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A detailed study of mixed quantum-classical approximations for radiative and nonradiative processes in
condensed phase systems is presented and each approximation is compared to exact fully quantum mechanical
dynamics. The problems are formulated in terms of a quantum mechanical time correlation function, and the
corresponding mixed quantum-classical descriptions are obtained following the general methodology of
Wigner-Kirkwood based on the expansion in powers of Planck’s constant. Illustrative examples of the
performance and applicability of mixed quantum-classical treatments include vibrational and electronic energy
relaxation processes, and the calculation of vibronic absorption spectrum.

I. Introduction

One of the longstanding problems in chemistry and physics
is the quantum mechanical treatment of dynamical properties
of arbitrary condensed phase systems. Unfortunately, direct
solution of the time-dependent Schro¨dinger equation is com-
putationally nonfeasible due to the exponential scaling with the
number of degrees of freedom. In Feynman’s path integral
formulation, the exact numerical solution of this problem is
extremely complicated due to the well-known phase cancella-
tions (the sign problem). At the present time, one of the viable
alternatives to the exact quantum mechanical solution is the use
of mixed quantum-classical treatments, where a small subset
of highly “quantum” modes is treated quantum mechanically
while the remaining degrees of freedom are treated classically.
The major issue in these mixed approaches is self-consistent
dynamical treatment of the quantum and classical degrees of
freedom: the motion of the classical particles and the concomi-
tant time-dependence of the Hamiltonian triggers quantum
transitions, while the latter alter the potential energy surface
and thereby change the forces that act on the classical particles.

In the situation where the energies of the classical particles
are larger than the spacings between the quantum states, the
back-reaction of the quantum subsystem on the classical one
can be neglected; such approach is taken in the classical path
methods1-3 and in the Redfield theory.4 However, in most cases
of chemical interest, it is necessary to properly describe the
feedback between quantum and classical degrees of freedom.
To achieve this goal, two major attempts have been undertaken,

the mean field approach based on the Ehrenfest work5 and the
Preston-Tully surface hopping method.6

The Ehrenfest approach led to the development of the most
widely used mixed quantum-classical method which is a
classical version of the fully quantum time dependent self-
consistent field (TDSCF) method.7-10 The main limitation of
this approach is that the classical trajectories evolve on a mean
potential energy surface (PES), and there are certain physical
situations where such a single configuration TDSCF approach
is inadequate. The above shortcoming of the single configuration
TDSCF is remedied in the surface hopping approach,6,11-25

which originated in the pioneering work of Preston and Tully,6

and it is the classical analogue of a multiconfiguration gener-
alization of the TDSCF.10 Tully uses the word “analogue”10

because surface hopping is not a rigorous classical limit. In
recent years, several groups have attempted to derive surface
hopping from first principles,10,26,27although some uncontrolled
approximations are still unavoidable.

Various extensions and modifications of the above two mixed
quantum-classical schemes have been proposed over the recent
years. On the basis of early work of Pechukas,28-30 Rossky et
al.31 have developed a nonadiabatic molecular dynamics method
and applied it to the study of electron solvation in various
liquids.32-35 It was later shown that surface hopping can be
presented as a short time approximation to the Pechukas
formulation.18 Thirumalai, Bruskin, and Berne36 have also
derived a mixed quantum-classical approximation based on the
semiclassical theory of Pechukas,28-30 but they applied it to the
case where the initial and final quantum states are the same.
Their final mixed quantum-classical approximation is identical
to the TDSCF ansatz, yet it was derived within the stationary
phase approximation. In the original work, they combine the
mixed quantum-classical approximation with the Gaussian wave-
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packet method37,38 to determine the electronic spectra of a
diatomic molecule embedded in a rare gas matrix. Ben-Nun et
al. developed a mixed quantum-classical method and applied it
to study the dynamics of I2 in rare gas solvents.39,40Gerber and
co-workers have introduced the classical separable potential
(CSP) approximation which was used to study the dynamics of
halogens in rare gas clusters.41,42

