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An algorithm based on allowing the form of the intermolecular potential to fluctuate is 
introduced into molecular dynamics and Monte Carlo simulations. It is shown that this method 
accelerates the approach to equilibrium in frustrated systems. It provides a very useful method 
for determining all of the local minima in complex systems. Examples are mixing in dense binary 
liquids and folding of long polymer chains. When this method is combined with umbrella 
sampling techniques it accelerates the simulations of a wide class of chemically important 
systems. 

I. INTRODUCTION 

Consider the case of a dense binary liquid. If the initial 
state of the system is such that one component occupies the 
top half and the other the bottom half of the container it 
takes a very long time for the system to mix. In order to 
mix particles must find channels for bypassing each other 
and if the repulsive forces are strong enough there will be 
very large energy barriers that must be crossed. Very long 
Monte Carlo or Molecular dynamics simulations would be 
required to equilibrate such a system. 

Consider the case of a long n-alkane chain. In order to 
fold, such a chain must execute a walk in which the me- 
thylene groups separated by four or more C-C bonds must 
avoid each other because of their strong steric repulsions. 
In the folding process it is easy for a very long chain to fold 
into a frustrated configuration, one from which it is diffi- 
cult for the system to fold further. The chain may then 
appear to be “glassy.” In such cases the folding process can 
be very slow. Moreover, it is difficult to enumerate all of 
the local energy minima for a very long chain. 

These two systems are paradigms for many important 
problems in computational chemistry. It is important to 
design algorithms that can accelerate the mixing and fold- 
ing processes. In this note we investigate two novel meth- 
ods for accelerating these processes. We call one of these 
methods the fluctuating sigma method. The basic gist of 
the method is to allow the Lennard-Jones diameters of the 
nonbonded interaction to fluctuate. We introduce a cost 
function for these fluctuations into the potential and we 
show how to use molecular dynamics or Monte Carlo 
methods to generate the configurations of this system. In 
molecular dynamics we introduce a fictitious kinetic en- 
ergy for the sigma fluctuations and we use extended La- 
grangian methods to generate the motion in which the 
atomic centers move and the diameters fluctuate. In Monte 
Carlo we sample both new positions and new diameters 
and accept or reject the moves using the usual Metropolis 
method (a more sophisticated version like variable step 
size Monte Carlo can also be used). The other method we 
call the fluctuating potential method. The basic gist of this 
method is to allow the torsion angle potentials in chain 
molecules to fluctuate between two or more functional 
forms. In its simplest incarnation only two forms are used; 

one being the correct potential and the other being a form 
with the same relative minima but with greatly reduced 
barriers between gauche (G) and tram ( T) conformations. 
These methods lead to a rapid exploration of configuration 
space. Local energy minima, not accessible by the tradi- 
tional methods, are readily visited. In addition, by using 
umbrella sampling techniques, we can also generate aver- 
ages over the Boltzmann probabilities for the exact system. 

The methods are applied to paradigmatic problems in 
mixing and chain folding. It is demonstrated that the fluc- 
tuating potential method offers a very powerful alternative 
to standard methods. The methods outlined here are easily 
generalized and we expect that these ideas will lead to 
many new methods. 

II. THE POTENTIAL FLUCTUATION METHOD 

A. The sigma fluctuation method 

First we consider a fictitious dense liquid of N identical 
spheres interacting according to a Lennard-Jones (6-12) 
potential, 

vCCrijl,{~ij= (Uj+Oj)/2}) 

= ij4C[ (y)12-(g6], (2.1) 

where the individual atomic diameters, (ai) are allowed to 
fluctuate between ;lay and ~7 and where il is a positive 
constant smaller than unity, and cry is the usual Lennard- 
Jones (LJ) diameter of atom i. Here both the positions and 
diameters can vary and the instantaneous configurational 
state of the fluid is defined by the instantaneous positions 
and diameters (ri,oi). Sometimes it will prove useful to 
introduce an energy cost function for the diameters, 
F[(o,)], into Eq. (2.1). An example might be ~[(ai)] 
= 2: ,C( aj- 07)’ but many other choices are possible and 
in point of fact one can sometimes take F =O. 

