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The ground-state energies of an excess electron E0 as a function of solvent density are 
computed using model electron-atom pseudopotentials in fluid helium, argon, and xenon. E0 
is a lower bound to the experimentally measurable threshold to photoconductivity, V,. 
The nonuniqueness of the pseudopotential description of electron-molecule interactions is 
demonstrated. We find that when many-body polarization effects are included, our 
calculated E0 results are in close agreement with experimental VO values indicating that the 
conduction-band energy lies close to the ground-state energy across a broad range of 
densities in these polarizable fluids. If the many-body nature of the polarization interaction is 
ignored the ground-state energies deviate significantly from the V, results highlighting 
the importance of accurate treatment of many-body polarization interactions. It is shown that 
a mean-field theory of polarization gives substantial agreement with full many-body 
calculations. This allows us to introduce a mean-field, density-dependent pair potential which 
greatly simplifies such many-body calculations. In the more polarizable systems, it is 
found that the spatial extent of the ground-state wave function as a function of solvent density 
is correlated with the density dependence of both V, and the electron mobility, and it 
becomes uniformly spread throughout our simulation cell as the electron mobility goes through 
its maximum value at intermediate solvent densities. 

1. INTRODUCTION 

In this paper we explore the density dependence of the 
excess electronic ground-state energy in a number of sim- 
ple fluids including helium, argon, and xenon. The exper- 
imental observable is quite a different quantity. To probe 
the energetics of the electrons in fluids the difference be- 
tween the work function of a metal electrode immersed in 
the solvent, and the work function of the metal electrode in 
vacuum, is measured.lr2 This quantity, called V,, is the 
threshold above which conduction can occur and can thus 
be interpreted as is a measure of the lowest-energy con- 
ducting state. In some systems, the lowest-energy states 
may be strongly localized, leading to trapping of the elec- 
tron in density fluctuations of the host fluid, with corre- 
sponding energy eigenvalues lower than the bottom of the 
conduction band, V,. Alternatively, the topology of the 
electron-solvent potential surface can be such that the 
lowest-energy states are spatially delocalized and coupled 
by thermal motions of the solvent. Under these circum- 
stances, the ground state will be the bottom of the conduc- 
tion band. Thus, the ground-state energy is a lower bound 
on V,. 

The precise connection between the experimentally ob- 
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served VO values and our calculated E0 results is nontrivial. 
The only thing we can be certain about is that the density- 
dependent VO curve must lie entirely above the E, curve. If 
E,, shows a minimum and upturn as a function of density 
then Vo must either lie on top of EO or above it, in which 
case the V, curve may have a sharper minimum and up- 
turn, and the minima of the two curves need not necessar- 
ily correspond to the same density. Interestingly, we find 
that both in argon and xenon, when many-body polariza- 
tion effects are included, the density at which our calcu- 
lated Eo values have their minimum corresponds almost 
exactly to the density at which the experimental F’,, values 
have their minimum. If many-body polarization effects are 
ignored our calculated E0 results have their minimum at 
more than twice this density. In argon we find that the 
experimental P’, and calculated Eo results lie almost on top 
of one another, where as in xenon the experimental V, 
values have a sharper upturn with density than the calcu- 
lated E0 results. This finding is consistent with the idea that 
the lowest-energy conducting state in argon is very close in 
energy to the ground state across the entire range of fluid 
densities. In xenon, however, the lowest-energy conducting 
states at low and high densities probably lie somewhat 
above the ground state whereas around the minimum the 

* first conducting state may be close in energy to the ground 
state. 

In a simple nonpolarizable hard-sphere fluid, such as 
helium, the value of VO is found to increase monotonically 
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with increasing density. In fluids of polarizable atoms such 
as argon or xenon, on the other hand, the value of Va first 
decreases with increasing density, reaching a minimum in 
the dense liquid. The value of Va then increases with in- 
creasing density beyond this minimum point. The reduced 
density at which the Va minimum occurs shows a solvent 
dependence, the more polarizable and larger the solvent 
atoms, the higher the reduced density at which the V, 
minimum occurs. 

Dynamical properties, like the electron mobility, show 
related trends with density. In nonpolarizable solvents, the 
mobility simply decreases monotonically with increasing 
density. In fluids of highly polarizable atoms, on the other 
hand, the mobility decreases steadily through the gaseous 
density regime, reaching a minimum around the critical 
density. In the liquid region the mobility increases dramat- 
ically, reaching its peak value at almost exactly the same 
density as the minimum in Vs. Further increases in density 
beyond this point result in a rapid decrease in mobility, 
followed by a slight upturn as the solid is approached. 
Interestingly, the maximum mobility in argon is about 10 
times that of electrons in metallic copper, while in the 
more polarizable xenon, electrons are about 50 times more 
mobile than in copper! 

In earlier work, Coker, Thirumalai, and Beme used 
path-integral methods to explore the equilibrium proper- 
ties of excess electrons in various simple fluids. Sprik, 
Klein and Chandler4>5 used similar methods to study the 
propehies of hard-sphere models of these systems and 
showed that an approximate analytic theory (RISM po- 
laron theory) could give accurate results. Laria and Chan- 
dler6 showed that these hard-sphere analytic models could 
be fit to give reliable agreement with simulations using 
more accurate pseudopotentials. Coker and Berne7 ex- 
plored the onset of photoconducting states of electrons 
equilibrated in fluid helium and tested a simple Wigner- 
Seitz-like model.* This simple model theory has been used 
by Plenkiewicz, Plenkiewicz, and Jay-Gering-” to study 
the density dependence of conducting-state energies of 
electrons injected into unperturbed fluids. Recently, 
Stampfli and Bennemann12 presented a new type of 
Wigner-Seitz model which takes account of the fluid dis- 
order in terms of fractional filling of a crystal lattice. They 
use a simple model potential incorporating a fitted hard- 
core repulsion at short range, pair polarization within the 
Wigner-Seitz cell, and a dielectric continuum approxima- 
tion for the long-range many-body polarization contribu- 
tion and obtain results in good agreement with experiment. 

The electronic properties of fluids of polarizable atoms 
are determined by the balance of short-range repulsive and 
long-range attractive electron-solvent interactions. The 
most important attractive interaction between the electron 
and the solvent atoms is induction or polarization. This 
arises when a point charge induces a dipole in a polarizable 
atom. When the system consists of many polarizable atoms 
the dipoles will interact with themselves as well as with the 
point charge. Simulation calculations by Wallqvist, Mar- 
tyna, and Berne,t3 using the full solution of the self- 
consistent induced-dipole equations to study an excess 

electron in water, showed that many-body effects ac- 
counted for about 10% of the total excess electronic en- 
ergy. Martyna and Berne14’15 used these methods to ex- 
plore the importance of induced many-body interactions 
for electron attachment to clusters of xenon atoms and 
found that using an accurate many-body interaction could 
give energies as much as a factor of 2 higher than those 
obtained when induced-dipole-induced-dipole interactions 
are neglected, i.e., a pair polarization potential is used. 

A convenient mean-field approach to this many-body 
polarization problem for electrons in liquids was presented 
by Lekner.16 This approach is used in ground-state calcu- 
lations on electrons in clusters by Martyna and Berne and 
in path-integral calculations on electrons in fluid xenon by 
Coker and Berne.t7 The latter found that the density de- 
pendence of the average electronic energy showed the same 
qualitative trends as experimental Ve values when many- 
body effects were included but showed substantial disagree- 
ment when a pair potential description was incorporated. 
Mean-field many-body polarization effects were also in- 
cluded in the Wigner-Seitz model calculations of Plenk- 
iewicz and co-workers and in recent path-integral 
molecular-dynamics (MD) studies of the mean energies 
for electrons in argon.18 Dielectric continuum theo- 
ries’g~‘2~20 provide a simple approximate way to include 
many-body polarization effects and have been used success- 
fully to describe both clusters and bulk phase systems of 
nonpolar molecules. 

Recently, a number of analytic theories of excess elec- 
trons in polarizable fluids have been developed based on 
pair potential descriptions of the electron-solvent interac- 
tions. Of note here are the RISM-polaron theory calcula- 
tions of electron mobility presented by Hsu and Chandler” 
and the percolation theory model for conduction-band en- 
ergies of Stratt and co-workers.22 We show that these the- 
ories, which ignore the many-body nature of the interac- 
tions, can at best give only a qualitative description of the 
density dependence of electronic properties in polarizable 
fluids. For example, we find that if a bare pair potential is 
employed, the density dependence of the ground-state en- 
ergy has a minimum at much higher densities (well into 
the compressed solid regime) than the experimental V. 
minima. When many-body effects are included, however, 
the position of the minimum is close to that observed with 
the experimental V. values. We believe the important na- 
ture of the potential surface is hidden in unphysical param- 
etrizations of these approximate theories. 

In this paper we also explore the nature of the excess 
electronic states supported by these simple fluids. The 
ground-state properties of static fluid configurations are 
obtained with both the diffusion Monte Carlo (DMC) and 
a block Lanczos diagonalization (BLD) method. We ex- 
plore the sensitivity of various excess electronic properties 
to the details of the electron-molecule pseudopotential and 
demonstrate that the importance of the many-body polar- 
ization interaction goes beyond energetic concerns. We 
also demonstrate that the Lekner mean-field theory pro- 
vides a very convenient and accurate way to describe this 
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interaction in situations where the solvent is unperturbed 
by the presence of the electron. 

The paper is organized in three sections. In Sec. II we 
briefly describe the diffusion Monte Carlo and block Lanc- 
zos diagonalization. methods we employ to compute the 
eigenstates of various representative fluid configurations. 
Section III details the various pseudopotentials we have 
considered as models of the electron-molecule interac- 
tions. Results of our electronic ground-state energy calcu- 
lations for different model potentials are presented in Sec. 
IV where we also explore the density dependence of the 
eigenstates. Various conclusions based on our studies are 
discussed in Sec. V. 

