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We study a quenching reaction occurring at sinks within a spherical cavity and at the cavity 
surface. One may think of reactions at these two, distinct locations as two, coupled reactive 
channels. Reactions of the type D* + A + D + A are studied in the limit of nondilute A, 
present at both locations, and dilute D, present within the cavity. We use a Monte Carlo 
algorithm to compute mean rates, pseudo-first-order rates and branching ratios, and compare 
with results obtained by assuming that the two reactive channels operate in parallel. The ratio 
of activities of the two channels are varied; static and moving sinks are studied. We discuss an 
application to the determination of pore structure by NMR (nuclear magnetic resonance). 

I. INTRODUCTION 

It has been appreciated for many years that some bimo- 
lecular reactions are enhanced by confining one or both rea- 
gents to a restrictive geometry. The importance, for biologi- 
cal systems, of a diffusion space of reduced volume or 
dimensionality (surface diffusion) was first discussed in de- 
tail by Adam and Delbruck. ’ Micelles solvate and/or local- 
ize donors and acceptors in their interiors or on their sur- 
faces, as in irreversible quenching reactions of the type 
D* + A-D + A studied by Hatlee and co-workers.2 In 
studies on reactions in the presence of surfactant aggre- 
gates3” workers found the existence of new reactive chan- 
nels, which typically show pseudo-first-order kinetics. Large 
enhancements in a reaction rate or suppression of an un- 
wanted backreaction-useful, e.g., for the purpose of storing 
photochemical energy,‘** may also occur. On the other 
hand, reaction rates may be used as a probe of the shape of 
surfactant aggregates.‘.” The theory of reactions in confin- 
ing pores has a major application to heterogeneous catalysis; 
a classic work by Aris’ ’ relates the theory of heat and mass 
transport to reactions in various, realistic, pellet geometries. 

A number of theoretical studies on micellar kinetic pro- 
cesses have appeared. Analytical solutions of the diffusion 
equation on or within a sphere with absorbing boundaries 
near the surfacei2-i4 or at the cavity center”2*‘5 give the rates 
which describe the multiple-exponential decay of concentra- 
tion. Given experimental lifetimes, diffusion coefficents may 
be predicted. l6 Some studies’7-‘9 begin with rates for 
quenching in the micellar interior or surface, and for escape 
or re-entry of the donors. These studies test various models 
for the spatial partitioning of quenchers in, on, or near the 
micelles.6 Given experimental parameters such as viscosity 
within micelles, bulk reaction rates, and populational pa- 
rameters for micelles, these theories may predict a decay in 
the concentration of excited donors which is in fair agree- 
ment with experimental results.” If parameters of the theo- 
ry are fit, agreement can be excellent.” Computational stud- 
ies will be discussed below. In all of these modeling studies, 

reaction may occur at only one type of site in the system: 
either on sinks within a cavity, or at a cavity surface, or at a 
buried active site. 

Here we study an irreversible, diffusion-limited, 
quenching reaction within a spherical cavity of micellar size. 
In the theoretical treatments mentioned above, competition 
between different reactive surfaces for reagent is not taken 
into account. For example, the statistics governing the distri- 
bution of sinks within the micelles are used to predict a net 
rate of reaction for the system. Early in the calculation, the 
rate for reaction in a micelle containing n sinks is assumed to 
be n times the rate for a micelle containing a single sink. This 
approximation, which holds in the dilute sink limit, treats 
the surface of each sink as a separate, uncoupled, reactive 
channel. In other words, it says that the bimolecular rate 
constant is independent of sink concentration. However, a 
concentration dependence of this rate is axiomatic within the 
literature on homogeneous systems of spherical sinks.” For 
example,21 steady-state rate constants behave as 
k, [ 1 + m + ord (4) ] for perfectly absorbing sinks of vol- 
ume fraction 4; k, is the Smoluchowski22 bimolecular rate of 
4z-Db, with D the diffusion constant for reagent and b the 
sink radius. If one considers the decay, with time, of an ini- 
tial concentration, the steady-state result can be equated 
with a mean rate of quenching with time.23 Various studies 
concur that rates are around twice the Smoluchowski value 
for 4 = 0.1. Since this is a realizable concentration for many 
types of reactions within micelles, one should see this effect. 
In general, the cooperativity which occurs in an n-sink sys- 
tem produces a rate which exceeds n times the single-sink 
rate. For example, fluorescence intensities of lysopyrene 
quenched by pyranine at the surface of DODAC vesicles are 
predicted by Nomura et al. by assuming that quenching rates 
scale linearly with pyranine concentration. (This linearity is 
embodied in the Stern-Volmer formula.24325 ) However, cal- 
culated intensities fall systematically below experiment (Ta- 
ble II of Ref. 8) as pyranine concentration increases, as we 
might expect. 
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In this paper, we study the enhancement of the diffu- 
sion-limited reaction which occurs by allowing reaction to 
occur simultaneously at two different types of site. These are 
(i) at the surface of one or more sinks within the cavity 
volume and (ii) at the cavity surface. By “enhancement,” we 
mean the factor by which the rate of reaction exceeds the 
sum of the rates that we would calculate if one of the two 
types of sites were rendered inert. We compute both a mean 
and a pseudo-first-order rate; these are defined in Sec. II 
below. We find that enhancements greater than l/3 can be 
seen in Monte Carlo (MC) data from the quenching of do- 
nors 5.0 A in diameter by like-sized spheres at an effective 
volume fraction of approximately 0.2. One implication is 
that, if one is interested in catalyzing such a reaction with 
high efficiency in a micellar system or a microporous solid, 
one might try to introduce acceptors (possibly, two differ- 
ent, accepting species) which sit at the two different loca- 
tions. 