A more systematic approach to treating dynamical processes
in condensed phases is based on the semiclassical propagator
originally written down by Van Vleck,43,44 which is the
stationary phase approximation to the exact quantum mechanical
propagator.45 The root search is the bottleneck of this method
in its original formulation, and it has been circumvented by
transforming to the initial value representation.46-56 Due to the
unfavorable system size scaling, the semiclassical initial value
representation (SC-IVR) methods have been primarily applied
to systems with few degrees of freedom. Several approximations
have been introduced to extend the applicability of semiclassical
methods to many-body systems. Neria and Nitzan57,58 have
applied the frozen Gaussian approximation37,38 to calculate the
nonradiative relaxation rate for model systems and for solvated
electron. Miller and co-workers59-61 used a “linearized” ap-
proximation to the SC-IVR propagator to study nonadiabatic
transitions of a quantum system coupled to a bath of harmonic
oscillators. Makri and Thompson62,63have combined the forward
and backward paths of the bath to compute a semiclassical
version of Feynman-Vernon64 influence functional.

Despite the fact that SC-IVR approach has a more sound
theoretical foundation than the mixed quantum-classical meth-
ods, it is also more computationally demanding. Therefore, we
limit the scope of the present review to the mixed quantum-
classical treatments. As already discussed, a wide variety of
these methods have been developed and have been applied to
numerous problems. However, all these methods involve various
levels of approximations. In view of that, it is of great
importance to assess the accuracy of mixed quantum-classical
methods by performing tests on exactly solvable (but still
realistic) models. Most such tests reported in the literature to
date have been confined to few particle systems,65-70 one of
the notable exceptions being the study of the spin-boson
problem71 by Müller and Stock.72

Motivated by the widespread use of mixed quantum-classical
simulations and the lack of information on their accuracy for
many-body problems, in a recent series of papers73-77 we have
undertaken a comprehensive study of reliability of mixed
quantum-classical methods for a wide variety of models and
physical processes. In particular, we have looked at the problems
involving a single PES (in the context of vibrational energy
relaxation in condensed phases)73,74and at the situations where
several PES are necessary for describing the process of
interest.75-77 In the latter case, we considered both radiative
processes75,76 (taking vibronic absorption spectrum of a chro-
mophore coupled to a condensed phase environment as a test
case) and at the nonradiative relaxation processes77 (specifically,
electronic relaxation of an impurity in a bath).

In all cases studied, it has been assumed that the coupling
between the relevant quantum states in the quantum subsystem
(guest or solute or chromophore) is small. Thus, the lowest order
perturbation theory can be applied to calculate the property of
interest, such as the energy relaxation rate, dephasing time or
spectrum. Since it was imperative for us to be able to obtain
the exact quantum mechanical result for each problem studied,
the condensed phase environment was always modeled as a
collection of harmonic oscillators (in some cases we were able

to take the limit of infinite number of bath modes). In addition
to the fully quantum mechanical solution, for each problem we
have formulated the corresponding mixed quantum-classical
description, where the bath degrees of freedom (and, in certain
cases, the nuclear degrees of freedom of the impurity) were
treated classically.

In providing such a description, we have followed the general
methodology of Wigner-Kirkwood based on the expansion in
powers of Planck’s constant of the relevant quantum mechanical
time-correlation function (TCF).78 We would like to emphasize
that the above expansion is unique only for the problems
involving a single PES,79,80and it is somewhat arbitrary for the
case of several PESs.81,82We address this issue of nonuniqueness
and attempt to provide a prescription for an optimal mixed
quantum-classical representation.

Our methodology is somewhat different from the aforemen-
tioned mixed quantum-classical treatments, where certain ad hoc
approximations are unavoidable. It remains an open question
whether those mixed quantum-classical treatments agree with
our mixed quantum-classical results in the regime where lowest
order perturbation theory is valid, i.e., the weak coupling limit.
Since the main concern of this article is to assess the accuracy
of mixed quantum-classical treatments in condensed phases, we
will not return to this issue herein.