II. METHODS 

To check accuracy and consistency of our results two 
different methods, diffusion Monte Carlo (DMC) and a 
fast Fourier transform (FIT) block Lanczos diagonaliza- 
tion (BLD) algorithm, were used to compute the adiabatic 
excess electronic ground states of static solvent configura- 
tions at various solvent densities. In this section, we outline 
the two methods and discuss their relative merits for this 
particular application. 

simulating the imaginary-time Schrbdinger equation for 
the function f = $r$. Here $z is a trial importance sam- 
pling function which guides the random walk into the re- 
gions of highest amplitude. Specifically, an ensemble of 
replicas of the electron in the static solvent configuration is 
established. A short-time approximation is used which 
specifies that each replica is first allowed to diffuse through 
space, modeling the kinetic-energy term, then drift with 
constant instantaneous drift velocity V In r,!+ under the in- 
fluence of the importance sampling function. The extent of 
these moves is governed by the time step, hr. Finally, en- 
semble members are replicated or removed from the en- 
semble according to their values of the local energy Et,, 
= H&/& with probability: exp[ - (El, - ,!&) AT]. Here 
Eref is a reference energy which is dynamically adjusted to 
keep the overall ensemble population stable at some finite 
normalization value. The long-time limit of this process 
becomes ground state dominated and reaches an equilib- 
rium distribution of the replicas. 

The electron ground-state properties are sampled after 
the DMC calculation has reached equilibrium. The distri- 
bution function of the electron replicas in the DMC calcu- 
lation, f&r), and can be expressed as 

The FFT BLD algorithm calculates instantaneous adi- 
abatic electronic eigenvalues and eigenfunctions by using 
an efficient scheme developed by Webster, Rossky, and 
Friesnerz3 based on an iterative Lanzcos algorithm.24 The 
eigenfunctions are represented on a discrete grid of N 
points in space. With this representation, H is an NXN 
matrix whose low-energy eigenstates are to be determined. 
The eigenstates of exp( --7H) are the same as those of H 
but by choosing a large enough value for r the iterative 
Lanczos algorithm converges more rapidly for the expo- 
nential operator than it does for H itself. Webster’s algo- 
rithm involves first using the single-vector Lanczos algo- 
rithm to obtain a set of low-energy eigenstates for a short- 
time approximation to exp( -Q-H), namely 

f&j + J;-& g1 S(r,-r), 
I 

where N, is the number of time steps sampled after equi- 
librium (we used 12 000) and Nk is the number of replicas 
in the kth time step. The electronic ground-state wave 
function is &(r) = fo(r)/qOT(r), where &-(r) is a non- 
negative analytical function. In this problem, the positions 
of the electron replicas are recorded in a three-dimensional 
histogram giving a discrete representation of the wave 
function. 

In DMC the expectation value of any operator A^ can 
be determined from 

exp( --7H) -exp( --7T/2)exp( --7V) s $43(r)~hdr)d3r 
Xexp( -rT/2) +@(73), 

where T and V are the kinetic and potential operators. 
Standard fast Fourier transform method? are used to 
compute the action of this short-time form on an arbitrary 
function so that the Lanczos recursion can be imple- 
mented. The set of eigenfunctions of the short-time approx- 
imation to exp( -7H) are now used as a starting set of 
basis functions for a “block Lanczos” refinement of the 
eigenstates of H itself with no errors due to the short-time 
approximation. Each block of new basis functions is gen- 
erated by computing the action of H on the previous block 
and orthogonalizing the new functions with respect to all 
previous blocks as well as orthogonalizing within the cur- 
rent block. A block tridiagonal form of the Hamiltonian in 
this basis set is then computed and diagonalized using stan- 
dard methods giving many accurate eigenstates and eigen- 
values of H with no time-step error. 

=2(A&)fo(r)- ( %) $+ 
+J u(r)[i-(A$)fOCrj]u(r)d3r, 
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a new result derived for the first time in the Appendix. 
Here, u(r) = &(r) - &(r) is the difference between the 
normalized ground state and the trial wave function. 
([* * *])f, denotes the average over fo(r) and is evaluated 
directly from DMC.‘4P’5 The second term on the right- 
hand side of the above equation is evaluated in the varia- 
tional calculation. The last term is numerically integrated 
on the grid used for $a( r) . In the case when & is very close 
to &-, the last term is of order smaller than O[u*(r)]. 

Diffusion Monte Car10,~“~~ on the other hand, is a 
guided random-walk relaxation technique which involves 

The electronic ground-state energy can be directly 
sampled from DMC as 

(2.1) 

(2.2) 



TABLE I. DMC importance function parameters for xenon. 

a b 

Thirumalai 2.2 21.2 
Fitted 4.8 24.0 

J%=(~~), 
The FFT block Lanczos method can be employed to 

(2.3) 
obtain excited states. The excited-state method of Ceperley 
and Bernu3’ can be implemented to obtain excited states 
from DMC calculations, but due to the complexity in our 
ground-state wave functions this was not done here. The choice of trial wave function g=(r) determines the 

magnitude of the time step Ar and the rapidity with which 
the simulation converges to the true answer. The closer 
4=(r) is to the true electron ground-state wave function, 
the smaller will be the variation of H&-(r)/&(r) as a 
function of the electron position and the more efficient and 
accurate will be the importance sampling algorithm.30 We 
used a pair product form for &(r) for all of the pseudo- 
potentials, 

h-(r) = ,it h( Ir-RI 1, (2.4) 

where Ri is the position vector of fluid atom i and 

h(r) =exp[ -ab/r(?+b)]. (2.5) 

Here a and b are variational parametys which give the 
lowest electron energy. The quantity (AT,~~/+~)++ was in- 
tegrated by three-dimensional quadrature. We find that a 
trial wave function of this form itself yields variational 
energies which are less than 10% higher than the exact 
DMC ground-state energy. The worst situation occurs in 
helium when the electronic ground state is localized. The 
agreement is especially good when the electron wave func- 
tion is almost uniform in the simulation cell (for Xe at 
p*=O.7, the trial energy are within 2% of the DMC 
value). Values of the variational parameters are summa- 
rized in Table I. 

All of our calculations involve use of fluid samples 
with 256 or 864 particles in a minimum imaged cube with 
periodic boundary conditions. Ground-state electronic 
properties of 2048 particle systems were also computed and 
found to agree well with those of the smaller system. In- 
terestingly, in xenon and argon, excited-state eigenvalues 
show system size dependence which is not converged in 
even the largest systems examined (2048 particles). 
Excited-states energies appear in “bands” with a charac- 
teristic number of excited states in each grouping, and 
characteristic energy gaps between bands. The ground- 
state eigenvalue is insensitive to system size as the ground- 
state energies in our periodic samples of highly polarizable 
noble-gas fluids behave similarly to that of a particle in a 
periodic box, which has no zero-point energy, and is the 
same for each system size. The excited-state energies, on 
the other hand, are box size dependent, leading to the size 
dependence of excited-state energies of our fluid samples. 
This behavior will be further investigated in a subsequent 
publication.32 In contrast, for a system like helium, which 
has highly localized eigenstates, the densities of states for a 
256-particle and 864-particle system are virtually identical. 

The DMC approach has the advantage of not requiring 
spatial discretization to compute ground-state energies and 
can be readily applied to larger and more complex systems. 
The accuracy and precision of these calculations is limited 
only by the short-time approximation and statistical uncer- 
tainties. As discussed above in connection with Eq. (2.2), 
expectation values other than the energy can only be ob- 
tained if the wave function can be represented on a grid 
and only the last term in this equation, which is itself 
small, is subject to grid discretization errors. In contrast, 
the errors in the FFT block Lanczos method are due to the 
spatial resolution of the wave function represented on a 
discrete grid without errors due to a finite time step and 
without statistical uncertainties. In problems where the po- 
tential function is rapidly varying in space DMC is prefer- 
able to FFT block Lanczos since one can improve DMC by 
decreasing the time step-a remedy easily achieved- 
whereas for rapidly varying potential functions FFT block 
Lanczos requires a fine spatial grid and can be expensive. 
DMC can also run into problems with rapidly varying 
potentials unless a good trial function such as the one used 

The equilibrium neat fluid configurations were gener- 
ated with standard constant-temperature molecular- 
dynamics methods, and the atom-atom interaction wts 
taken to be a LJ potential with parameters 0x,=4.055 1 A, 
exe=229 K, aA,=3.405 A, l ,,=119.8 K, ou,=2.556 A, 
and e&=10.22 K. The neat &rid configurations chosen 
were separated by sufficient time to insure statistically in- 
dependence. For each solvent configuration, the ground- 
state energy was calculated with electron-atom pseudopo- 
tentials truncated at r,. All reported electronic energies 
include a long-range correction based on a perturbation 
theory breakup of the potential in which we write the 
Hamiltonian as 

?i* 
H=xFl v*+ v,+ v,, 

where V. is the truncated potential with which we do our 
numerical simulations finding the eigenstates of Ho 
= - (fi2/2m) V* + V, and VI is the part of the potential 
beyond r,. We approximate the long-range correction as 

($1 V,jt,b)= SW rhrr*drpV--2vapfJr, 
‘c 
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here is available. In the usual DMC methodology the E;,f 
estimator will fluctuate wildly in systems where the poten- 
tial changes rapidly if a bad importance function is used 
and then there will be large statistical uncertainties. In the 
calculations described below the DMC was more accurate 
than the FFT block Lanczos by at best an order of mag- 
nitude. 
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FIG. 1. The convergence of DMC vs time step for Xe at p*=O.5 with the 
bare fitted pair pseudopotential (a) and the fitted potential including 
mean-field many-body polarization (b). 

for our modified mean-field polarization potential dis- 
cussed in Sec. III. Results obtained with this approximate 
long-range correction are insensitive to the truncation ra- 
dius beyond r, = 2.5~ for densities lower than 0.7 but for 
higher densities r, = 3.5~ was taken for the many-body po- 
larization models. 