If molecular dynamics is to be used to simulate this 
fictitious fluid we define a Hamiltonian, 
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N P” N ml4 
Hu= z, 2;;;+ c -+V[(ri>,(oi>l+F[(ai)l, i=l 2 

(2.2) 

N pf N mi$ Hw= z, 2;;;+ c -+ v{(ri)t[~i(Wi)lI. (2.7) 
j=l 2 

where ml is a fictitious mass associated with the fictitious 
sigma velocity iri. One can use either constant energy or 
constant temperature molecular dynamics. In the latter 
case Nose thermostats can be used. It might then be of 
advantage to thermostat the o’s at low temperature and the 
normal positions at the ambient temperature of interest. 

In Monte Carlo simulations reported here, a o move is 
made for every Y moves in the atomic coordinates and 
these moves are separately accepted using the Metropolis 
criterion. 

This Hamiltonian will generate dynamics in which the po- 
sitions and wfs fluctuate, but now the o’s will never get 
smaller than the defined minimum values and never larger 
than the maximum values. This gives more control. 

These procedures generate a very efficient walk in the 
enlarged configuration space ( rj ,ai). Umbrella sampling 
techniques can then be used to evaluate averages in the 
ensemble of fixed ds. It is easy to show that 

It is a simple matter to apply Monte Carlo or molec- 
ular dynamics to this model. In Monte Carlo one can re- 
move the cost function because the random variable can 
only vary between 0 and 1. One can make Y particle moves 
followed by a resampling of Wij. In the case of molecular 
dynamics the (Wij) are not restricted by anything but the 
cost function which confines them to be roughly in the 
range O<Wij< 1. 

B. The torsion angle potential fluctuation method 

where the subscript u” indicates an average in the fixed u 
ensemble, whereas the subscript Q indicates an average in 
the fluctuating sigma ensemble. 

The above model allows the o’s to vary continuously 
between ,%a: and a:. A better approach is to have the (T’S 
take on a set of distinct values and in the simplest case only 
two values with the largest value being the a: value. This 
avoids many of the pitfalls of the continuous approach. 

Let w be a random number, O<w<l, and let s(w) be a 
sigmoidal switching function that goes from 0 to 1 as w 
increases and is 0.5 at wo. Defining oi 

The above models can also be used for chain folding. 
The usual potential models for chain molecules are com- 
posed of dihedral angle terms and nonbonded interaction 
terms. We simply apply the fluctuating sigma model to the 
nonbonded potential terms. 

ai( [l-s(W~)]a~+s(w&$ (2.4) 

which now varies between the correct cry and a smaller 
ei” = il&. The potential function is then 

V{(ri),[CTi(Wi)]}= : 4E( [oi(w’)~~(w’)]‘z 
i>j I/ 

uiCwi) +"j(wj) ' 
- 

2rij II 
N + C Fi(Wi), (2.5) 

i=l 

In the chain folding problem, the dihedral angle po- 
tential plays an important role since the high potential 
energy barrier separating the tram and gauche conforma- 
tions restricts the rate of barrier crossing at room temper- 
ature and prevents the polymer chain from visiting many 
of the local potential minima efficiently during the simula- 
tion. A method which lets the dihedral angle potential fluc- 
tuate between the actual torsion angle potential and a po- 
tential with the same relative energy minima but with 
reduced energy barriers can be used. Let us consider the 
Ryckaert and Belleman dihedral angle potential,’ 

V,(f$) = c a~cos’-Q), (2.8) 
i=I 

where 4 is the dihedral angle which changes from - 180” to 
+ 180”, and there are three potential minima at (b = o”, 120”, 
and - 120”. These three potential minima correspond to 
the truns ( T), gauche+ (G+ ), and gauche- (G- ) conform- 
ers and are separated by the trans-gauche and gauche-cis 
potential barriers. The dihedral angle potential can be 
made to fluctuate in such a way as to increase the barrier 
crossing rate but not change the energy minima corre-4 
sponding to those conformations by taking, 

where F(wi) is a cost function for the random number. 
This can also be expressed as 

V(GJ) = 11 --s(w) 1 V,(4) +s(w) V,C$,, (2.9) 
where s(w) is the sigmoidal switching function as defined 
for the sigma fluctuations and the function V,(4) has 
lower potential barriers than V,(4), 

+F(wij), (2.6) 

where the first V on the right-hand side is the correct LJ 
potential and the second V is the LJ potential with a 
smaller aij, and where the F is a cost function for the 
random variable. 