By providing a methodology for obtaining both exact
quantum mechanical and mixed quantum-classical treatments
for all studied models, we were able to address the following
major issues: 1. Can mixed quantum-classical methods provide
an accurate description of dynamical processes in condensed
phase systems? What is the range of their applicability in terms
of the physical parameters characterizing the system (temper-
ature, characteristic energies, etc.)? 2. What are the criteria for
choosing the most accurate propagation scheme for our mixed
quantum-classical treatment (recall the arbitrariness mentioned
above in the case of multiple PESs)? 3. Are there ways to infer
the quantum dynamical information from the results of classical
or mixed quantum-classical simulations by applying certain
“quantum corrections”? 4. Howdo fully classical treatments
compare to mixed quantum-classical approaches in terms of
approximating the exact quantum results?

The article is structured as follows: in section II we provide
a general formulation of our mixed quantum-classical approach.
We start by writing the exact quantum mechanical expression
for the observable of interest in terms of the relevant time
correlation function. Next, we expand it in powers of Planck’s
constant, and retain the terms up to (and including) the term of
orderp0. We note that in certain cases terms containing inverse
powers ofp are present in the expansion, which generally leads
to a nonuniqueness of the mixed quantum-classical result (see
the discussion of Mukamel on the semiclassical treatment of
spectroscopic observables81,82).

In section III we provide comparisons between the fully
quantum mechanical and mixed quantum-classical results for
various physical problems. We start by considering vibrational
energy relaxation in condensed phases. As was shown by
Sakun,83 and Berkowitz and Gerber,84 the dominant contribution
to the relaxation rate in this case comes from the dependence
of the off-diagonal system-bath coupling on the bath coordi-
nates. We consider both the linear coupling case which allows
only single-phonon processes73 and the nonlinear coupling case
which is necessary for multiphonon relaxation.74 Next we
consider a quantum subsystem that contains electronic degrees
of freedom.77 In this case the system-bath interactions depend
strongly on the quantum state of the system, and thus one is

Feature Article J. Phys. Chem. B, Vol. 103, No. 50, 199910979



forced to consider several (at least two) PESs. Section IV
provides the last test case which involves the vibronic absorption
spectrum of a diatomic chromophore in a condensed phase
environment, where both electronic transitions and vibrational
relaxation are important.75,76

In Section V we discuss the results for the different models
presented in sections III and IV. We try to delineate the various
relevant parameters that govern the success or failure of mixed
quantum-classical approximations to time correlation functions.
We discuss the static and dynamical contributions to the
properties of interest for several limiting cases. Finally, in section
VI we provide our view of future direction in the study of mixed
quantum-classical dynamics in many-body systems.

II. Model Hamiltonian and Mixed Quantum-Classical
Theory

In what follows, we will focus on two particular states of the
quantum subsystem, which we label as|0〉 and |1〉. All other
degrees of freedom (apart from those of the quantum subsystem)
will be generally treated within the classical approximation when
a mixed quantum-classical treatment is imposed. Thus we refer
to them as the “nuclear” degrees of freedom, and label their
positions and momenta withQ and P, respectively. We are
interested in radiative and nonradiative transitions between these
two quantum states and write the general total Hamiltonian as
follows:

whereH0 ) E0 + H′b + ∆0 andH1 ) E1 + H′b + ∆1; H′b, ∆0,
∆1, V01 andV10 are operators in the Hilbert space of the nuclear
variablesQ andP. In the study of vibronic absorption spectrum
the off-diagonal coupling matrix elementsV01 and V10 will
depend also on the timet.

As will become clear below, it is convenient to perform the
following transformation of the total Hamiltonian: we add and
subtract∆0|1〉 〈1| in eq (1) and use the identity|0〉 〈0| + |1〉 〈1|
) 1 to obtain

whereHb ) H′b + ∆1 and∆ ) ∆1 - ∆0. In eq 2 we have also
used the following definitions

and

With the above form of the total Hamiltonian, it is clear that
the Hamiltonian corresponding to the state|0〉 is given byH0

) Hb + E0, while the Hamiltonian corresponding to state|1〉 is
given byH1 ) Hb + ∆ + E1. ∆ is the difference between the
two PESs in the dressed picture, i.e., when the constant terms
(E0 and E1) are omitted. This form of the Hamiltonian is the
most convenient choice for the present problems, yet it is
completely general.