For each fluid density and pseudopotential, we took 
the best variational parameters for the trial wave function 
in our DMC calculations and tested the convergence with 
time step. For the pair and mean-field many-body polar- 
ization potentials (see Sec. III) at p* =0.5 in Xe, the DMC 
converges at Ar=O.2 a.u. with a precision and accuracy of 
0.2% as shown from Fig. 1. Typical DMC runs involved 
using 500 replicas and averaging results for 10 000 steps. 

Details of the FFT BLD calculations were as presented 
in our previous studies.33v34 Convergence of these calcula- 
tions with grid size was tested with grids of 323 and 643 
uniformly spaced points filling our simulation box. In an 
864-particle fluid xenon sample at p*=O.9 and T=309 K 
using the bare Thirumalai pair pseudopotential to be dis- 
cussed in the next section, we obtained ground-state ener- 
gies of Ei* = - 1.277 eV and @ = - 1.254 eV, respec- 
tively. The 643 grid result is in close agreement with the 
DMC result, using a time step Ahr=0.05 a.u. and the same 
solvent configuration, we obtained EFMC= - 1.260 
*O.OOl eV. 
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TABLE IL Convergence and configurational variance of ground-state 
energies with the Kestner e-helium pseudopotential. 

Grid size 

P* 163 323 643 

0.3 0.780 38 0.853 43 0.856 57 
0.3 0.862 12 
0.3 0.938 62 
0.5 1.469 4 1.6415 1.641 9 
0.5 1.858 9 
0.5 1.572 8 
0.7 2.969 1 3.156 5 3.163 2 
0.7 2.934 2 
0.7 3.068 1 

In Table II we present results which indicate conver- 
gence of our electron-helium ground-state energies with 
grid size. A system of 864 particles was considered here. 
We see that our results are well converged across the entire 
range of fluid densities with 323 grid points. The table also 
summarizes results for different fluid configurations and we 
see that the fluctuations in ground-state energy with fluid 
configuration are on the order of 5%-10% in helium with 
the largest fluctuations occurring at a solvent density of 
p* =0.5. 

Table III shows similar grid-size convergence results in 
fluid xenon. The energies on a 643 grid in helium are better 
converged than in xenon at the same reduced density due 
to the difference in box sizes for the two systems. The box 
length L is directly proportional to the Lennard-Jones di- 
ameter ou for the same particle number and reduced den- 
sity, namely L = a~(N/p*)“~, while the Lennard-Jones 
interaction diameter for helium is 63% of that for xenon. If 
we assume that convergence is determined by the number 
of grid points per dngstrom and that the electron-solvent 
potential in helium and in xenon are comparable in 
“smoothness,” the convergence in helium with a 323 grid 
should be roughly comparable to that of a 643 grid in 
xenon for the same number of particles and reduced den- 
sity. The helium eigenvalues were shown to be converged 
to within 0.2% or less in Table II. A test was also per- 
formed on a 256-particle xenon system with p* =0.5 and a 
643 grid. Reducing the system size to this extent improves 
the discretization in each dimension by a factor of 1.5. The 
resulting eigenvalue differed by only 0.5%, further con- 
firming that the BLD results are free from any significant 
discretization error. Also, we find that the variation in 

TABLE III. Convergence and configurational variance of ground-state 
energies with an Xe fitted potential with mean-field polarization. 

Grid size 

P* 323 643 

0.5 -0.5735 -0.5654 
0.5 -0.5733 -0.5652 
0.7 -0.6581 -0.6443 
0.7 -0.6576 -0.6465 
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ground-state energy with configuration is only a few tenths 
of a percent for the ground states of fluid xenon configu- 
rations. 

III. ELECTRON-SOLVENT INTERACTION POTENTIALS 

A variety of electron-atom pseudopotentials were used 
in our calculations of the excess electronic states of simple 
atomic fluids. In this section we discuss these pseudopo- 
tentials and demonstrate the nonuniqueness of the pseudo- 
potential approach by showing that vastly different pseudo- 
potentials can give very similar gas-phase electron-atom 
scattering data. In later sections we will find that very 
different pseudopotentials give very similar bulk phase 
electronic properties as well. 

The electron-atom bare pair potentials we have treated 
in our calculations have the general form 

V&Y(r) = V,(r) + ryr). (3.1) 

Here V,(r) is the short-range repulsive component of the 
pseudopotential which incorporates terms representing the 
interaction of the incoming electron with the static charge 
distribution of the target atom as well as terms accounting 
for exchange and orthogonality of the incoming electron 
wave function with the wave functions of the target atom 
electrons. The second term V,(r) = -cre2S(r)/2r4 rep- 
resents the charge-induced-dipole polarization interaction. 
Here (r is the atomic polarizability and S(r) is a switching 
function which accounts for the fact that as the electric 
field from the incoming electron penetrates the charge dis- 
tribution of the target atom it is screened by this charge 
distribution. 

In fluids of highly polarizable atoms such as argon and 
xenon, the long-range charge-induced-dipole polarization 
interaction cannot, in general, be treated in terms of a 
simple sum of pairwise additive terms such as I$( r). Un- 
der these circumstances the local electric field which in- 
duces the dipole in molecule i is the superposition of the 
Coulomb field from the excess electron and the electric 
fields due to all the other induced dipoles, thus 

N 

Ei=EjO’+ 2 okTik*Eb (3.2) 
kfi 

where the direct electric field at ri due to the charge at the 
origin is Ef”’ = e?$” (pi) /$ and Tik = ( 3?i,$ik - 1) /&. The 
fact that the dipole induced in a given atom ,LLi = aiEi de- 
pends on the fields of all the other induced dipoles gives 
rise to a set of 3N coupled linear equations for the induced 
dipoles which can be solved self-consistently. The many- 
body electrostatic polarization energy of the condensed 
system is thus obtained as the energy of all the induced 
dipoles in the direct electric field of the charge, 

(3.3) y(r3N) = 4 ii pi*EiO). 
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matrix is efficient since it only needs to be performed once. 
When the configuration is sampled many times a self- 
consistent iteration approach can be used to minimize the 
computational effort in solving this large system of equa- 
tions (3.2). 

Calculation of the many-body polarization interaction 
as discussed above is computationally intensive. If it is 
assumed that the solvent structure is unperturbed by the 
excess electron, a mean-field approach to this problemI 
can considerably simplify these calculations. This ap- 
proach involves the assumption that the local field which 
includes the effect of other induced dipoles points in the 
same direction as the direct electric field but with a mag- 
nitude modified by a distance-dependent screening func- 
tion f(r). Thus, 

With this model one can compute the component of the 
local field along the distance vector between an atom and 
the electron in the presence of a continuous fluid of dipoles 
distributed according to the unperturbed fluid pair corre- 
lation function g(r). The final result is a self-consistent 
integral equation for f(r) dependent only on the unper- 
turbed fluid structure” which we can solve numerically 

S1’2(r)f(r> =S1’2(r)f(r) +rrpa 
J- 

om ds g(s)F2 

IR+4 
X I dt S*‘2( t)f( t) t-2 

IR-4 

+ (r2+tZ-2) . 1 (3.4) 

This approximation allows one to express the potential en- 
ergy including the many-body nature of the polarization 
interaction as a sum of two-body terms. The many-body, 
self-consistent field problem is thus reduced to a mean- 
field, density-dependent, pair potential of the form I’,, 
= V,(r) + yJr)f(d. 

For a system with N polarizable solvent atoms, a 3iV 
X 3N matrix equation must be inverted in order to evaluate 
the many-body electron-solvent polarization potential. For 
a fixed solvent configuration the direct inversion of the 

The average local field function f(r) for xenon at sev- 
eral different solvent densities is presented in Fig. 2. These 
functions decay from unity to the Lorentz local-field factor 
fL in an oscillatory fashion due to the local structure of the 
fluid. The factor fL depends on the density of polarizable 
centers, p, and has the form fL = [l + (8/3)rpa]-‘. For 
comparison, the value of fL at the high fluid density of 
p*=O.7 in helium is only fL = 0.93 so we ignore these 
local-field screening effects in all our condensed-phase he- 
lium calculations (for xenon at p* =0.7, fL = 0.74). 

These results for f(r) indicate that the self-consistent 
mean-field potentials will be more weakly attractive than 
the pair polarization potential. Physically, this is due to the 
effect of the repulsive induced-dipole-induced-dipole inter- 
actions on the electric field. These interactions make it 
unfavorable to have large induced dipoles. Again, in the 
mean-field treatment this is reflected by a simple reduction 
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FIG. 2. Self-consistent mean-field screening functions for the electron- 
xenon system at densities p* =0.9, 0.7, 0.5, 0.3, and 0.1 and temperature 
T=309 K. The curve for the highest density-state point has the lowest 
asymptotic value, and the asymptotic values increase monotonically to 
one with decreasing density. 

in the magnitude of the induced dipole which is assumed to 
be pointing in the direction of the direct electric field. 

We expect that the mean-field theory will work best for 
excess electrons in unperturbed neat fluids. When the 
solvated excess electrons (i.e., fully equilibrated) signifi- 
cantly perturb the fluid structure as in helium or polar 
solvents such as water or ammonia, an altered mean-field 
equation may be required. 