In molecular dynamics one would now define an effec- 
tive Hamiltonian, 

Y,(m)=[A,co~~(~d)+(l-A~)]~o(~), (2.10) 

where O<A,<l, is the parameter which determines how 
much the potential barrier is reduced. Plots of these two 
potential functions, Vo(4) and V,(4) with A,=0.5, are 
shown in Fig. 1. This continuous potential form will be 
easier to implement in the molecular dynamics method 
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FIG. 1. Ryckaert and Belleman’s dihedral angle potential in Fq (2.8) 
(thin line) and the lower limit of our fluctuating dihedral angle potential 
as in Eq. (2.10) with A,,,=03 (thick line). 

where the potential derivatives is used. In Monte Carlo 
methods, more simplified potential forms can be used. 

111. THE MIXING OF FLUIDS 

Consider a dense LJ liquid in a periodic box of edge L 
with cubic symmetry. Let us arbitrarily define a variable gi 
that we associate with each particle i which is defined such 
that ci= + 1 if the z coordinate of particle i is in the upper 
half of the box O<Zi< L/2 and I= - 1 if i is in the lower 
half of the box - L/2 < Zi<O. If we define an order param- 
eter such that 

2 N/2 

!?A~)=, c &x0, (3.1) 

where the sum only goes over the N/2 atoms originally 
above the dividing plane. Initially g(O) = 1 but as atoms 
mix it will decay. At equilibrium 6 will fluctuate around 0. 
This order parameter gives us a good measure of the time 
it takes for the system to mix. 

Two Monte Carlo (MC) simulations are done at 
p*=O.9 and T*= 1.0 with 216 particles initially on a fee 
lattice. A rectangular periodic box was used in which the 
box length along the z direction is twice as large as along 
the x and y directions. Because of the periodic boundary 
condition in the z direction, there are two interfaces sepa- 
rating the <i= + 1 and - 1 particles. Particles moving 
through both interfaces contribute to the mixing. In the 
first simulation, the o’s are constant and in the second, all 
the a’s fluctuate together according to Eq. (2.4). The s(w) 
was chosen as a step function at wo, so that o fluctuates 
between only two values a0 and ati. No cost function, 
F[(ai)], is used in this Monte Carlo simulation and the 
probability of O,i, is determined only by wo. The MC step- 
size for (Ti) when o=o,.,,in is chosen larger than the step- 
size when a=~, because both are chosen to give an accep- 
tance rate of 0.5. The time dependence of the order 
parameter c(t) is computed with O,,=O.8Oao, wo=0.95, 
and Y= 100. The results are shown in Fig. 2. The fluctu- 
ating sigma method mixes the fluids almost three times as 
fast as the simulation with fixed o. 

In Fig. 3 the energy record of the total LJ potential 
energy with fixed a0 for the two simulations are presented. 

E(t) 

I I I I I 

20000 40000 60000 80000 100000 
t WC P-) 

FIG. 2. Instantaneous order parameter as a function of the number of 
MC passes. The upper curve is the result for a rigid sigma simulation. The 
lower curve is the result for the fluctuating sigma simulation at the same 
temperature and density for which 0,~,=0.8uc, wc=O.95, and v= 100. 

It should be noted that even in the fluctuating sigma 
method, we are plotting the potential energy corresponding 
to the rigid oe value v[( ri),(a~)]. Thus where (~=o,,,i~ in 
these runs, configurations will be generated in which there 
will be some overlaps of spheres of diameter a0 and for 
these configurations there will be a concomitantly large 
values of the potential energy based on a,. Thus the energy 
in the fluctuating sigma method varies between a high en- 
ergy band corresponding to the amin configurations and a 
low energy band corresponding to the a0 configurations. 
The high energy configurations will only have very small 
weighting in the umbrella sampling and will thus make an 
insignificant contribution to averages. Both methods are 
started at the same initial configuration on a fee lattice. 
The potential energy records in these two methods show 
that the fluctuating sigma method generates much faster 
melting than the rigid sigma method. As a further test the 
g(r) from both runs is presented in Fig. 4. The g(r) com- 
puted from the fluctuating sigma method using umbrella 
sampling given by Eq. (2.3) agrees so well with the g(r) 
computed using constant sigma Monte Carlo that no dif- 
ference can be observed in this figure. The fluctuating 
sigma method is thus capable of determining the correct 
pair correlation function. 