The paper is organized as follows. In Sec. II, we describe 
the quenching reaction to be studied and the rates to be cal- 
culated. We also discuss an analytically solvable case; that of 
a spherical sink at the micelle center. (This case is often used 
as a point of reference, despite the fact that there are good 
reasons to assume that a mobile sink will typically avoid this 
location.13 ) In Sec. III, we digress to the case of a two-di- 
mensional, model capillary with absorbing sinks at the walls, 
to observe the effect that competition between walls has on a 
rate constant. We discuss an application other than a chemi- 
cal reaction: the use of spin-lattice relaxation times in NMR 
(nuclear magnetic resonance) to deduce the structure of 
pores within microporous solids. In Sec. IV, we present the 
results of MC simulations of a model micelle containing sev- 
eral sinks. The reaction is primarily diffusion limited, 
though the ratio of reactivities of sinks and the cavity wall 
are varied to study the important case in which the branch- 
ing ratio is approximately unity. Both static and moving 
sinks are studied and rates are averaged over sink configura- 
tions. Our goal is to determine the enhancement of reactivity 
when the dispersed sinks and the cavity walls compete to 
absorb reagent. 

II. QUENCHING REACTION IN A SPHERICAL CAVITY 

Consider a spherical cavity in which a species D (do- 
nor) is free to diffuse. This molecule is modeled as a sphere; 
it may approach no closer than its radius to the cavity wall. It 
may not overlap with a second molecular species which is 
placed within the cavity. In a typical fluorescence quenching 
experiment, it is possible to insure that at most one D will be 
found in any spherical micelle, along with a number of mole- 
cules A, which serve as acceptors for an excitation of the 
donor.“*6 Depending on the identity of A, it is also possible to 
find D within the cavity, but A’s are located at the surface. 
One may have such a high concentration of A that the sur- 
face of the cavity is completely saturated.’ We propose to 
model an experiment in which, at an initial time, donors are 
photoexcited, and may be quenched by acceptors. Schemati- 
cally, D + D* followed by D* + A -+ D + A. Experimental- 
ly, one follows the intensity of fluorescence that accompa- 
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FIG. 1. Three schemes for the location of quenching surfaces within a 
spherical cavity. Hatched areas represent partially absorbing surfaces; un- 
hatched areas represent reflecting surfaces. Schemes are noted as C, accep- 
tors in center; S, at surface; and CS, at both locations. (The text discusses 
various numbers of spheres; for simplicity, three are shown in this figure.) 

nies the de-excitation of D. There will, of course, be 
spontaneous de-excitation of D*, but this process occurs in 
parallel with quenching by A, so the net fluorescence rate is 
just a sum of the two rates. 

We consider a single geometry: a spherical cavity of ra- 
dius R containing a certain volume fraction of spheres which 
are impenetrable to a single, enclosed, D molecule. Against 
the backdrop of this geometry, we consider three schemes 
for the placement of A molecules. In the first, the A mole- 
cules coincide with the spheres, making them quenchers 
(sinks) for the reagent, D*. In the second, quenching occurs 
at the surface of the cavity; the impenetrable spheres are, 
nevertheless, present so that we may compare situations in 
which D* has the same free volume in which to diffuse. In 
the third scheme, the A molecules coincide with the spheres 
and saturate the surface of the cavity. These will be referred 
to as schemes C, S, and CS, respectively, and are shown 
schematically, for three enclosed spheres, in Fig. 1. A given 
scheme determines which of the bounding surfaces merely 
reflect, and which quench, in the following time-dependent 
diffusion equation for the concentration, C(r,t) of D* within 
the cavity: 

dc(r,t) - = DV’C( r,t) 
at 

subject to 

(1) 

aW,,,f> 
dn = 

am,,0 = o Vt 
- h,C(r,,O; an (2) 

A development of these equations in the context of catalysis 
can be found in Chap. 2 of Ref. 11. In Eq. ( 1 ), D is the self- 
diffusion coefficient for D* within the micelle. In Eq. (2)) rQ, 
and rN represent any location on a quenching (we will also 
use the term absorbing) or reflecting surface, respectively, n 
is a surface normal, and h, describes the reactivity of the ith 
quenching surface. A vanishing h, indicates reflection, and 
perfect absorption implies that this number is infinite. In this 
case, 

C( rQ,,t) = 0 (perfect absorber). (3) 
If l/(h &D) is very much less than the typical time that it 
takes for reagent to visit the ith surface; and in the extreme 
limit, if Eq. (3) holds, reaction of D* with that surface is 
considered to be d@usion limited. 
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Assume, for now, that the bounding surfaces do not 
change with time. A unique solution to Eqs. ( l)-( 3) corre- 
sponds to a given geometry as in Fig. 1. Separation of vari- 
ables: CE T( t)X( r), and solution of the resulting Helmholtz 
equation for X produces a series solution’J*26 

C(r,t) = 2 B,X, (r)eeD”“. (4) 
” 

quencher, [ Eq. (3) 1, and that in cases S and CS, the surface 
of the micelle quenches with a strength hs [ Eq. (2) 1. Equa- 
tion ( 1) has been well studied for this geometry, and we 
quote the solution ‘,15 for the case of a spherically symmetric 
initial distribution, C( r,O). 