A. e-helium pseudopotentials 

New pair pseudopotentials for the electron-helium in- 
teraction were constructed using a simple exponential re- 
pulsive component V,(r) = A exp( - fi r) and a polar- 
ization switching function of the form S(r) = r4/ 
(r2 + d2j2 to give V(r) = V,(r) - as(r)/2r4. The atomic 
polarizability of helium was taken to be a = 1.3834 a.u.3 
and the parameter in the polarization switching function 
was taken to be d2 = 0.7 a.u.2. The other two parameters in 
the pseudopotential, A and p, were then adjusted to give 
agreement with I=0 phase shift data obtained from various 
sources. These parameter values are listed in Table IV. 
Phase shifts calculated using various pseudopotentials and 
those obtained from ab initio calculations which reproduce 
experimental cross-section data are compared in Fig. 3 (a). 
Here we present two sets of phase shifts to which potentials 
were fitted: one due to McEacharan and Stauffer,35 and the 
second set due to Williams.36 We see that these results are 
reasonably close at low k and deviate by about 4% at the 

TABLE TV. e-He pseudopotential parameters in atomic unhs. 

Depth (eV) A P 

-0.0175 17.832 2.15 
-01)325 49.76 zfi 
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FIG. 3. (a) I=0 electron-atom scattering phase shifts for helium. The 
curves are results calculated with various pseudopotentials and the points 
are data from ab inifio calculations; diamonds, Ref. 36; pluses, Ref. 37; 
squares, Ref. 39. The dashed curve which does not go through any of the 
sets of points denotes the phase shifts obtained with the pseudopotential 
due to Kestner ef al. (Ref. 39). (b) Pseudopotentials for the electron- 
helium system. The solid curve is potential due to Rama Krishna fitted to 
Nesbet phase shifts, the longdashed curve is the potential form we have 
fitted to McEacharan-Stauffer phase shifts, the short dashed curve is the 
potential form we have fitted to Williams phase shifts, and the dotted 
curve is the pseudopotential due to Kestner et al. For comparison, the 
arrow indicates the atom-atom interaction diameter. 

highest wave vectors considered. We shall see shortly that 
these slight differences in phase shifts can result in substan- 
tial qualitative differences in the fitted potentials. Phase 
shifts for the potential due to Rama Krishna and Whaley3’ 
and the results of Nesbet3’ to which this potential was 
fitted are also presented in this figure. We see that the fitted 
phase shifts lie within the two sets discussed above. Figure 
3(a) also presents the phase shifts calculated for the 
pseudopotential developed by Kestner et a1.39y3 We see that 
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TABLE V. e-Ar pseudopotential parameters in atomic units. 

Depth (eV) 

1.0 
0.78 
0.60 

Al PI A2 P2 

-31.6712 1.789 84 127.081 2.2 
-35.3910 1.655 38 85.4794 1.9 
-36.5322 1.465 49 61.6499 1.6 

this pseudopotential gives phase shifts which are typically 
about 10% below those of the potentials discussed above. 

The pseudopotentials mentioned above are displayed 
in Fig. 3 (b). We see quite considerable variation in both 
well depth and interaction diameter. 

B. e-argon pseudopotentials 

The form of the pseudopotential used to describe the 
electron-argon interaction involves a repulsive component 
V,(r) = I;:= ,Ai exp( - pi r) combined with the same 
polarization potential and switching function discussed 
above for helium. The value of d2 was again taken to be 0.7 
and the polarizability of argon was taken to be Q= 11 
a.u. 3. Three different parametrizations for Y, with increas- 
ing strength of repulsion were fit to the phase shifts and are 
summarized in Table V. The phase shifts calculated with 
these pseudopotentials are presented in Fig. 4(a). In Fig. 
4(b) we present these different bare pair potentials to- 
gether with their associated density-dependent self- 
consistent mean-field pair potentials. Again, we see that 
slight differences in the quality of the fit to the phase shifts 
lead to considerably different pseudopotentials. Interest- 
ingly, the differences between the density-dependent poten- 
tials for a given potential form are quite small compared 
with the gross differences we see between one potential 
form and another. We shall see in Sec. IV that these ap- 
parently subtle changes in the effective potential with den- 
sity have a profound influence on the calculated ground- 
state energy values. Remarkably, the gross differences from 
one potential form to another have little effect on the cal- 
culated ground-state energies provided the potential form 
makes physical sense and gives a good representation of the 
phase shifts. 

C. e-xenon pseudopotentials 

We have considered two pseudopotential forms in our 
studies of excess electrons in xenon. These have the usual 
attractive polarization (a=27.09 a.u.3) form discussed 
above and include a slightly more complicated switching 
function due to Temkin and Lauskin 

5 
S(r) = 1 --A exp( --2x> ,zo eWx”, (3.5) 

where x = (9/2a) 1’4r and the other constants are sum- 
marized in Table VI. 

The potentials differ only in the short-range repulsive 
part of the interaction. The first potential is a form in 
which the parameters have been optimized to reproduce 
s-wave phase shifts and it has the form 

-1.1 
.1 .? .3 .‘ .5 .6 .? .8 .9 

k / au 

v / ev 

4 6 

I’ / au 

FIG. 4. (a) I=0 electron-atom scattering phase shifts for argon. The 
points are data from ab initio calculations (Ref. 53). The curves are 
results obtained with various fitted pseudopotentials; the solid curve 
shows results with the deepest pseudopotential; the long-dashed curve, 
intermediate depth potential; and short-dashed curve, shallowest poten- 
tial. (b) Various sets of density-dependent mean-field self-consistent po- 
larization potentials for the electron-argon interaction. For the deepest 
set of curves we display potentials for densities of p*=O.l, 0.3, 0.5, 0.7, 
and 0.9. For the other potentials we display only the extreme densities 
p*=O.l and 0.9 (lowest and highest, respectively). The arrow indicates 
the atom-atom interaction diameter. 

with parameters At = 128.237, pi= 1.900, A, = - 18.091, 
&= 1.355. The second electron-xenon pseudopotential 
form we have used in our studies was developed by Thir- 
umalaiM and it has a repulsive component V!(r) which is 
derived from ab initio considerations and includes terms 
representing interactions with the static charge distribution 
of the xenon atom as well as exchange and correlation 
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TABLE VI. e-Xe polarization switch parameters in atomic units. 

A 

0.148 15 

ai 

6.75 

a2 

13.5 

a3 

13.5 

a4 

9.0 

a5 

4.5 

effects. This potential has a maximum value of about 30 eV 
at very small separations. We have used an infinitely re- 
pulsive form which was fitted to this potential around the 
region of the bowl and repulsive core in our previous path- 
integral calculations.3 The infinitely repulsive form starts 
to deviate significantly from the Thirumalai pseudopoten- 
tial above energies of about 10 eV. To check on the influ- 
ence of these high-energy differences we have performed 
our ground-state energy calculations with both the fitted 
and full pseudopotentials and find no differences for these 
low-energy calculations across the whole fluid range of 
densities. Again, we see that these two-body potentials are 
qualitatively different from one another and the changes in 
the potential with density associated with the mean-field 
treatment of many-body polarization are comparatively 
small. 

Phase shifts calculated with these pseudopotentials are 
compared with theoretical s-wave phase shifts in Fig. 5 (a). 
The Thirumalai potential does not reproduce the s-wave 
phase shift as well as the fitted pseudopotential. The two 
potentials and their families of density-dependent, mean- 
field, many-body polarization potentials are compared in 
Fig. 5(b). 

IV. RESULTS 

A. Helium 

In Fig. 6(a) we present our calculated ground-state 
energies as a function of density in fluid helium along the 
supercritical isotherm at T=50 K. Experimentally, it is 
found that the Ve values are insensitive to temperature,41 
so we might expect a similar insensitivity for the ground- 
state energies. Results are compared for the various 
pseudopotentials discussed in Sec. III. We see that the 
pseudopotential of Kestner et a1.3q*3 which, as seen in the 
preceding section, does the poorest job of reproducing the 
phase shifts, gives ground-state energies that are close to 
the experimental Ve values.4145 Both the potential pre- 
sented by Rama Krishna37 and the form we give in Sec. III 
give ground-state energy results which lie below the exper- 
imental Vc values across the entire density range. For these 
potentials which reproduce the phase shifts we see that, 
despite the fact that there are considerable differences in 
pseudopotential well depth and interaction diameter, these 
potentials all give very similar ground-state energy results. 
This occurs due to cancellations between the kinetic and 
potential components of the total energy as we discuss in 
Sec. IV B. 

In Fig. 6(b) we present 50% isosurfaces of the ground- 
state excess electronic density of representative fluid con- 
figurations at various solvent densities. The gross features 
of these isosurfaces are fairly insensitive to the particular 
form of the potential used. We see that the ground excess 
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FIG. 5. (a) I=0 electron-atom scattering phase shifts for xenon. The 
points are data from ab inifio calculations (Ref. 54). The dashed curve 
through these points shows results obtained with our fitted pseudopoten- 
tial; the dotted curve shows results obtained with the Thirumalai poten- 
tial. (b) Various sets of density-dependent self-consistent polarization 
potentials for the electron-xenon interaction. The deepest set of curves is 
obtained from the fitted form and the shallower set is derived from the 
Thirumalai form. The lowest curve of each set is the bare pair potential 
and the higher curves are at higher densities of p* =O. 1, 0.3,0.5, 0.7, and 
0.9, respectiveIy. The arrow indicates the atom-atom interaction diame- 
ter. 

electronic states of these unperturbed helium configura- 
tions are all quite strongly localized in small cavitylike 
density fluctuations in the fluid. Space and Coker34 have 
recently used their nonadiabatic dynamics methods to 
model the relaxation and dynamical trapping processes 
which occur when electrons are injected into these local- 
ized cavity states of unperturbed fluid configurations. 
States as strongly localized as this are generally noncon- 
ducting, consequently we expect these ground-state energy 
values to lie below the conduction-band energies as we find 
is indeed the case for all the pseudopotentials which give 
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FIG. 7. Density of excess electronic states in fluid helium at various 
solvent densities. Vertical lines indicate experimental conduction-band 
energies P’,, (Refs. 41-45). The two curves at p* =O. 1 are at temperatures 
T=50 K (dotted curve) and T=309 K (dash-dotted curve). All other 
curves are for T=50 K. Curves at p*=O.3 are for the electron equili- 
brated fluid (dotted curve) and unperturbed fluid (dash-dotted curve). 
Similarly at p*=O.5 the electron equilibrated fluid (dashed curve) and 
unperturbed fluid (dotted curve) results are presented. 

energies calculated for the accurate pseudopotentials all 
asymptotically tend to the V. values at low densities, indi- 
cating that the gap between the ground state and lowest- 
energy conducting state gets smaller as the density is de- 
creased. 

p* = 0.7 

FIG. 6. (a) Excess electronic energies in helium. Experimental V, results 
are displayed as diamonds. Calculated ground-state energies: E, are dis- 
played as curves. The long-dashed curve is obtained using the pseudopo- 
tential due to Katner et al. (Ref. 39). The short-dashed curve is obtained 
with the pseudopotential fitted to McEachran-Stauffer phase-shift data. 
The dotted curve is obtained with the pseudopotential fitted to Williams 
phase-shift data. The dash-dotted curve is obtained with the Rama 
Krishna potential. (b) Representative configurations of the electron- 
unperturbed fluid helium system at various solvent densities. Atoms are 
represented as spheres with radii equal to 20% of the Lennard-Jones 
helium-helium interaction diameter, o. The electron is represented by an 
isosurface on which the ground-state electron density has 50% of its 
maximum value. 