As discussed in the Introduction, we use the lowest order
perturbation theory (the Fermi golden rule) to calculate the
property of interest (relaxation rate, dephasing time, or absorp-
tion spectrum). In what follows, we will treat the off-diagonal
couplingV between the two quantum states within the perturba-
tion approximation. In the time-domain formulation of the Fermi

golden rule, this property is related to a real-time correlation
function of the form:

where the thermal averaging is performed with the distribution
appropriate to the initial quantum state, i.e., we assume that
the system has equilibrated underH0:

and the partition functionZ(â) is given by

Similarly, the real-time correlation function can be written as

In the above equationsâ ) 1/kBT is the inverse temperature,
the symbol Tr(...) denotes the trace over all degrees of freedom,
andV is given in eq 4.

We next perform the trace over the two quantum states|0〉
and |1〉 to obtain

where TrQ (...) denotes the trace over the nuclear degrees of
freedom, and the partition functionZ(â) is now given by

Applying the interaction representation, eq 9 can be written in
the form of a time-ordered exponential85

where〈...〉 ≡ TrQ [e-âH0...]/Z(â) denotes a quantum mechanical
ensemble average over HamiltonianH0, andω10 ) (E1 - E0)/
p. The negative time ordered exponential, exp-(...), is defined
in the usual way.86 ∆(t), V01(t), andV10(t) are the Heisenberg
form for the operators∆, V01, and V10, respectively, and are
given by

wheres ands′ take the values of 0 or 1.
The mixed quantum-classical limit of eq 11 is obtained in

two steps: (a) We replace the quantum mechanical trace over
the nuclear degrees of freedomQ with a phase-space integral
over a corresponding classical distribution function. (b) We
replace the quantum mechanical operatorsV10(t), V10(t), and
∆(t) with the corresponding classical dynamical variables. In
doing so we also drop the time ordering since the classical
dynamical variable∆(t) commutes with itself at all times.81

Thus, eq 11 reduces to a mixed quantum-classical time
correlation function of the form

where〈...〉cl ≡ ∫ dQdP (e-âH0(Q,P) ...)/Zcl(â) denotes a classical
ensemble average over the classical HamiltonianH0(Q, P), and

Htot ) H0|0〉 〈0| + H1|1〉 〈1| + V01|0〉 〈1| + V10|1〉 〈0| (1)

Htot ) (Hb + E0)|0〉 〈0| + (Hb + ∆ + E1)|1〉 〈1| +
V01|0〉 〈1| + V10|1〉 〈0| ≡ H + V (2)

H ) (Hb + E0)|0〉 〈0| + (Hb + ∆ + E1)|1〉 〈1| (3)

V ) V01|0〉 〈1| + V10|1〉 〈0| (4)

C(t) ) Tr[F0(â)V eiHt/pV e-iHt/p] (5)

F0(â) ) 1
Z(â)

e-âH0|0〉 〈0| (6)

Z(â) ) Tr[e-âH0|0〉 〈0|] (7)

C(t) ) Tr[F0(â)V(0)V(t)] (8)

C(t) ) 1
Z(â)

TrQ [e-âH0V01 eiH1t/pV10 e-iH0t/p] (9)

Z(â) ) TrQ [e-âH0] (10)

C(t) ) 〈eiω10tV01(0)exp- ( i
p
∫0

t
dt′∆(t′)) V10(t)〉 (11)

∆(t) ) eiH0t∆e-iH0t (12)

Vss′(t) ) eiH0tVss′e
-iH0t (13)

Cmqc(t) ) 〈V01(0)exp( i
p
∫0

t
dt′∆(t′)) V10(t)〉cl

(14)
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Zcl(â) is the classical partition function given by

Equation 11 can be rewritten in various different (but
equiValent) forms by making different choices for the Hamil-
tonian under which∆(t), V01(t), andV10(t) are propagated. In
other words, one is not restricted to usingH0 in transforming
to the interaction picture. However, after carrying out steps a
and b outlined above, the resulting mixed quantum-classical time
correlation functions arenot equivalent to each other. This is
precisely the nonuniqueness of the mixed quantum-classical
approximation mentioned in the Introduction. In the case where
the Hamiltonians associated with the two quantum states are
the same (i.e., when∆ ) 0), the time-ordered exponentials in
eq 11 disappear, and the mixed quantum-classical approximation
becomes unique.