Case C: 

The eigenvalues a,, , and the associated eigenmodes X,, , de- 
pend on the boundary conditions, as given by the radii and 
placement of spheres, cavity radius, which case among C, S, 
or CS we choose, values of h, for absorbing surfaces, and the 
radius of the diffusing sphere. (The diffuser is not a point, so 
the bounding surfaces are not necessarily those of small 
spheres enclosed by a larger sphere.) The amplitudes B, are 
determined by the initial concentration of D*. The X,, are 
orthogonal for different values of n, so that 

C(r,t) = 2 Bz sin[a,(r-a)] e-Da;t 
, (9) 

n=O r 
with B 2 a known function of a, R, and C(r,O). It is given by 
Eq. (5) with X, (r) =j, (a,, r), a spherical Bessel of zeroth 
order. In these equations, an is the nth root of 

B, = 
I 

C(r,0)Xz(r)d3r 
/f 

X*Xd3r. (5) 

Consider the likelihood, P(t) , that D* is present in the 
cavity at time t 

a, (R -a) cota,(R-a) = 1-G . 
( > 

(10) 

Two limits for k. given by the transcendental Eq. (10) 
might be noted. In the limit of a weakly quenching reactor, 
which is accomplished by shrinking the central sink, 

k,-= 
R3 

for a/R(l. (11) 

In the limit where the the central sink grows to fill the cavity 

P(t) = 
s 

C(r,t)d3r. (6) 
k,= OS-= 

4R*(l -a/R)* 
for (1 -a/R)*l. (12) 

Case S: 
At short times, P(t) receives contributions from many ex- 
ponentially decaying modes. In this limit, for diffusion-lim- 
ited reactions, P has alternatively been expressed as a 
stretched exponentia1.27~28 At long times, the likelihood will 
decay as a single exponential, with a relaxation time bf l/k, 
with k, = Da:, which corresponds to the longest time scale 
in Eq. (4) 

C(r,t) = z Bz 
sin[a,(r-a)] +aa, cos[(r-a)a,] 

tL=O r 
- Lkz2.t Xe , 

(13) 

P(t)areekof as t-co. (7) 
This rate, k,, , is the pseudo-Jrst-order rate. In fluorescence 
quenching experiments, the long time decay of fluorescence 
typically gives an excellent fit to a single-exponential form, 
allowing this constant (or an analogous one which takes into 
account the entry and exit of quenchers from a micelle) to be 
computed.“*” 

withBS, aknownfunctionofh,,a, R,andC(r,O) [Eq. (5)], 
and a,, given by 

(h,R - 1 - aRaf#) sin[a,(R -a)] 

+Rrr.[h,a+(l-;)] cos[a,(R-a)] =O. (14) 

Two limits for k. : For the weakly quenching reactor, for all 
values of a/R so long as the central sink does not grow to fill 
the cavity 

A second rate, which is commonly used in first-passage 
time problems,*’ is the mean rate, k. This rate (which is 
equivalent to the rate above for a pure, single-exponential 
process) is defined as 

k. z 
3Dh, 

3a(l -a/R) fR(1 -a/R)3 
for h,R < 1 - a/R. 

_ 
(15) 

l/k = 
s 

* P(t)dt. (8) 
0 

The limit in which the micellar surface becomes a strong 
quencher yields a simple form for k,, if we make the addi- 
tional provision that a is close (but not equal) to R 

This is the quantity that should be equated with the steady- 
state rate.23 It is often used, is readily calculated for reactors 
with simple geometries,6 and has been shown to be useful for 
solving problems in which the diffuser obeys a generalized 
(Smoluchowski) diffusion equation3’ 

kor!??t 
4R2 

A. Central sphere model: Pseudo-first-order rates 
Consider a single molecule A, of radius a, fixed at the 

center of a sphere of radius R. In this geometry, we use a 
point walker, D*. Assume that in cases C and CS (as in Fig. 
1, but now with only a single, central sphere), A is a perfect 

so long as 

h,R(l - a/R)2g1. 
Equation (16) neglects terms of ord( l/h,R). 

Case CS: 

(16) 

C(r,t> = 2 BzS sin[a,(r--a)] e-Da;t 
(17) 

n=O r 
with By a known function of hS, a, R, and C(r,O) [Eq. 
(5) 1, and a,, the nth root of 
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a,(R-a)cota,(R-a)=(l-h,R) 1-G . 
( > 

(18) 
In the limit of a weakly quenching reactor (accomplished by 
both shrinking the central sink and weakening the quench- 
ing strength of the micellar surface), 

k,,s$(h,R+G) for h,Rfa/R-=gl. (19) 

In the limit in which the micellar surface becomes a strong 
quencher (so long as the central sink does not grow to fill the 
cavity) 

ko = 
Lw 

R*(l -a/R)2 
so long as 

h,R(l -a/R)+1. (20) 

Equation(20)neglectsatermoford[l/(h,R)(l -a/R)]. 
The formulas above allow us to compare the pseudo- 

first-order rate for scheme CS, k ,“, to the sum of the rates 
for schemes C and S, k,C and kz. We define the enhance- 
ment, Ak, , as an absolute increase in the rate 

Ak, =k,CS- (k,c+k,s); 
the relative enhancement, 

(21) 

6ko = Ako/k 0” (22) 

is also of interest. The task is just to solve the transcendental 
Eqs. ( lo), ( 14), and ( 18) as the dimensionless parameters 
h,R and a/R are varied. Before doing so, note that Ak, =O 
in the weak quenching limits, which are described by Eqs. 
(11),(15),and(19).Thatis,tofirstorderinh,R anda/R, 
the reactive channels at the surface and center of the micelle, 
as measured by k,, operate in parallel. In this limit of small 
h,, the reaction at the surface is not diffusion, but activity 
limited. 

Ash, grows, the enhancement grows from zero. Figures 
2 show kO’s, Ak,, and 6ko to be monotonically increasing 
functions of h,, for a given value of a. (We let R = D = 1.) 
As seen in Fig. 2(a), k 0” (and k i ) rise with a negative 
curvature as hs grows. This is sensible because in the limit of 
large hs, the reaction becomes diffusion limited, so k 7 and 
k 2 saturate. These saturated values are given by the limits 
Eqs. (16) and (20). 