As the helium density is increased we see that the 
ground-state energies increase monotonically. Since the 
electron-helium and helium-helium interaction diameters 
are comparable [see Fig. 3(b)], when the atoms forming 
the walls of the ground state solvent cavity are in close 
contact, the electron-solvent interaction will be dominated 
by the repulsive core of the electron-solvent pseudopoten- 
tial. As the solvent density is increased the average unper- 
turbed solvent cavity size will decrease giving increased 
localization of the electronic states and a higher kinetic 
energy. The smaller the average size of the cavities, the 
more the harshly repulsive core of the pseudopotential is 
sampled, and the higher will be the total potential energy. 

accurate phase-shift data. The Kestner potential,3Y39 which 
does not reproduce the phase shifts, is thus somewhat un- 
physical as it gives localized nonconducting ground states 
whose energies are equal to, or higher than the experimen- 
tal conduction-band energies. We see that the ground-state 

In an attempt to understand the factors which influ- 
ence the onset of electronic conduction in fluid helium we 
have used our block Lanczos diagonalization method to 
compute the density of excess electronic states at various 
solvent densities. These results are presented in Fig. 7 and 
were obtained by binning the energies of the first 100 eigen- 
states, averaged over five different equilibrium fluid config- 
urations. A regular grid of 323 points throughout our sim- 
ulation cell was used in these calculations. We have 
performed this calculation with both our fitted potentials, 
and the Rama Krishna form and almost identical results 
were obtained. The density of states obtained with the 
Kestner potential is very similar in shape to these other 
potentials but it is offset in energy by a constant corre- 
sponding to the difference in the ground-state energies. At 
low solvent densities, the initial rise of the density of states 
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is very rapid. As the solvent density is increased, however, 
the low-energy tail of the density of states shows a more 
gradual increase with energy. This behavior can be under- 
stood in terms of the fact that the lowest-energy states of 
fluid helium generally involve the electron localizing in 
different size voids throughout the fluid. At lower solvent 
densities the voids are larger and all their state energies are 
smaller and more closely spaced so the state density in- 
creases very rapidly. At the higher solvent densities, on the 
other hand, the voids are smaller and there is thus a larger 
spread of electronic energies so the density of states in- 
creases more slowly. 

Along the energy axis in this figure we have marked off 
the experimental conduction-band energies at the various 
solvent densities.4*45 At the lowest solvent density the ex- 
perimental conduction-band energy lies close to the bottom 
of the density of states. As the solvent density is increased, 
however, the conduction-band energy moves higher up 
into the broad low-energy tail of the density of states, well 
separated from the ground-state energy. 

In Fig. 7 we compare densities of states for fluid sam- 
ples which have been equilibrated in the presence of the 
electron and those for neat fluid samples at solvent densi- 
ties of p*=OS and p*=O.3. The main difference between 
the equilibrated and neat densities of states at p*=O.5 is 
the presence of a distinct ground-state band associated 
with s-like states in large equilibrated solvent cavities, sep- 
arated from the excited-state band by about 0.2 eV. The 
low-energy tail of the excited-state band of the equilibrated 
fluid density of states and the neat fluid band edge start at 
very similar energies. The value of the state density for the 
equilibrated fluid in the region of the low-energy tail, how- 
ever, lies above that of the neat fluid due to increased state 
density associated with the p-like states supported by the 
larger equilibrated solvent cavity. These differences be- 
tween equilibrated and neat fluid samples are less pro- 
nounced at the lower solvent density. 

In fluid helium we generally see states which are local- 
ized on the length scales of our simulation cells with per- 
haps the exception of the lowest solvent density p* =O.l. 
Space and Coker32 have studied the density of states in 
fluid argon and xenon where, as we shall see in the next 
section, the states are highly extended on the length scales 
of a simulation cell. They find that the densities of states 
become strongly spiked at various solvent densities as a 
result of box quantization. Due to the use of periodic 
boundary conditions, the calculated excess electronic state 
energies cluster in bands giving rise to the spikey density of 
states when the states are extended on the length scale of 
the simulation cell. We clearly see no evidence of this sig- 
nature of extended states in our densities of states in he- 
lium at p*=O.3 and OS. At p*=O.l, however, we do see 
reproduceable spikes at higher energies in the density of 
states indicating the onset of extended excited states at this 
low density. 

This raises questions concerning the validity of simple 
Wigner-Seitz-like models to describe the onset of conduc- 
tion in fluids such as helium7P’018 at higher solvent densities. 
This model assumes that the solvent is composed of a reg- 

ular array of scatterers, one occupying each Wigner-Seitz 
sphere. This regular array will support extended conduct- 
ing states and by assuming that the wave function is, on 
average, radially symmetric around each solvent atom, the 
energy of the lowest state can be obtained by applying the 
boundary conditions that the wave function must vanish at 
the core of each solvent atom and that its slope should be 
zero at the edge of the WignerSeitz sphere. Clearly, this 
model says nothing of the disorder of the solvent which is 
ultimately responsible for the fact that the states in dense 
fluid helium are not extended. This model may provide a 
reasonable description of the situation in the low-density 
.fluid where we see the signature of “macroscopically” ex- 
tended states. 

At p* =O. 1 we present densities of states for two tem- 
peratures T=50 K and 309 K, which reveals a negligible 
temperature dependence. Tests at higher density indicate 
similar insensitivity to temperature in the electron-helium 
system. 

B. Xenon 

In Fig. 8 we present the calculated ground-state ener- 
gies of the excess electron as a function of density in fluid 
xenon. We have performed calculations both on the liquid- 
vapor coexistence curve where the experiments were per- 
formed, and on the 309 K isotherm. The ground-state en- 
ergy results for these different slices through the phase 
diagram are indistinguishable. Figure 8(a) compares the 
ground-state energies for the density-dependent mean-field 
many-body polarization potentials for xenon presented in 
Sec. III with the experimental V. results.’ Results obtained 
with the density-independent two-body potentials are pre- 
sented in Fig. 8(b) to indicate the importance of many- 
body polarization effects. 

Despite the dramatic differences between the pseudo- 
potential fit to phase shifts and the Thirumalai pseudopo- 
tential (see Fig. 5), we see that both potentials give very 
similar ground-state energies; the two sets of values ob- 
tained with the density-dependent self-consistent polariza- 
tion forms are always within a few percent of one another 
up to high fluid densities (p*- 1.0). The two curves ob- 
tained when the many-body polarization effects are ignored 
agree up to p*- 1.0, but at higher densities we see consid- 
erable deviations due to differences in the short-range re- 
pulsive parts of these potentials. Nevertheless, the rela- 
tively subtle differences between the different self- 
consistent polarization potentials for a given potential form 
have a profound effect on the ground-state energy curves. 
We see that when the many-body polarization effects are 
ignored the ground-state energy does not show an upturn 
until extremely high, unphysical densities (for the Thiru- 
malai potential the ground-state energy still has not turned 
up by p*=3.0). We have calculated the ground-state en- 
ergies at these very high solvent densities for both glassy 
and crystalline states and find very little difference. When 
many-body polarization is ignored the ground-state energy 
obtained with the fitted potential has its minimum at about 
twice the density where the experimental V. values begin 
to upturn. However, when many-body effects are incorpo- 
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rated through self-consistent mean-field theory, the calcu- 
lated ground-state energies show similar qualitative density 
dependence to the experimental V. values with the mini- 
mum density in comparatively close agreement with the 
experimental results [see Fig. 8(a)]. The calculated 
ground-state energy curves for both the fit potential and 
Thirumalai pseudopotentials (including the mean-field 
corrections) have a shallower density dependence and min- 
ima at slightly higher densities than the experimental 
conduction-band energy curve. 

In Fig. 8(c) we also present the breakup of the total 
energy into potential and kinetic components computed 
using the fit potential. Results for both the bare pair form 
and mean-field many-body polarization potentials are pre- 
sented. Interestingly, we find that the kinetic-energy curves 
for both the pair and many-body polarization potentials 
are in very close agreement and that the differences in the 
density dependence of the total energy result primarily 
from differences in the average potential energy. The up- 
turn in the total energy obtained with the mean-field many- 
body polarization potential occurs at a density in close 
agreement with experimental V. values. The minimum oc- 
curs because the average potential energy levels off at high 
density, while the kinetic contribution continues to in- 
crease. For the bare pair potential we see that the average 
potential energy continues to decrease across the entire 
range of densities, even into the dense solid regime. Only at 
very high unphysical densities, where kinetic energy in- 
creases more rapidly than the potential decreases do we see 
a slight upturn with the bare pair potential form. The rea- 
son that the density dependence of the average kinetic en- 
ergy is so similar for both the pair and mean-field many- 
body polarization potentials is probably due to the fact that 
the repulsive walls of the pair and density-dependent po- 
tentials are very similar [see Fig. 5(b)]. This means that 
the potentials have the same size cores, giving rise to about 
the same excluded volume and thus about the same kinetic 
energy. 