Equation 14 is perfectly suited for evaluation in a simulation
by propagating classical trajectories on the Hamiltonian specified
by the interaction picture used. The mixed quantum-classical
TCF is obtained by monitoring the time-dependent potential
energy difference between the two PESs (∆(t)) and averaging
over the appropriate initial conditions. The applications reported
in this article were obtained for a model system where an
analytic expression for the correlation function was derived, and
thus there was no need for performing simulations. We did
perform a convergence test and found that typically 1000
trajectories were enough to obtain converged results for the
correlation function.

Before we discuss the application and performance of the
mixed quantum-classical approximation we would like to
emphasize that the above mixed quantum-classical approach is
not identical to the so called mean-field approach (i.e., mixed
quantum-classical TDSCF). Since we obtain the relevant
property of interest within the framework of lowest order
perturbation theory, the mixed quantum-classical approach does
not include the feedback between the classical subsystem and
the quantum subsystem.

III. Nonradiative Processes

In this section we discuss the application of the general results
obtained above to various physical problems involving nonra-
diative relaxation. Depending on the specific problem, different
mechanisms will give the dominant contribution to the relaxation
rate. For example, in the case of vibrational energy relaxation,
the solvent is not affected significantly by the change of the
solute vibrational state,83,84and the dominant relaxation mech-
anism arises from the dependence of the solute-solvent coupling
term on the solvent coordinates.74,87-102 In the language of the
previous section, this means that we set∆ ) 0. On the other
hand, electronic relaxation is generally accompanied by a
significant change in the solute-solvent interaction,88 and one
needs to introduce different PESs for different solute electronic
states. A common model involves shifted/distorted surfaces,
where ∆ is a linear/quadratic function of the bath
coordinates.87,88,103-111 Since the dominant mechanisms of
vibrational and electronic relaxation are different, we will discuss
these two problems separately.

We model the condensed phase environment in both vibra-
tional and electronic relaxation processes as a harmonic bath,
which constitutes the nuclear degrees of freedom in our system.
Thus, we takeHb in eq 2 to be a sum over harmonic mass-
weighted normal modesQR with frequenciesωR and conjugate

momentaPR:

A. Vibrational Energy Relaxation. Numerous processes in
condensed phases involve dissipation of energy from vibra-
tionally excited modes. Thus, a profound microscopic under-
standing of vibrational energy relaxation is of major
importance.112-120 In theoretical treatments of vibrational energy
relaxation based on the low-order perturbation theory the total
Hamiltonian is generally partitioned into three terms: the
Hamiltonian for the vibrational mode of the solute, the Hamil-
tonian for the solvent degrees of freedom, and the interaction
between these two subsystems, which induces the transitions
between the solute vibrational states. Within this formalism, the
state-to-state transition rates are determined by the Fourier
transform (at the vibrational frequency of the solute) of the TCF
for the force exerted by the solvent on the solute vibrational
mode. When studying vibrational energy relaxation in low-
temperature solids, this TCF can be evaluated quantum me-
chanically. At the same time, a full quantum treatment of
dynamics in liquid hosts is not feasible, and a common approach
is to treat the translational degrees of freedom in liquids
classically. However, for certain experimental conditions (e.g.,
vibrational relaxation of molecular oxygen in liquid mixtures
with argon in the temperature range 60-90 K)101,121a classical
treatment of the solvent may be questionable. In other words,
the mixed quantum-classical treatment outlined in the previous
Section is likely to break down. In this subsection we present
the mixed quantum-classical treatment of vibrational energy
relaxation, and review the previous theoretical work concerning
its range of validity.

In order to apply the general theoretical framework outlined
in the previous section to the problem of vibrational energy
relaxation, we make the following identifications:|0〉 and |1〉
are the two vibrational states of the solute for which we calculate
the transition rate (in what follows, we treat the solute vibrational
degree of freedomq in the harmonic approximation, however
the theoretical treatment is not limited to this choice122).