Ak, [Fig. 2(b)] and Sk, [Fig. 2(c)] must also satu- 
rate. Something interesting appears if we consider the latter: 
It does not increase monotonically as the radius of the cen- 
tral sphere grows. (Note a crossover between various curves 
at low and at high h,.) Figures 3 show rates and enhance- 
ments as a function of a for several values of h,. Though k, 
and Ak, increase monotonically with a, Sk, [Fig. 3(c) ] 
displays a single maximum. Curves for successively larger 
values of h, envelope one another, as Fig. 2(c) would pre- 
dict. The maximum, Sk r(h, ), increases in value as h, 
increases, and it also falls at a larger values of a z amax. Thus 
for a sink of given size, there is a value of the micellar surface 
reactivity that will maximize the relative enhancement of the 
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FIG. 2. (a) Pseudo-first-order rate as a function of h,, the reactivity of the 
cavity surface, for central sphere radius a = 0.1. Empty circles: k g + k 2, 
filled circles: k ,“. (b) Absolute enhancement of k,, vs h,. Small triangles: 
a = 0.01, small squares: a = 0.1, large triangles: a = 0.4, large squares: 
a = 0.7. (c) Relative enhancement of ,4, vs h,. Symbols as in (b). 
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quenching rate. Similarly, if one is given the surface reacti- 
vity, there is a value of sink radius, amax that is optimal. 
Below, we will note that this radius varies with the surface 
reactivity in a way which is correlated with the branching 
ratio. 
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As mentioned above, the enhancement saturates at a 
large-h, limit, which is a-dependent. When a z R, the reac- 
tion rates in cases C, S, and CS, per unit surface area of the 
wall, will be equivalent to the rates for reaction between two 
infinite planar walls separated by a distance R - a. Equa- 
tions ( 12)) ( 16), and (20) confirm this for the case of very 
large h,. That is, 

,,,.z..m@~ 
e*ga1~00 

9 

-I 8  I I . 0.0 0.2 0.4 0.6 018 ll0 
a 

k;=kz- D* 
4(R -a)* ’ 

JIcyz Dd when h,-+m, a+R. 
(R -a)’ 

(23) 

Thus 
” 1 (b) . 

. A’ 

. 

Sk, =Sk~(hsrco)+ (24) 

for this diffusion-limited reaction between two infinitesmal- 
ly separated, spherical surfaces. 

One can get some feeling for this enhancement by noting 
that k, is related to the shape of the zeroth eigenmode, Xc, 
and comes from a variational principle26*3 ’ 

k. =min Slv~lzdr = slvxo’2dr , 

SWl’dr SIX0 I2 dr 

(25) 

0.4 0.6 018 

a 

where Ic, is any function that obeys Eqs. (l)-(3) and the 
integral is over the cavity. So, the ground state, X0, is the 
solution to the correct equation, with the correct boundary 
conditions, which minimizes the mean squared curvature. If 
one takes a given geometry with a reflecting and a quenching 
surface, and converts both to quenchers, the mean curvature 
of the ground state solution rises. In the case of two planar 
walls and perfect quenching, it doubles. But k, goes as the 
square of the curvature, so the rate is enhanced by a factor of 
( l/2) [Eq. (24) ] over the sum of the rates of the two, com- 
peting reactions. This is an upper limit for Sk, for the cen- 
tral-sphere model. Further, one feels that it might also be an 
upper limit for enhancement due to competition between 
arbitrarily placed spheres and a cavity wall, and even for the 
competition between the multiple spheres in a cavity or in a 
homogeneous system. 

“.WI , , . , 

0.0 0.2 0.4 0.6 0:s 1to 

a 

One might wonder if the value of the sink radius, amax, at 
which 6k, has its maximum, varies with h, in a way which 
can be predicted by the branching ratio, B. That is, since 
competition between reactive surfaces produces enhance- 
ment, perhaps amax occurs where B z 1. We define B as the 
ratio of reagent quenched by the central sink to that 
quenched at the surface in case CS. This ratio of reactive 
fluxes is 

(26) 
FIG. 3. (a) Pseudo-first-order rate as a function of a, for h, = 1. Symbols as 
in Fig. Z(a). (b) Absolute enhancement of k0 vs a. Small triangles: 
h, = 0.1, small squares: h, = 1, large triangles: h, = 3, large squares: 
h, = 9. (c) Relative enhancement of & vs a. Symbols as in (b). 

B = JVC(a,t) Ia2 
IVC(R,t) IR * . 

To be consistent, we investigate the long time approxima- 
tion, in which pseudo-first-order kinetics occurs. In this lim- 
it, B is time independent and is given by 
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TABLE I. Branching ratios and relative enhancements at the value of a 
which maximizes the latter, for various values of th micellar surface reacti- 
vity. 

B 6k mar 0 amar hs 

3.26 0.035 0.22 0.1 
1.04 0.155 0.40 1.0 
0.71 0.255 0.48 3.0 
0.61 0.360 0.56 9.0 
0.63 0.416 0.62 20.0 
1.0 0.5 1.0 m 

BZ aa 

hRsin[a,(R -a)] 
for large 1. (27) 

Equation (27) is found by substituting the first term of the 
solution, Eq. ( 17) into thedefinition, Eq. (26), and applying 
the boundary condition, Eq. ( 18). One evaluates cyo, and 
hence Eq. (27)) numerically to find that it is not true that the 
branching ratio, R, is precisely unity at amax for arbitrary h,. 
Nevertheless, it is close, 

R-1 for hs&l. (28) 

Table I lists B and 6k, at amax for several values of hS . B falls 
to roughly 0.6 before it begins to rise to its large h, limit of 1, 
where amax, 1 as well. In this limit, Eq. (27) predicts that 
B=:a/R, so that the branching ratio at amax is roughly 
amax/R. The large (small) h, limit gives large(smal1) en- 
hancements (Figs. 2), so the former are the most important 
to us. In summary, it is not a bad rule of thumb to say that 
choosing a sink radius and a cavity reactivity that keep Bz 1 
will help one see a good relative enhancement in the rate of 
reaction. 