1:: 
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FIG. 8. Excess electronic energies in xenon. (a) Diamonds are experi- 
mental Vc values (Ref. 1). Calculated ground-state energies obtained 
with mean-field many-body polarization potentials are given. Solid circles 
denote ground-state energies for the Thirumalai potential, and open cir- 
cles denote results for the fitted potential form. (b) Diamonds are exper- 
imental V. values. The solid curve is the ground-state energy calculated 
using the mean-field many-body polarization potential (fitted form). 
Other curves are ground-state energy results obtained when the bare pair 
potentials are used, ignoring many-body polarization, Solid circles denote 
results with the bare fitted potential and open circles denote results ob- 
tained with the Thirumalai form. (c) Kinetic- and potential-energy 
breakup using bare and mean-field many-body polarization potentials for 
the fitted form. Squares are the average potential energy, (crosses) are the 
kinetic energy, and (pluses) are the total energies obtained for the bare 
potential. The lowest curve is the average potential energy obtained with 
the mean-field many-body potentials and the highest curve gives the ki- 
netic energies obtained with these potentials. The middle curve is the total 
energy. 

In Fig. 9 we demonstrate that the agreement between 
the groupd-state energies calculated using the Thirumalai 
and fit potential forms is far from coincidental. Rather, the 
agreement results from the almost exact cancellation of 
very different potential- and kinetic-energy contributions 
for the two different forms of the pseudopotential. From 
Fig. 5 we see that the fit potential is considerably deeper 
than the Thirumalai form. Thus from Fig. 9 where we 
present the breakup of the energies computed using the 
density-dependent pseudopotential, the average potential 
energy obtained using the fitted form is considerably more 
negative than that obtained with the Thirumalai form. The 
kinetic energy obtained with the fitted potential, however, 
is very much more positive than that found with the Thir- 
umalai form. This is due to the fact that the harsh repulsive 
core of the fitted form is significantly larger than that of the 
Thirumalai form (see Fig. 5), so the “free volume” avail- 
able to the electron in the fluid is much reduced when the 
fitted potential is used. Because the electron is confined in 
a smaller region of space, its ground-state wave function 
will vary more rapidly and gives it a  larger kinetic energy. 
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FIG. 9. Influence of the choice of pseudopotential on breakup of total 
ground-state energy into potential and kinetic components for electrons in 
xenon. Interactions represented using self-consistent mean-field density- 
dependent pair pseudopotentials. The two curves close to experimental 
values (diamonds) are the same total ground-state energies displayed in 
Fig. 8 (a). Curves above zero are kinetic energies obtained with the Thir- 
umalai potential (dash-dotted), and the fitted potential (short-dashed). 
The curves below the total-energy results are the electronic ground-state 
potential-energy values obtained with the Thirumalai (short-dashed- 
short-dashed) and the fitted potential values (dotted). 

In Fig. 10(a) we present three-dimensional contour 
isosurfaces of the ground-state electron density. The con- 
tours correspond to the surfaces on which the electron 
density is roughly 50% of its maximum value. The wave 
functions were obtained using the mean-field many-body 
polarization and the potential fit to the phase shifts, but 
very similar contour surfaces are found when the Thiru- 
malai pseudopotential is used. At lower solvent densities, 
p*<O.3 or 0.5, we see that the 50% contour of the ground- 
state electron density is confined to a small region of space 
and does not extend over our simulation box. The regions 
in which the electron density becomes concentrated corre- 
spond to solvent density fluctuations in which many atoms 
pack close enough that the attractive wells of the eiectron- 
atom pseudopotential overlap. In the lower-density parts of 
the fluid outside these regions, the attractive wells of the 
solvent atoms are further apart and do not overlap effec- 
tively. In terms of the lakes-to-oceans percolation ideas of 
Coker, Thirumalai, and Beme and Stratt and co- 
workers,22 we would call these states lakelike states. 

As the solvent density is increased we see that the 
regions of fluid where the attractive wells overlap begin to 
spread throughout our fluid sample. Thus, at a reduced 
density of p*=O.7 in xenon, we see that the ground-state 
electron density is almost uniformly distributed through- 
out our experimental fluid sample in a highly percolative 
oceanlike state. 

As the density is increased beyond this point, the vol- 
ume occupied by the repulsive cores of the electron-solvent 
pseudopotential begins to become more important than the 
volume occupied by the overlapping potential wells. The 

repulsive cores thus begin blocking off the formerly open 
channels through which the electron density once freely 
percolated. This causes the ground-state electron density to 
become fragmented. Here, we expect to observe states in- 
volving small lakes of electron density which may be con- 
nected by rivers. We see such states at the solvent densities 
of p*=O.9 and 1.0 for example. 

It should be noted that because we do all our calcula- 
tions at the different densities with the same fixed number 
of particles (i.e.; 864) the size of our simulation box 
shrinks as we increase the density. Consequently, the 
length scales of the images displayed in Fig. 10(a) are all 
different. For example, the length scale of the image at 
p*=O.3 is actually about 1.5 times larger than that at p* 
= 1.0. These scale changes do not negate our comments 
concerning the variation of the spatial extent of the 
ground-state electron density with solvent density. If we 
look at a portion of the p* =0.3 image containing the elec- 
tron and about 2/3 the size of the full simulation cell, the 
resulting section of this image will be about the same phys- 
ical dimension as the entire image displayed at p*=O.7. 
We see that this portion of the p* =0.3 image will still have 
large void regions surrounding the more localized electron 
density in contrast to the almost uniform distribution of 
electron density throughout the entire image at p*=O.7. 
These scale changes in fact make our statements concem- 
ing the fragmentation of the electron density at high sol- 
vent densities even stronger for we are actually focusing on 
smaller regions of space. We see that the electron density 
becomes separated into many small regions which may or 
may not be connected by narrow riverlike passages 
through the fluid. Also, we have validated these results in 
studies on systems of 2048 particles and found good agree- 
ment. 

To quantify the qualitative trends which we have ob- 
served in the three-dimensional (3D) contour surfaces of 
the electron density we consider the root-mean-square de- 
viation from uniform electron density. If our system con- 
sisted of N atomic cores of radius a into which the electron 
density could not penetrate, the free volume available to 
the electron density would be V, = L3 - (4/3) m3N, where 
L is the side length of our simulation cell. If the electron 
density were spread uniformly throughout this free region, 
its value at all points outside the cores would be pF 
= l/V,. We define our normalized root-mean-square devi- 
ation from uniform density as 

x=+ c (pr-pF)2 
1 

l/2 
, 

i 1 (4.1) 

where the sum extends over all points on our grid which 
are not in the regions of the cores and pT are the values of 
the electron density at these grid points. We use a value of 
a=0.29a for the core radius in our calculations on xenon6 
though the results are insensitive for any reasonable choice 
of this parameter. Smaller values of x are indicative of 
states with more uniform electron density, while more lo- 
calized states are characterized by larger x values. 

Figure 11 shows the density dependence of x in xenon 
for various system sizes. The general trend we see is that at 
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FIG. 10. (a) game as Fig. 6(b) except configurations of the electron-unperturbed fluid xenon system are displayed here. (b) Experimental Ve values 
(solid circles) and calculated ground-state energy values in xenon (density-dependent mean-field polarization potential, solid curve). Full many-body 
polarization results are presented as the triangles with the dotted curve. (c) Experimental zero-field mobility results (Refs. 46 and 47). 

low solvent density x is large, it goes through a minimum 
at the density where the experimental Va and p. results 
have their extreme values, then it increases again at higher 
solvent densities. This behavior becomes more pronounced 
as the system size is increased. These trends in x are com- 
pletely consistent with our qualitative understanding of the 
3D contour surfaces of the electron density discussed 
above. At low solvent densities the ground-state electron 
density is more localized, giving large values of x associ- 
ated with the considerable deviations from uniform elec- 
tron density. Around the density where Vo, Eo, and p. are 
extreme, the ground-state electron density is more uni- 
formly spread throughout our fluid sample and x reaches 
its minimum value. At higher densities x increases again 
corresponding to the departure from uniform electron den- 
sity associated with the breaking up of the electron density 
due to the growing importance of the electron interactions 
with the solvent atom cores. 

Space and Coker32 show that if the electron is localized 
at a particular solvent density, the rms deviation measure 
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FIG. 11. Density dependence of the root-mean-square deviation from 
uniform electron density in fluid xenon. Diamonds denote the N=256 
particle system, pluses denote N= 864, and squares denote N=2048. 
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should increase like N”2 as the number of particles in the 
system N becomes large. If the electron is delocalized, on 
the other hand, the rms deviation from uniformity will be 
independent of the number of particles in the system. 

self-consistent many-body results is quite good. At higher 
solvent densities the full self-consistent many-body results 
lie about 8%-10% below the mean-field values while at 
lower solvent densities they are in excellent agreement. 

We see that at low solvent densities the values of x are 
very strongly system size dependent. As the density is in- 
creased, however, the values of x for different system sizes 
all converge around the density where V. and p. have their 
extreme values. Above this density the x values are re- 
markably insensitive to system size and increase steadily as 
we approach the solid. This system size dependence results 
because at low densities the electron becomes localized on 
density fluctuations in the fluid. The density fluctuations 
on which the electron localizes may be comparable in size 
to the actual system when small systems are considered. As 
such, the importance of the regions devoid of electron den- 
sity will be underestimated for these small systems and our 
rms deviation measure of localization will give small values 
as it is unable to sense the localization since the electron 
looks delocalized on the small system length scale. As the 
system size is increased, however, and the density fluctua- 
tions on which the electron localizes become a smaller frac- 
tion of the system volume, the rms deviation measure will 
see the regions devoid of electron density and thus sense 
the nonuniformity of the charge distribution. When we 
reach the threshold density where the rms deviation mea- 
sure becomes independent of system size the ground-state 
electron density is even delocalized over the largest system 
sizes we consider. Space and Coker have studied larger 
systems ( - l@ particles) and these findings persist. 