There are three parameters in the fluctuating sigma 
method as implemented above; namely, a,i, which deter- 
mines the minimum value in the sigma fluctuation, the 
constant w. which determines the probability of sampling 
a,i, in the simulation, and Y, the number of samplings of 
particle coordinates between resamplings of u. With 
smaller omi, and wc, the system has smaller repulsive po- 
tential radius and becomes dilute more frequently, thus 
allowing a faster mixing. But if Umin is too small, the system 
will need a certain number of passes to relax back to equi- 
librium structure after the u changes back to 0,. If there 
are too few relaxation passes, Y, the system will be in a 
nonsteady state and the umbrella sampling will give incor- 
rect results. Figure 5 shows the speed of mixing and g(r) 
for omi,=O.75Uc and Y= 1. The system mixes more than 
four times faster than the rigid sigma method, but the g(r) 
determined from umbrella sampling is now not correct. 
Some of the configurations with high potential energy still 
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FIG. 3. The total potential energy, v[(r,),(&], as a function of the 
number of MC passes. (a) The rigid sigma simulation potential energy 
(the system begins to melt at about 4000 passes); (b) the fluctuating 
sigma simulation in which the potential energy exhibits fluctuations be- 
tween two energy bands corresponding to overlapping and nonoverlap- 
ping configurations; (c) the low energy band in the fluctuating sigma 
simulation, the system melts almost instantly. 

contribute to g(r) because the system did not have time to 
relax to equilibrium after changing from a,i, to ao. An 
energy filter could be applied to the umbrella sampling to 
filter out those nonequilibrium configurations which have a 
higher energy. For this purpose a threshold energy is de- 
fined and only those configurations which have energies 
below the threshold contribute to the averages. A proper 
choice of the threshold energy in this filter method requires 
previous knowledge of the total potential energy variation. 
This filter method should be useful in situations where a 
rapid method of locating potential minima is needed but 
the exact equilibrium properties are not required. Figure 6 
shows the dependence of g( r) on Y. With a larger Y, correct 
properties can always be accurately determined with the 
umbrella sampling method because now the system will 
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I 
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FIG. 4. The radial distribution function g(r) for the rigid sigma simula- 
tion (solid line) and the fluctuation sigma simulation with umbrella sam- 
pling (dashed line). 

have enough time to relax back to equilibrium. 
In the preceding all of the o’s fluctuate at once. It is of 

interest to compare this scheme to one in which the (T’S 
individually fluctuate between a& and 0,. We find that 
the fluid mixes as fast as when all of the u’s breathe to- 
gether. However now the weighting function in the um- 
brella sampling is found to be very small for almost every 
configuration generated when the individual u/s are al- 
lowed to fluctuate, because there are always LJ u. overlaps 
at U=Umin. These overlaps introduce large variations in 
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FIG. 5. With o;nin=0.7500, w,=O.95, and Y= 1. (a) The instantaneous 
order parameter as a function of the number of MC passes. The upper 
curve is for the rigid sigma simulation and the lower curve is for the 
fluctuating sigma simulation. (b) The radial distribution function, g(r), 
for the rigid sigma simulation (thick line) and for the fluctuating sigma 
simulation with umbrella sampling (thin line). The g(r) determined with 
an energy filter (dashed line) coincides with the rigid sigma thick line. 
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FIG. 6. The radial distribution function, g(r), as a function of Y with 
0,,,,,=0.75oc and tuc=O.95, for the rigid s igma method (solid line), with 
v= 1 (long dash line), v= 10 (shorter dash line), and v= 100 (point 
line). 

the radial distribution function because the denominator in 
Eq. (2.3) exhibits very large relative fluctuations. Thus if 
one wants to determine structural averages directly from 
the sigma fluctuation method it is better to let all of the o’s 
breathe together. This strategy has the advantage of giving 
higher accuracy and is easier to implement for dense fluids. 