B. Central sphere model: Mean rates 
The mean rate, k, is defined in Eq. (8) by integrating the 

survival probability, P(t), over time. One need not first find 
C(r,t) to substitute in Eq. (6), but may instead integrate the 
diffusion equation, Eq. ( 1 ), over time. That is, suppose that 
D* begins at location r and is eventually quenched, so that if 
W( r,t) is the probability of seeing D* within a small volume 
centered on r, Wobeys the diffusion equation with temporal 
boundary conditions 

W(r,t=O) = 1 and W(r,co) =O. (29) 
Then the reaction time, r(r), which is defined as6*‘6p30 

I 

m 
7(r) = Wr,t)dt, (30) 

0 

obeys 

DV2r(r) = - 1. (31) 
The mean reaction time, ;i, is r(r) averaged over all initial 
positions; the mean rate of Eq. (8) is its inverse 

5r l/k = 
s 

p(r)T(r)dr. (32) 

The density p(r) describes the probable position of D* at 
t = 0. 

From here on, we assume that r and p are spherically 
symmetric. Equation (31) is solved subject to boundary 
conditions on r(r). For the present study, these come direct- 
ly from Eq. (2) and are 

Case C: 7(a) = 0; Jr(R) =o 
7’ (33) 

Case S: y = 0; Jr(R) - = - h, T(R), 
ar 

(34) 

Case CS: T(a) = 0; aT(R) -= -h, T(R). 
ar 

(35) 

The general solution to Eq. (3 1) is a sum of a homogeneous 
and a particular solution 

T(r) =A/r+B+r2/6D. (36) 

The constants in the homogeneous solution, A and B, are 
determined by the boundary conditions, Eqs. (33)-(35); 
the mean reaction rate is then determined by the integral, 
Eq. (32). If we assume that the initial concentration,p (r) is 
uniform within the cavity outside of the central sphere, and 
zero within it, so that 

l/k=3 
s 

R 

R3-a3 (I 
r’[A/r+B+Cr’]dr, (37) 

then the solutions of Eq. (37) for schemes C, S, and CS are 
straightforward; 

CaseC:kC= lSDa(R’ + Ra + a*) 
(R - a)‘[5R 3 + 6R ‘a + 3Ra2 + a31 ’ 

(38) 

Case S: k ’ = 
lSDh,R 2(R ’ + Ra + a’) 

(R - a) [5R 4 + 1OR 3a + 15R ‘a2 + 10Ra3 + 5a4 + h,(R 5 + 2R 4a + 3R 3a2 - R *a3 - 5Ra4)] ’ 
(39) 

Case CS: k cs = 
60D(R ’ + Ra -t- a2) (h,R ’ - h,Ra + a) 

(R - a)* [ 20R 3 + 24R *a + 12Ra* + 4a3 + h, (4R 4 + 3R 3a - 3R ‘a* - 4Ra3) ] * 
(40) 

Our purpose is to find reactive enhancements, the abso- 6k = Ak /k cs, (42) 
lute 

Ak=kCS-(kC+kS), 
and the relative 

which are the analogs of Eqs. (2 1) and (22) for the pseudo- 
(41) first-order rates. These are shown in Figs. 4 and 5. These 

figures are qualitatively similar to Figs. 2 and 3, though the 
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mean rate, k, exceeds k, for given values of a and h,. One 
sees competition between sinks [Figs. 4(a) and 5(a) ] and 
absolute enhancements that grow with h, and a [Figs. 4(b) 
and 5 (b) 1. One also sees a peak value, Sk max of the relative 
enhancement [Fig. 5(c) ] at an intermediate sink radius, 
amax. There is scant quantitative difference between Sk”“” 
and Sk y for a given h,; the values, urnax, at which these 
peaks occur are similar as well. In short, the mean and 
psuedo-first-order rates provide similar evidence of reactive 
enhancement due to competition between the central sink 
and micellar surface. 

III. APPLICATION TO NMR DETERMINATION OF PORE 
STRUCTURE 

NMR is an important tool in the determination of the 
structure of porous solids.32 For example, ‘29Xe within the 
pore spaces of a zeolite may produce a signal with peaks of 
different strengths centered at different chemical shifts. 
These strengths give one an estimate of the distribution of 
pore sizes in the solid.33 As an alternative to looking at 
chemical shifts, pore structure can be inferred by following 
the dynamics ofspins within the pores as they evolve in time. 
The typical time for an initially aligned population of nuclei 
to disalign due to collisions with the walls is called T,, a 
spin-lattice relaxation time. 

One can write an expression for the time evolution of the 
magnetization, m(r,r), which models the motion of the nu- 
clei as diffusive, and assumes that m decays at a fixed rate in 
the bulk. This decay occurs at a different rate if r is rQ,, a 
location on the ith region of pore wall. In other words,34s35 

am(r,t) - = DV2m(r,t) - k,m(r,t) 
at (43) 

subject to 

am(r& 
an = 

- h,,m(r,,t)tft. (4.4) 

The analogy to Eqs. ( 1) and (2) is apparent. The bulk relax- 
ation rate is k,. In this context, it is completely analogous to 
a spontaneous rate for quenching of D* (see Sec. II A). 
Thus we set it to zero in Eq. (43). When an experimental 
rate is predicted, it will just be a sum of k, and the rate 
determined by the solution to this diffusion equation, subject 
to the boundary conditions, Eq. (44). In the magnetic sys- 
tem, the quenching strength h, (Dh, is sometimes called a 
“killing strength”) depends on the the assumed thickness of 
the interfacial layer, and details of the atoms involved. 