Even with the use of an accurate repulsive local 
pseudopotential and full self-consistent many-body treat- 
ment of dipole polarizability interactions we see from Fig. 
10(b) that over the intermediate density regime where 
V. has its minimum our calculated ground-state energies 
are inconsistent with experimental V. values since they lie 
above these results and should provide a rigorous lower 
bound. The two most likely causes for this inconsistency 
are as follows: 

( 1) Approximating the nonlocal exchange and orthog- 
onality terms appearing in the repulsive part of the pseudo- 
potential with a fitted local form. This local approximation 
may not have the flexibility to describe the short-range 
nonlocal repulsive interactions. 

(2) In our treatment of the many-body polarization we 
ignore interactions between induced higher-order multi- 
pole moments, truncating at induced dipolar terms. With a 
species as strongly polarizable as xenon it is likely that 
induced quadrupolar interactions and higher induced mo- 
ments could be appreciable. 

In Figs. 10(b) and 10(c) we present our calculated 
ground-state energies and the experimental V. results as 
functions of density, together with experimental results for 
the density dependence of the electron mobility in xe- 
non.46747 We see that there is a strong correlation between 
the density at which the mobility has its pronounced max- 
imum and the minimum in Vo. This is also the same den- 
sity at which our calculated ground-state electron density 
becomes uniformly spread throughout our fluid sample. It 
seems that when the ground state becomes uniformly 
spread throughout our fluid sample the electron mobility is 
high. When the wave function becomes spatially frag- 
mented as we see at low and, to a lesser extent, at high 
densities the electron mobility is low. Our rms deviation 
from uniform electron density is an order parameter which 
seems to qualitatively track with the density dependence of 
the mobility. Similar types of ideas have been discussed by 
Coker, Thirumalai, and Beme and have been formalized 
recently in the lakes-to-oceans percolation model devel- 
oped by Stratt and co-workers.22 

In gauging the magnitude of the two effects it should 
be noted that the neglect of the higher-order polarizabil- 
ities is to some extent compensated by the fact that the 
phase shifts are fit using this assumption. Nonlocal effects 
are simply assumed to be absent, i.e., I=0 effects are dom- 
inant. In addition, we have assumed that the repulsive part 
of the pseudopotential remains unchanged from the gas 
phase (even a nonlocal potential would be fit to gas-phase 
data). Perhaps for highly polarizable atoms the transfer- 
ability assumption breaks down slightly. 

C. Argon 

To test the accuracy of the density-dependent, mean- 
field, pair potential description of the many-body polariza- 
tion interactions we have used the full solution of the sys- 
tem of self-consistent dipolar field equations in Eq. (3.2) to 
compute the many-body interaction potential which we use 
in our ground-state energy calculations. These ground- 
state energy results are compared with the mean-field re- 
sults in Fig. 10(b). We see that across the whole range of 
densities the agreement between the mean-field and full 

Our ground-state energy results for the electron-argon 
system are presented in Fig. 12(b). Again, we see that 
when many-body polarization effects are ignored the cal- 
culated ground-state energy values do not show a mini- 
mum as a function of density until extremely high, unphys- 
ical solvent densities. When many-body polarization effects 
are included using the mean-field pair potential we see that 
the calculated ground-state energies show a minimum at 
the appropriate density. Also, in contrast to the behavior 
found in xenon, the ground-state energies in argon are 
brought into excellent agreement with experiment.2 We 
have checked the calculated ground-state energy obtained 
with the mean-field pair potential against the results ob- 
tained with the full many-body treatment at p*=O.5 and 
find that the agreement is quite good. 

The almost quantitative agreement between the exper- 
imental conduction-band energies and our calculated 
ground-state energies is distinct from xenon where we ob- 
served some differences. This can be attributed to two fac- 
tors: Since argon is both smaller and less polarizable than 
xenon, the effect of both nonlocal corrections and higher- 
order polarizabilities is diminished. In addition, the V. 
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FIG. 12. (a) Same as Fig. 6(b) except configurations of the electron-unperturbed fluid argon system are displayed here. (b) Experimental V. values 
(diamonds) and calculated ground-state energy values in argon (density-dependent mean-field polarization potential, open circles). Triangles denote the 
ground-state energy computed using the bare pair potential. Solid circles denote the ground-state energy for a full many-body polarization calculation. 
(c) Experimental zero-field mobility results (Ref. 48). 

curve in xenon showed a sharper density dependence than 
that of argon. Only around the minimum in V. do we see 
oceanlike states in xenon. The results described above for 
argon suggest that as V. must be an upper bound to the 
ground-state energy, the ground state in argon is percola- 
tive or close to percolative across a large range of fluid 
densities. 

The 50% isosurfaces of electronic density in various 
representative fluid configurations at different densities in 
argon are presented in Fig. 12(a). We see that in argon the 
50% isosurfaces are always fairly delocalized across our 
fluid sample over the entire range of fluid densities in 
agreement with the above conjectures. The general density 
dependence of the isosurfaces is similar to that observed in 
xenon. At low densities there are sizable regions devoid of 
electron density, at intermediate density (p*=O.S for ar- 
gon) the electron density becomes uniformly spread 
throughout our fluid sample, and at high solvent density 
we see that the electron density becomes fragmented as 
channels are closed off by the repulsive solvent cores. Re- 
markably, just as we observed in xenon, the most delocal- 

ized electronic wave functions occur at the minimum in 
V. and the mobility maximum p* -0.5 [see Figs. 12(b) 
and 12(c)]. We again emphasize that the main difference 
between the isosurfaces in argon and those presented in 
Fig. 10(a) for xenon is that the states in argon are much 
more delocalized at low solvent density. Away from the 
region of the minimum in V. or maximum mobility the 
isosurfaces have more holes in them but they still extend 
over the entire system in contrast to the situation in low- 
density xenon. 

The differences in the density dependence of the elec- 
tronic ground state between argon and xenon discussed 
above are underscored by the experimental mobility val- 
ues4U8 which we reproduce in Fig. 13. Here we see that 
the mobility in xenon, despite its very large value at inter- 
mediate fluid densities, is very small below solvent densities 
of p* -0.3. In argon, on the other hand, we see that the 
mobility is quite sizable across the entire range of solvent 
densities consistent with the notion of a percolative ground 
state persisting throughout the fluid density regime. 
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FIG. 13. Experimental zero-field electron mobility results in liquid argon 
(open circles) and xenon (solid circles). 

V. CONCLUSION 

The central theme of this paper has been the impor- 
tance of many-body polarization interactions for the accu- 
rate description of excess electrons in fluids of highly po- 
larizable molecules. The most dramatic evidence for the 
considerable significance of these interactions in determin- 
ing excess electronic properties in these types of systems 
was presented in Fig. 8(b), where we showed our calcu- 
lated ground-state energies in xenon across a very broad 
range of densities extending from the low-density fluid out 
to the very-high-density solid. We see that when the many- 
body induced-dipole polarization interactions are included 
through the use of the density-dependent mean-field pair 
potential the ground-state energies show a sharp minimum 
in the dense fluid and rise very steeply as solid densities are 
approached. This behavior is in very good qualitative 
agreement with the density dependence of the experimental 
conduction-band energies. When the many-body polariza- 
tion interaction is ignored and the bare pair potential is 
used the calculated ground-state energies continue to de- 
crease with increasing solvent density throughout the liq- 
uid and well into the highly compressed solid regime of 
densities. We see that, depending on the pseudopotential 
employed, the ground-state energy obtained with the bare 
pseudopotential may turn up at highly unphysical solvent 
densities at least 2-3 times that observed experimentally. 

The ground-state energies obtained with the bare pair 
potential do not show even the vague qualitative trends 
with density that are observed in the experimental Ve val- 
ues or in the ground-state energies calculated with many- 
body polarization. It therefore seems unlikely that any the- 
ory of electrons in condensed polarizable media which 
ignores the many-body nature of interactions can provide 
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physically reliable results. This brings into question the 
recent work of Stratt and co-workers in which they use a 
semiclassical percolation approach to estimate conduction- 
band energies in rare-gas fluids. The key feature of the 
theory developed by these authors is a pair potential com- 
ponent which represents the local kinetic energy of the 
electron in the fluid. They obtain a form for this kinetic 
pair potential by using a Jastrow form for the electronic 
wave function which is a pair product of hard-sphere scat- 
tering wave functions. This approximation should be quite 
good as the variational functions used in our diffusion 
Monte Carlo calculations were of this form and gave a very 
good description of the states. However, the results of the 
theory are very sensitive to the choice of the distance of 
closest approach between the electron and the hard-sphere 
scatterer. For this distance of closest approach in their 
Jastrow factor, Stratt and co-workers take the zero of the 
electron solvent pseudopotential. In this work they use the 
bare pair potential due to Siska which gives this distance of 
closest approach parameter as 1.786 A in xenon. Stratt 
makes no attempt to optimize this choice of parameter 
value. Interestingly, we have calculated the ground-state 
energy for the pair Siska potential and the Siska potential 
with the many-body polarization term and have found that 
again with the pair potential Ee is monotonically decreas- 
ing over the whole fluid range of densities, whereas for the 
many-body case, E,, has a minimum at around p* =0.7, but 
this value is much higher than either the experimental Vc 
result or the Ee values obtained with the Thirumalai or 
fitted potentials including many-body polarization. 