IV. CHAIN FOLDING 

The system studied here is a flexible n-alkane molecule 
CnH2n+z. Each methylene group is treated as a LJ center. 
Aside from the Cartesian coordinates we also treat the 
n - 3  dihedral angles (#k). Each successive dihedral angle 
is assumed to move in the Ryckaert-Bellmans dihedral 
angle potential, Vc(#). This potential is asymmetric with 
the frans conformer being more stable than the two gauche 
conformers (labeled G+ and G-) with a very high barrier 
for the cis conformer (see Fig. 1). In addition each meth- 
ylene sphere interacts with all methylene spheres separated 
from it by four or more C-C bonds. The C-C bond stretch- 
ing potential is taken to be harmonic with equilibrium 
bond length of 1.53 A, while the bond angle bending po- 
tential is harmonic in terms of the cosine of the angle with 
equilibrium bond angle of 109.47”. The harmonic force 
constant for the bond stretching and bond angle bending 
are taken to be 2490 kJ/(mol A2) and 520 kJ/mol, respec- 
tively. We  treat two different systems, n-pentane and 

A constant sigma n-pentane chain is simulated at 
T=500 K with the sigma fluctuation method. It is found 
that the nonbonded repulsions preclude the system from 
visiting certain of the nine conformational states. For ex- 
ample in a very long run one simply does not observe the 
two G+G- conformers. The fluctuating sigma method as 
defined in Eq. (2.6) does allow the system to visit such 
conformers and is therefore very useful for enumerating 
these states. It thus permits the cataloging of all locally 
stable conformational states. Moreover it allows the system 
to fold rapidly. The fixed and fluctuating sigma methods 
are run for the same number of passes. Ramachandran 
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FIG. 7. The Ramachandran plot for n-pentane for both the rigid and 
fluctuating s igma simulations. (a) The rigid s igma simulation; (b) the 
fluctuating s igma simulation without the weighting function; and (c) the 
fluctuating s igma simulation with the weighting function. 

plots are shown in Fig. 7. Plate (a) corresponds to the 
fixed sigma simulation. Plate (b) corresponds to the fluc- 
tuating sigma method without using Eq. (2.3) to correct 
the sampling. Plate (c) corresponds to the fluctuating 
sigma method corrected using Eq. (2.3). It should be 
noted that the (a) and (c) plates agree; that is, the fixed 
and fluctuating sigma methods give the same averages. It 
should also be noted from the (b) plate that the un- 
weighted fluctuating sigma method allows the states 
G+G- to be visited whereas these states are not visited by 
the fixed sigma method. Figure 8 shows the record of end- 
to-end distances for the fixed and fluctuating sigma meth- 
ods. Clearly the fluctuating sigma method visits two addi- 
tional folded states than does the fixed sigma method. 

For longer chains with n carbons, a number of quan- 
tities were used to characterize the properties of the chain. 
The instantaneous end-to-end distance a and the radius of 
gyration, 

.e?= f d  i i$j 
i=l j=l 

are monitored and give an indication of the speed of fold- 
ing or unfolding of the chain. After the chain reached equi- 
librium, the distribution functions of the end-to-end dis- 

J. Chem. Phys., Vol. 99, No. 8, 15 October 1993 



6076 Z. Liu and B. J. Berne: Accelerating chain folding 

16 

14 

12 

10 

wt)/uo 8 
6 

4 

2 

0 
0.5 1.0 1.5 2.0 

t (106 MC passes) 
0.4 0.6 
t (IO’MC passes) 

0.5 ' 1 ! I I I 
0 0.2 0.4 0.6 0.8 1.0 

t (106 MC p-) 

FIG. 8. The running record of the end-to-end distance L?2 in n-pentane 
for both the rigid and the fluctuating sigma simulations. (a) The rigid 
sigma simulation; (b) the fluctuating sigma simulation. 

tance and the radius of gyration are calculated. Another 
quantity monitored is the number, NC, of distinct confor- 
mations the chain passed through during the simulation. 
Each dihedral angle has three stable conformational states 
labeled by the integer 1, 2, and 3 corresponding to the G-, 
T, and G+ states. Thus the conformation of a chain is 
completely specified by a string of n-3 integers. For ex- 
ample, the nine states of n-pentane are specified by 11, 12, 
13, 21, 22, 23, 31, 32, and 33. If a long chain starts in an all 
trans conformation, as the simulation progresses, the se- 
quence changes and one can count the number of distinct 
sequences, N,, where a “distinct” sequence is a sequence 
that has not occurred before. So NC is an indication of how 
efficiently the simulation explores the conformational 
space. 