In practical applications, one might measure the total 
magnetic moment of a sample: M(t) =fm(r,t)dr, and then 
attempt to model the solid in order to produce a solution of 
Eq. (43) which fits M(t). The geometry of the pore walls is 
an important ingredient, and one might pick a generic shape 
(slit, cylindrical, or spherical pores, * *. ) and then fit other 
parameters to the data. 36 In order to characterize M( t), one 
can proceed just as in our original application of diffusion- 
limited quenching, and extract a pseudo-first-order time, or 
a mean time, 7. In particular, the mean relaxation time has 

been found to be especially significant in porous solid appli- 
cations. Torquato3’ has shown that there is a rigorous bound 
which relates the fluid permeability and the porosity to ? in 
the limit of strong killing: h, = CO. (This is the diffusion- 
limited regime.) Wilkinson, Johnson, and Schwartz34 have 
extended ihis bound to finite quenching rates, and have stud- 
ied 7 analytically and numerically for various pore geome- 
tries. The notion of reactive enhancement, which occurs 
when sinks compete for donors may also be applied here, as 
various pore surfaces compete to relax nuclear spins. This 
notion is also relevent to spin-spin relaxation. That is, the 
relaxation rate of N 129Xe atoms within a zeolite pore 
chamber will be enhanced above N times relaxation rate of 
one such atom with N- 1 atoms of the more abundant 
(spinless) isotope, r3’Xe. In Sec. IV, we examine this model 
in detail. 

The notion of reactive enhancement could conceivably 
increase the difficulty of deducing pore structure from spin- 
lattice relaxation times, by introducing additional, relevent 
parameters to the pore model. As an example, consider a slit 
pore with rough, molecular walls. Suppose that, without al- 
tering the wall surfaces or the mean separation, we change 
the registry between the walls by sliding one along the other. 
If the walls are far from one another, this shift should have 
no effect on the rate at which the pore relaxes nuclear spins. 
If the wall separation is decreased, one may begin to see 
changes in the relaxation time as the registry changes. To 
determine when walls are “close enough” to see this effect, 
one need not only consider the length scale of the surface 
roughness, but also the length scale h a, ‘. The relative im- 
portance of these two length scales depends on the pore mod- 
el; clearly, the larger h pi ‘, the more the walls will act as 
independent quenchers, and the less rates will depend on 
registry. 

As a numerical example, we have calculated the pseudo- 
first-order relaxation rate, k,, for a two-dimensional model 
of this type. The pore, which is shown in Figs. 6(a) and 
6(b), has five hemispherical bumps along its inner surface. 
To avoid edge effects in the computation, the pore is assigned 
periodic boundary conditions in the horizontal direction. 
Each hemisphere has a radius of 10 units. In Fig. 6(a), the 
pore walls (sphere centers) are separated by 50 units; in Fig. 
6(b) the separation is decreased to 30 units. We have set 
h, = co for the pore surfaces-the strong killing limit. To 
find k, , a square grid with spacing of 1 unit was superposed 
on the space and a solution to Eq. (43 > was found by a simple 
finite-element technique. That is, all grid sites within the 
pore space begin with a fixed magnetization and the solution 
to the diffusion equation is generated for successive, discrete 
time steps. So long as the iteration time is very much less 
than l/D, this method is stable.38 One can find k, either by 
fitting the long-time decay of M( t) to an exponential, or by 
using a finite element version of Eq. (25) on m (r,t) at long 
times; both were done and the results found to be consistent. 

The magnetization at a time late in the calculation is 
shown by the various shadings of grey in the figures.39 In the 
top image in Fig. 6(a), the walls are in phase; in the bottom, 
they are shifted to be 180” out of phase. The magnetization 
varies swiftly near the walls, but the walls are sufficiently 
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(a) 

f 

(b) 

when the walls are 30 units apart, as in Fig. 6 (b), one sees a 
real difference in the morphology of the magnetization. The 
walls compete in a nontrivial way, with the result that k, is 
higher in the maximally shifted system. In fact, for this mod- 
el the rate rises with shift, as Fig. 6(c) shows. Though k, 
varies by only 3% in this case, this variation will grow as the 
distance between the walls decreases. 

IV. NUMERICAL SIMULATION OF MULTIPLE SINKS 

The rate of reaction within a spherical cavity for the 
single, fixed, central sink can be described analytically as in 
Sec. II. To examine a quenching reaction in the experimen- 
tally interesting case of multiple sinks dispersed within a 
micelle, we resort to computer simulation. Metropolis MC 
has long proven useful for such diffusion-reaction prob- 
lems,27*40 and has been used for the analagous NMR prob- 
lem35 as well. Because reaction is confined to the small, mi- 
cellar volume, we do not need to resort to certain time-saving 
techniques41 which are useful for large systems. Along the 
lines of our study, Gossele et aL4’ and Gratze143 have simu- 
lated diffusion reaction in micelles. Both studies treat a sin- 
gle pair of reactants in the cavity. The former shows P( t) and 
compares k, to theory and to the rate in homogeneous solu- 
tions. The latter compares with experimental data on a trip- 
let-triplet anihilation reaction and, after fitting D from the 
experimental rate, derives a good estimate of the microvisco- 
sity within a micelle. 
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FIG. 6. (a) Two-dimensional model pore. Dimensions are 100 units hori- 
zontally, 50 units vertically; grid spacing is 1 unit. White indicates zero 
magnetization, various grey shades indicate nonzero magnetization. Pore 
on top has walls in phase; on bottom walls are maximally out of phase. (b) 
Model as in (a); dimensions are 100 units by 30 units. (c) Pseudo-first- 
order rate for relaxation of spins as a function of wall shift, in units of sphere 
radii. One radius = 10 grid spacings. 

widely separated that one sees no “communication” be- 
tween the two walls via the magnetization density. As one 
expects, when k, is calculated for this system, there is no 
significant change when the walls are shifted. In contrast, 