Laria and Chandler parametrized their RISM-polaron 
theory for electrons in xenon in terms of an identical dis- 
tance of closest approach parameter. This parameter enters 
the two theories in different ways but its interpretation is 
the same. Laria and Chandler found a consistent way to fit 
their distance of closest approach so that the theory gave 
results in reasonable agreement with simulation results of 
Coker, Thirumalai, and Berne3 in both helium and xenon. 
These early simulation calculations used the bare pair po- 
larization potential of Thirumalai. The value Laria and 
Chandler found for the closest approach distance for the 
electron in xenon was 1.176 A, i.e., about 30% smaller 
than the value Stratt uses in his theory. In Fig. 6 of their 
paper, Stratt and co-workers report that reducing the dis- 
tance of closest approach value by as little as only 5% from 
their 1.786 A value causes the minimum of their calculated 
Vc values to drop from -0.68 eV to -0.9 eV and the 
position of this minimum shifts out in density from p* 
=0.8 to p*=O.867. A reduction of 30% in the distance of 
closest approach to be consistent with the Laria-Chandler 
value would probably shift the minimum in the calculated 
Va curve considerably further out in density and down in 
energy, and considering the neglect of many-body polar- 
ization in these theoretical results these sorts of shifts may 
bring their calculated conduction-band energies into con- 
sistency with the ground-state energy results we present in 
Fig. 8(b) when the many-body polarization interactions 
are ignored. 

We are thus left to surmise that the agreement between 
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FIG. 14. Comparison of Hsu and Chandler’s fitted Yukawa excess elec- 
tron pseudopotentials for argon (solid circles) and xenon (open circles) 
with our fitted potentials for argon (solid curve) and xenon (stars). 

experiment and Stratt’s theoretical results for the density 
dependence arises fortuitously. The curvature in Va prob- 
ably arises from an overestimation of the kinetic energy 
rather than from a leveling off of the average potential 
energy. It would be very interesting to see how Stratt’s 
lakes-to-oceans percolation theory performed using a real- 
istic parametrization together with the density-dependent 
mean-field potentials to treat the many-body nature of the 
induced polarization interaction. 

Recently, Hsu and Chandler*’ analytically continued 
the RISM polaron theory and calculated the mobility of 
excess electrons in argon and xenon. They used a hard- 
sphere model for the solvent-solvent interactions and a 
hard sphere with an attractive Yukawa tail beyond the 
distance of closest approach. They found that by adjusting 
the potential parameters, i.e., controlling the relative im- 
portance of the attractive and repulsive components of the 
electron-solvent pseudopotential they could obtain a max- 
imum in the electron mobility as a function of solvent den- 
sity. They were able to obtain a reasonable fit to the peak 
position with a single density-independent pair electron- 
solvent pseudopotential which included no explicit many- 
body treatment of the induced polarization interaction. 

In Fig. 14 we compare the Yukawa forms which Hsu 
and Chandler obtained by fitting to the mobility data in 
both argon and xenon with pseudopotentials which we 
have used in our calculations. Because of the nonunique- 
ness of the pseudopotential description of the electron- 
solvent interactions we cannot easily compare pseudopo- 
tentials for different systems unless they are best fits with 

the same functional form. Our best-fit pseudopotentials 
which reproduce available gas-phase scattering data are the 
fitted potentials which, as discussed in Sec. III, have the 
same form for the repulsive core and long-range attraction 
in both argon and xenon, but the polarization switching 
functions are different. The general trend observed for our 
accurate pseudopotentials as we increase the polarizability 
of the target atom (going from argon to xenon) is that the 
core gets larger and the attraction gets stronger, resulting 
in a deeper well. If identical attractive potential forms were 
used (i.e., if we used the same switching function form in 
argon and xenon) this trend of deeper wells with larger 
polarizability would be even more pronounced as evi- 
denced by the potentials presented by Siska (see Fig. 2 of 
Ref. 49). The physical reasons for these trends are clear: 
The heavier xenon atom has a larger core than argon and 
the resulting larger polarizability of xenon can lead to 
larger attractive interactions. 

From Fig. 14 we see that the forms obtained by Hsu 
and Chandler by fitting their theoretical results to experi- 
mental mobility data do not show the trends expected 
when a fixed form of pseudopotential is used to represent 
electron-atom interactions in argon and xenon. We see 
that the core size they find does show the correct trend; 
increasing as we go from argon to xenon, but the attractive 
components of the interactions obtained from Hsu and 
Chandler’s fit of their theory to experiment are completely 
unphysical. They find that the attractions in the more po- 
larizable xenon system are much smaller than in argon, 
resulting in the highly implausible finding that the pseudo- 
potential well depth in xenon is between 6 and 7 times 
shallower than that in argon. Apparently, the experimental 
mobility data in xenon can also be fit with a more physi- 
cally reasonable parametrization of the Yukawa tail 
pseudopotential which is deeper than that for argon.50 

Hsu and Chandler also calculated the mean electronic 
energy as a function of solvent density using their fitted 
models in both argon and xenon and found that this ther- 
mally averaged energy decreased with increasing solvent 
density across the entire range of liquid densities they con- 
sidered. Admittedly, the mean electronic energy is not the 
conduction-band energy which experimentally shows a 
minimum and upturn as a function of increasing solvent 
density over this range but as the density dependence of the 
excited-state energies track that of the ground-state ener- 
gies3* the canonically averaged energy should show similar 
trends. In early path-integral studies of the mean energy of 
excess electrons in xenon, Coker and Berne” explicitly 
treated the many-body polarization interactions and found 
evidence for a slight upturn in the thermally averaged elec- 
tronic energy. Recently, similar calculations have been re- 
peated in argon by Lopez-Castillo et aZ.,‘* who used a sim- 
ilar mean-field many-body polarization potential together 
with large system sizes, many more path-integral beads, 
and very long runs. The results of their detailed studies 
indicate that the mean excess electronic energy in argon 
goes through a minimum and follows the density depen- 
dence of the experimental V. values very closely. The fact 
that Hsu and Chandler’s density-independent potentials, 
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which are fit to give the experimental mobilities, fail to 
reproduce any other experimental property is consistent 
with the inadequacy of a density-independent pair poten- 
tial description of the interactions in these highly polariz- 
able fluids. 

Nichols and Chandler” used RISM-polaron theory to 
study an electron in a fluid composed of hard spheres with 
embedded Drude oscillators to model an electron in a po- 
larizable fluid. This model should include most of the ef- 
fects which we have found to be important in determining 
properties such as the density dependence of the ground- 
state energy. With this model it would be unnecessary to fit 
the theory to experiment as Hsu and Chandler have had to 
do with their pair potential form. In principle, one could 
simply repeat our approach and fit the short-range parts of 
the potential (the hard-sphere radius and polarization 
switching function in their model) and fix the parameters 
of the Drude oscillator part of the potential assuming a 
high-frequency polarization response using the correct po- 
la&ability to give the gas-phase scattering results. We be- 
lieve that parametrizing the approach of Nichols and 
Chandler in this way would not only give equilibrium re- 
sults in good agreement with experiment but also possibly 
resonable dynamical properties. Nichols and Chandler 
used a parametrization of their potential which was not 
close to values expected for realistic systems and as such 
they did not see mobility maxima but did find an upturn in 
the excess electron energy as a function of density. 

the electron density, are more attractive than the surround- 
ing lower-density regions. At intermediate solvent densities 
the atoms are positioned in such a way to give overlapping 
potential wells forming a connected arrangement of chan- 
nels. Under these conditions all regions of the fluid offer a 
similar average potential when integrated over the spatial 
extent of the electron. There is thus no preference for the 
electron to localize in any one region in the fluid compared 
to any other region. At higher solvent densities the repul- 
sive wall of the electron-solvent interaction becomes more 
important, associated with our channels becoming closed 
off. In the condensed-phase Ramsauer-Townsend interpre- 
tation this corresponds to there being a net repulsive inter- 
action upon integrating over the volume occupied by the 
electron. 
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APPENDIX: EXPECTATION VALUES IN DIFFUSION 
MONTE CARLO 

In the Appendix, we derive Eq. (2.2). Define u(r) 

= qo(r) - &(r) where tie(r) is the normalized ground- 
state wave function and &-( r)js the normalized trial wave 
function. For any observable A, 

We suggest that our channel or percolation model is 
entirely consistent with this Ramsauer-Townsend inter- 
pretation. At low solvent densities our channel model clus- 
ters give regions of the fluid which, when integrated over 

s 
u(r)2u(r)d3r= $o(r)A^J(r)d3r 

s 

-2 
s 

$0(rGh-(r)d3r 

+ $7-(r)2&-(r)d3r. 
J. 

(AlI 

The first term on the right-hgnd side of the above equation 
is the expectation value of A in the ground state and the 
third term is the expectation value in the trial state which 
is given. Since we are sampling the importance function 
f. = qo& in DMC, it is useful to rewrite the expectation 
value given in Eq. (Al ) in terms of fo( r). The second term 
in Eq. (Al) can be expressed as 
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fc(r) is an unnormalized distribution function and we de- 
fine averages over it as 

Sfo(r) [ .*.]d3r 
([-lbQ= J-fo(r)d3r . (A3) 

These averages are evaluated by direct sampling in DMC. 
This allows us to write the right-hand side of Eq. (A2) in 
terms of ([***I)/, as 

$dr)A^tFIdr)d3r= (g), s fo(r)d3r. (A4) 

Now since u2 = I& + $$ - 2f,, it follows that 

s 

1 
fo(r)d3r= 1-z 

s 
u2(r)d3r. (A51 

Substitution of Eqs. (A4) and (A5) into t&e second term 
of, Eq. (Al), expressing JtjT(r)A$+(r)d3r as 
Wk7-(r>W-(r>)~r~r~ and followed by rearrangement gives 

I $0(r)$0(r>d3r 

=2(A%)io(r)- (g, &(‘) 
+ J uCr)[a^- (A$)foc~j]u(r)d3r. (A6) 
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