The molecule n-C,,H1e2 is started in the all-fauns con- 
formation at temperature of T = 300 K. We expect that the 
fluctuating potential method will explore the state space 
more efficiently than the rigid potential method because 
barrier crossing will be much slower in the later case. The 
end-to-end distance and radius of gyration are monitored. 
Figure 9 gives the record of these two quantities for the 
fixed and fluctuating potential methods (with w,=O.7, A,,, 
=0.5, a,=0.7a0, and ~=100) for the same number of 
passes. From this it can be seen that (a) the fluctuating 
potential method relaxes much faster than the rigid poten- 
tial method for the folding. (b) At about one million 
passes, in the rigid potential simulation, the chain was 
caught in a frustrated configuration. In the fluctuating po- 
tential method, the absence of large energy barriers in one 

0' 
0 

I I , I 
0.5 1.0 1.5 2.0 

t (10’ MC passes) 

FIG. 9. The CseH,, chain folding at T=300 K for two simulations 
started from the same a11 Fran conformation. The instantaneous end-to- 
end distance (9 ) and the radius of gyration (LX’) are plotted in (a) and 
(b), respectively. The upper curve is the simulation result for the rigid 
potential and the lower curve in the plot is the simulation result for the 
fluctuating potential using ~,,,~,,=0.7os, A,,=O.5, wc=O.7, and v= 100. 

form of the potential makes it much easier for the chain to 
continuously fold without being trapped in the local min- 
imum. 

In the’course of the folding we count the number of 
distinct conformations through which the system passes. 
These are shown in the Fig. 10 as a function of the number 
of MC passes. The fluctuating potential method generates a 
much larger number of distinct conformers than the fixed 
potential method. This indicates that our fluctuating po- 
tential method enables the chain to explore the conforma- 
tional space more efficiently. 
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FIG. 10. The number of distinct conformations, NC(t), visited in time by 
CscH,e2 at T= 300 K for the rigid potential simulation (square) and for 
the fluctuating potential simulation (triangle). 
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In chain molecules there are two kinds of frustration, 
frustration due to the geometrical and topological con- 
straints and frustration due to the roughness of the energy 
landscape which in turn is due to the strong repulsive non- 
bonded interactions. In this section we have shown that the 
fluctuating potential method helps to rapidly relax the to- 
pological frustration. The sigma fluctuation method dis- 
cussed in connection with fluid mixing in the previous sec- 
tion can be used to relax the frustration due to the 
roughness of the energy landscape. This will be important 
when a long chain folds into a globular structure or when 
long chains are in a polymer melt or in membranes. 

V. DISCUSSION 

In this paper we propose several methods for accele- 
rating simulation. The sigma fluctuation method is found 
to be particularly effective in accelerating mixing and melt- 
ing in dense systems. The fluctuating potential method is 
shown to be capable of accelerating the rate of equilibra- 
tion and the determination of accurate equilibrium aver- 
ages in chain molecules with torsion angle barriers. These 
initial tests and preliminary applications of the method 
show that there is much to be gained in applying these 
methods to more complicated problems. 

Our method is similar to the tandem J-walk method 
(J-walkers at different temperatures are run in tandem) 
invented by Frantz et aL2 and is likewise able to reduce 

quasiergodicity in Monte Carlo simulations. The MC pro- 
cedures introduced here differ from the tandem J-walker 
since we used umbrella sampling. In our methods one has 
more freedom in choosing the tandem potential. For ex- 
ample in the torsion angle potential fluctuation method we 
distort the potential to eliminate crucial barriers but we do 
not change the energy differences between the stable states. 
This has the distinct advantage of sampling the correct 
distribution of conformers while at the same time acceler- 
ating the barrier crossing events. The sigma fluctuation 
method for binary fluid mixing corresponds to very high 
temperatures in the J-walk method. In addition, by intro- 
ducing the cost functions in the potential, it is possible to 
incorporate the fluctuating sigma method and the fluctu- 
ating potential method into molecular dynamics. 
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