We model the reaction D* + A -+ D + A within a cavity 
40 A in diameter. The cavity encloses ten spheres which 
represent quenching molecules in Cases C and CS, and 
which serve merely as nonquenching obstacles to the motion 
of D* in Case S. D* molecules are also modeled as spheres; 
both D* and A have diameters of 5.0 A. Then, the volume 
fraction which excludes D* is greater than or equal to 0.156. 
(Since D* molecules are not points, the excluded volume 
depends on the configuration of sinks: their proximity to one 
another and to the cavity wall.) We study the limit of dilute 
D*, though our program advances many, noninteracting D* 
molecules at once for computational efficiency. The A parti- 
cles are initially distributed at random (but without over- 
lap) throughout the cavity. D* particles begin at locations 
uniformly distributed outside of the excluded volume, and 
walk through the cavity with steps of constant length, S, and 
random direction. When a walker representing D* en- 
counters an A sphere in Cases C or CS, it is removed from the 
simulation; it is reflected in Case S. When a walker crosses 
the micellar surface, it is either removed with probability p, 
or replaced with probability 1 -p at its former position. 
This rule implements the boundary condition, Eq. (2). The 
value of p must insure that walkers disappear at a rate, R, 
say, which is equal to the flux of walkers out through the 
spherical surface. To find the relationship between p and 
quenching strength, h,, imagine that walkers, initially dis- 
tributed with spherical symmetry, travel in an empty spheri- 
cal cavity of radius R. Then 

R 
s 

=D saw) 4nR =~ 
6% (45) 
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Now consider the number of walkers, N&t), which are 
within a step length, 6, of the surface 

N( R,t) = C( R,t)4nR *S. (46) 
With this definition, Eqs. (2) and (45) imply 

R,=Dh,N(R,t)/S. (47) 
Consider the random walk simulation. On a single MC step, 
the number of walkers that will attempt to cross the wall is 
fN(R,t). 44 If the time between walker steps is Ar, which is 
imagined to be small, then 

pN(R,t)/4=R,Ar. (48) 
Using the relationship between a random walk and diffusion 
in three dimensions: D = S*/6Ar, we arrive at the relation- 
ship between p and h, 

4Rs6* 
’ = 6DN(R,t) 

= +- h&S. (49) 

This relationship was used with success, for h, = 0.5,0.8, to 
test Eqs. (39) and (40) for the total reaction rate in these 
analytically solvable cases. 

Since this problem does not naturally lend itself to a 
walk on a lattice, this technique was not used. However, 
though the need to resolve tiny channels between spheres is 
not as critical as in applications to continuum percolation 
theory, it is still important to understand whether finite- 
step-length errors exist. In his on-lattice simulation,” Rich- 
ards varied the ratio of sphere radius to lattice constant from 
three to six, and then extrapolated the calculated rates to an 
infinite ratio. This was done for a single volume fraction of 
l/3; most data was taken with this ratio at five. Gosele et 
aI. also used a grid which was finer than radii of interest. 
Our Fig. 7 shows k, and k as calculated with various step 
lengths, S, between 0.75 and 0.15 A. Since 6 determines the 
diffusion constant and rates are proportional to D, each rate 
was renormalized to agree upon a D as defined by the 0.25 b; 
data. Figure 7 shows that, for a single, representative config- 
uration of sinks, neither the mean nor pseudo-first-order rate 
shows a strong trend with S in this range. 

Computational details are as follows: N = 800 walkers 
were present initially, and the surviving number recorded at 
each time step. This number divided by N is P(t). Two dif- 
ferent cases were studied: one in which A spheres were static 
and one in which A spheres diffused, with steps which were 
also of length 6. We chose S = 0.25 A. In the case of moving 
A spheres, a D* sphere was removed from the system in 
Cases C and CS if it overlapped with an A, no matter 
whether a move of D* or of A had produced the overlap. In 
Case S, where the A do not absorb the D* walkers, a move by 
an A which attempted to superpose two A’s was rejected, as 
was a move by D* which produced overlap with an A. Be- 
cause we wish to work in the dilute D* limit, yet there are a 
large number of (noninteracting) D* molecules in the simu- 
lation, a move of an A that produced overlap with a D* 
forced the D* (not the A) to adjust its position in increments 
of 6 until the overlap was removed. In order to find k, one 
simply sums P(t) until the last walker has disappeared [Eq. 
( 8) 1. In order to find k, , one must fit P(t) to a single expo- 
nential at late times. Originally, we divided the data into 
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FIG. 7. Pseudo-first-order and mean rates for Cases C, S, and CS in micelle 
of diameter 40 A with ten static quenchers of diameter 5.0 b; and single 
donor of same diameter. Rates are shown as a function of 6, the MC step 
size, in units of A. Empty symbols: triangles: k ,‘, squares: k it circles: k 0”. 
Filled symbols: triangles: kc, squares: k s, circles: k a, 

blocks by fitting 50 values of P( t) to find k,, then shifting the 
time origin by ten steps and fitting the next 50 values to find 
the next estimate of k,. There must be (i) no significant 
trend in the ko’s, and (ii) the standard deviation in the mean 
must be a small fraction of the mean, in order to identify this 
mean over many blocks with the pseudo-first-order rate. 

A problem with this method was that, at times late 
enough to show first-order kinetics, the walker number had 
decreased to the point where statistics were poor. [With less 
than around 100 walkers in the micelle, one had a noisy 
estimate of P( t) 1. To fix this problem, we completed each 
run in two stages. First, the particle number was allowed to 
decay to one-tenth (80) of its original value. Then, we re- 
placed every remaining particle with ten new particles at 
that particle’s location, thereby returning to the original 
concentration, but in a configuration already shaped by the 
boundary conditions. This “population explosion,” in the 
spirit of a staging calculation, enhanced our ability to resolve 
the pseudo-first-order rate. The block averaging was done 
only during the second stage of the calculation, and only 
while the particle number remained above 400. Each particle 
in the second stage was given a weight of l/10 in its contribu- 
tion to P(t) for the purpose of finding k. We checked that the 
staging did not bias the measured value of k. or k, by com- 
paring with a run in which a much larger original population 
was allowed to decay with no population explosion. The two 
sets of results were consistent. Figure 8 shows In P(t) vs t for 
Cases C and CS for a single, static configuration of A mole- 
cules. The plotted lines have slopes with values of k, given by 
the block fitting procedure described above; arrows indicate 
the time at which the walker population explodes. This plot 
shows that calculated k,‘s fit the data well, and that the first 
stage of the calculation blends smoothly into the second, in 
terms of the shape of P( t). 
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FIG. 8. Natural log of survival probability vs time measured in ,MC iter- 
ation time steps, for micelle with ten static quenchers; S = 0.25 A. Trian- 
gles: Case C, circles: Case CS. Arrows show time at which population “ex- 
plodes” to original value. Bold lines have slope of kc, best-fit as mean from 
successive blocks of data (see the text). Fitting begins at time shown by 
arrow; line is extended to show consistency of k,, before and after explosion. 

