = 1.25 in 
a bath of 864 LJ atoms at temperatEi-e 1.0 and density 0.9. 
The energy conservation is set at AE = 2 x 10 - 5 which re- 
quires a Verlet time step of 2.5 X 10v4. In the RESPA simu- 
lation, we use ‘2, = 8 and n2 = 6 and a large time step 
At = 1.39 X 10 - *. These parameters give a cpu saving factor 
of 7 = 22. From previous work, we have determined that 
-fr = 7.9 while Q = 3.2 which gives a prediction of the sav- 
ing factor of v1 Q = 25 in close agreement with our finding. 

V. CONCLUSION 

The reference system methods (RESPA) lead to a dra- 
matic acceleration of molecular dynamics for systems with 
multiple time scales and short and long range forces. These 
methods are simple to use arid are capable of generalization 
to more complicated systems. The underlying equations of 
motion used in RESPA are exact and can be solved using any 
of the standard numerical integrators. The work presented 
here uses the velocity Verlet integrator,” but we are present- 
ly trying to apply RFSPA to dynamical systems with bond 
length and bond angle constraints using SHAKE.’ We are 
also presently trying to extend these methods to treat large 
molecules with many stiff coupled internal degrees of free- 
dom. 
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