As mentioned earlier, we assume that the bath Hamiltonian
is the same for all solute vibrational states, i.e., we set∆ ) 0.
V is the perturbation that couples the solute vibrational modeq
to the solvent degrees of freedomQ. We take it to be linear in
q and assume it to be a function of a certain collective solvent
coordinateQ, that is, some (linear) combination of the modes
comprising the setQ, i.e. we writeV ) qF(Q). Thus V01 )
〈0|q|1〉 ) q01 andV10 ) 〈1|q|0〉 ) q10. Two functional forms
for F(Q) have been considered previously: (1) case of bilinear
solute-solvent coupling (V ∝ qQ) has been treated in detail by
Bader and Berne73 and (2) case where the solute-solvent
interaction is modeled with an exponential function of the bath
collective coordinate has been analyzed by Egorov and Berne.74

The former case allows for single phonon relaxation processes
while the latter is appropriate for describing multiphonon
relaxation.

As stated above, the transition rate from state|1〉 to state|0〉
is proportional to the Fourier transform (at the solute vibrational
frequencyωvib ) (E1 - E0)/p) of the TCF for the forceF(Q).
The quantum mechanical expression for the state-to-state
transition rate then reads

Zcl(â) ) 1

(2πp)f ∫ dQdPe-âH0(Q,P) (15) Hb )
1

2
∑

R
(PR

2 + ωR
2 QR

2) (16)

k0f1 )
|q01|2

p2 ∫-∞

∞
dt exp(iωvibt) 〈F(0)F(t)〉 (17)
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The mixed quantum-classical approximation tok0f1 is obtained
by applying the procedure outlined in the previous section.

As indicated by Bader and Berne,73 in the case of bilinear
solute-solvent coupling the fully quantum and mixed quantum-
classical results for the rate are related by

The above relation is exact, and holds for an arbitrary (not
necessarily harmonic) model for the internal vibration of the
solute. When the solute vibrational modeis harmonic, Bader
and Berne73 have shown that the above relation also holds for
the overall energy relaxation rateT1

-1

At the same time, the fully classical treatment of the relaxation
rate T1

-1, is identical to the fully quantum one for this
particular model (harmonic oscillator bilinearly coupled to the
harmonic bath). The above results are summarized in Table 1.

Within the low-order perturbation theory, the model studied
by Bader and Berne can only produce single-phonon transitions,
and thus is mainly applicable to study the relaxation of the low-
frequency solute vibrational modes. On the other hand, vibra-
tional energy relaxation of high-frequency modes is dominated
by multiphonon processes. In order to account for multiphonon
relaxation, one needs to consider the solute-solvent coupling
that is nonlinear in the solvent coordinatesQ. This case has
been considered in the work of Egorov and Berne74 where the
solute-bath interaction was modeled with an exponential
function of a collective solvent coordinate. A semilog plot of
the comparison between the fully quantum mechanical, mixed
quantum-classical, and classical relaxation rates (scaled by a
typical phonon frequency of the bath) versus the vibrational
frequency (scaled by the same value) is shown in Figure 1.

It is clearly seen that in contrast to the case of linear coupling
studied by Bader and Berne, where the fully quantum and the
fully classical results are identical, in the case of exponential
solute-bath interaction, the fully classical treatment significantly
underestimates the relaxation rate. The mixed quantum-classical
result for the relaxation rate is always below the classical result,
i.e., the fully classical treatment gives consistently better results
for the relaxation rate than the mixed quantum-classical one
(although the classical rates are still off from the quantum rates
by several orders of magnitude). Note that, as the vibrational
frequency of the solute increases, the disagreement between the
classical/mixed quantum-classical and the quantum results
becomes worse.

In addition, we also show the results of the quantum
correction to the classical relaxation rate as given by eq 16 of
ref 74. Unlike the case of bilinear coupling studied by Bader
and Berne, there is no exact analytic relation between the mixed
quantum-classical and quantum mechanical rate. On the basis
of stationary phase method Egorov and Berne derived an

approximate correction to the mixed quantum-classical relax-
ation rate. It was found that the quantum correction is accurate
over a wide range of relevant system-bath parameters as shown
in the figure. The important point is that in the high frequency
limit this quantum correction depends exponentially on the
solute vibrational frequency, and thus the ratio of the fully
quantum to the mixed quantum-classical rate becomes very
large.