Finally, we averaged rates over configurational disorder 
by repeating the calculation for 50 different initial configura- 
tions of A molecules. In the case of static A molecules, 
h, = 0.84 A - ’ was chosen. This value gave us a branching 
ratio (Sec. II B) of roughly unity; the mean over configura- 
tions was B = 1.1. (All uncertainties are one unit in last de- 
cimal place unless otherwise noted. ) Figure 9 (a) shows raw 
data for Case CS. Error bars on k, arise from the block 
averaging procedure for a single configuration. The disper- 
sion in the average of k, over configurations is clearly domi- 
nated by fluctuations in k, from one configuration to an- 
other, rather than the error in k, for a single configuration; 
this is as one would hope. Figure 9(b) shows raw data for 
Case CS in the case of moving A molecules. If these mole- 
cules had the time, during the course of the simulation, to 
explore the micelle thoroughly, we would see the scatter in 
the data of Fig. 9(b) decrease dramatically over that of Fig. 
9(a). In fact we do not-at this high volume fraction of 
quenchers, with donors and quenchers of equal radii, the 
reaction proceeds quickly on the time scale for quencher 
motion. 

If no other parameter of the simulation is changed, reac- 
tion rates roughly double from the static to the moving A 
case. This is because the effective (pair) diffusion constant 
has doubled. However, if we are interested in finding large 
relative enhancements Sk,, and 6k, we try to adjust param- 
eters so that B remains at or slightly below unity (Sec. II B). 
When the A are free to move, B rises to around 1.4. The least 
consequential way to reduce B is to raise the surface quench- 
ing strength, h,. If it is raised to the point that the surface is a 
perfect quencher, the branching ratio falls to approximately 
B = 1.0. Thus, the data of Fig. 9(b) are taken in this limit. 

Table II contains final data; it shows pseudo-first-order 
and mean rates for schemes C, S, and CS for the cases of 
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static and moving quenchers.4s It also shows the absolute 
and relative enhancements of the rates. For all cases in the 
table, for moving as well as static quenchers, mean rates ex- 
ceed pseudo-first-order rates. The excess is from 15%-35% 
of the mean rate. The disagreement between k and k, implies 
that pseudo-first-order kinetics are not quickly established 
here. Thus we would not want to characterize the reactor 
entirely by k, , as some previous workers have done. For this 
reactive geometry in the case of static quenchers, there can- 
not be a good separation of eigenvalues of Eq. (4). This is 
reasonable for Cases S and CS because h, is far from zero- 
and is true also in Case C where the surface quenching 
strength vanishes. The relative enhancements, Sk, and Sk, 
are large. One cannot construct a central sink model with 
enhancements of this magnitude for the same surface 
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TABLE II. Rates, absolute (A rate), and relative (6 rate) enhancements for reaction in a 406; micelle with 10, 
5.OA static (h, = 0.84A- ‘) andmoving (h, = CO) quenchers, Ratesarerenormalizedso that Dz l.OA*/ps. 

C S cs A Rate 6 Rate 

k, 
k 

k, 
k 

Static 
0.017 * 0.001 0.0223 10.0004 0.060 f 0.002 0.021 + 0.002 35% 
0.026 f 0.001 0.03 19 f o.coo4 0.090 * 0.002 0.032 + 0.002 36% 

Moving 
0.045 * 0.003 0.034 f 0.001 0.111 f 0.005 0.032 + 0.006 29% 
0.056 & 0.002 0.0504 f 0.0005 0.169 f 0.003 0.063 f 0.004 37% 

quenching strength. That is, referring back to Figs. 3 (c) and 
5(c), there is no radius of central sink which, given 
h, = 0.84, will produce 35% enhancements as seen for the 
static data in Table II. To summarize a main point: One 
cannot view reactions at the surface and within this micelle 
as occuring in parallel. Any analysis of such a system which 
begins with the assumed superposition of rates, 
kc+ks= k cs, will begin with an error which propagates 
through the calculation. For the (physically motivated) pa- 
rameters we have studied, this initial error is roughly 35%. 

In conclusion, we have studied the absolute and relative 
enhancement in reaction rate that is achieved by placing 
quenchers both within and on the surface of a micellar cav- 
ity. We have found significant enhancement both in the case 
of a single, central quencher, and for dispersed static and 
moving quenchers in a micelle-enhancements not too far 
below a conjectured maximum of 50%. These results imply 
that, in general, one cannot view reaction at the surface and 
within the micellar volume as channels which operate in par- 
allel, save in the limit of weak quenching and small quencher 
radius. On a more positive note, the results suggest a way to 
enhance the efficiency of a diffusion-limited reaction within 
a micelle or porous solid. One attempts to distribute reagent 
or catalyst simultaneously on surfaces which are expected to 
compete; just as surfaces within the pore and at the pore 
surface compete in the present study. Finally, we have noted 
that these results apply to the relaxation of magnetization as 
seen through NMR measurements, and have studied a type 
of competition between relaxing surfaces in a simple model 
of a pore with rough walls. 
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