It is also of interest to compare the results obtained with the
quantum correction factor to other approximations suggested
in the literature.123-125 These approximations have been dis-
cussed in the context of vibrational relaxation and rigid
rotors126,127and more recently in the context of a general time
correlation function.74,128 The results of the application of the
Schofield, Egelstaff, and “scaled” Egelstaff empirical corrections
to the present problem are shown in Figure 2 along with the
exact quantum mechanical relaxation rate. One sees that the

TABLE 1: Vibrational Energy Relaxation Rates for the
Quantum Mechanical, Mixed Quantum-Classical, and
Classical Treatments Taken from the Work of Bader and
Berne73

classical solvent quantum solvent

classical solute T1
-1 T1

-1 âpω/2 cothâpω/2
quantum solute T1

-12/âpω tanhâpω/2 T1
-1

Figure 1. A semilog plot of the vibrational relaxation rate versus the
solute vibrational frequency for the exponential solute-solvent interac-
tion. The solid, dashed, dotted, and dashed-dotted lines are for the
fully quantum mechanical, classical, corrected, and mixed quantum-
classical relaxation rates, respectively.

Figure 2. A semilog plot of the vibrational relaxation rate versus the
solute vibrational frequency for the exponential solute-solvent interac-
tion. The solid line is for the fully quantum mechanical relaxation rate.
The dashed, dashed-dotted and dotted lines are for the Schofield,
Egelstaff, and scaled Egelstaff empirical corrections.

k0f1
qm )

âpωvib

2
coth(âpωvib

2 ) k0f1
mqc (18)

(T1
-1)qm )

âpωvib

2
coth(âpωvib

2 ) (T1
-1)mqc (19)
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Schofield transformation overestimates the quantum correction
somewhat (especially at the higher frequencies), the Egelstaff
approximation gives the rates which are too low, and the
“scaled” Egelstaff procedure is generally as accurate as the
approximate correction shown in Figure 1 (see also eq 16 of
ref 74).

In summary, the problem of vibrational energy relaxation in
the present formulation provides a convenient test case where
a unique mixed quantum-classical approximation to the quantum
time correlation function can be obtained. We have considered
two models for the solute-solvent coupling (bilinear and
exponential), and have analyzed the relation between the fully
quantum, mixed quantum-classical and classical vibrational
relaxation rates. In both cases, the classical treatment provides
more accurate relaxation rates, than the mixed quantum-classical
approximation. However, in the case of nonlinear coupling it
can still underestimate the rate significantly in the high
frequency limit.

B. Nonradiative Electronic Relaxations.Nonradiative elec-
tronic relaxation is an important step in numerous chemical and
physical processes, such as internal conversion, electron transfer
reactions, etc.87,92,129-133 Radiationless electronic relaxation
processes in condensed phases involve energy transfer from
electronically excited impurities to the host, and it is often the
case that the amount of energy transferred exceeds by many
times the typical energy associated with the thermal motion of
the solvent. Clearly, many quanta of the bath excitations must
be created in this process.

Most theoretical treatments of electronic multiphonon relax-
ation are based on the time-dependent perturbation theory. Due
to some arbitrariness in defining the zeroth-order Hamiltonian
and the coupling term, various routes to nonradiative decay are
possible. Here we consider two different routes: the adiabatic
(Born-Oppenheimer) and the “static-coupling” (crude Born-
Oppenheimer) methods. In the present formulation both methods
involve shifts and/or distortions between the two PESs corre-
sponding to the two electronic states. In the language of section
II, ∆ is taken to be a quadratic function of the nuclear degrees
of freedomQ. This is very different from the case of vibrational
relaxation discussed in the previous subsection, where the two
PESs were taken to be identical, i.e.,∆ ) 0. Due to these shifts/
distortions of PESs, both the adibatic and the static coupling
descriptions allow for multiphonon processes in the lowest order
perturbation theory. The difference between the adiabatic
approach and static coupling approach is in the form of the off-
diagonal coupling matrix elementsV01 andV10. In the adiabatic
approach the off-diagonal coupling depends on the momentum
operators of the nuclear degrees of freedomP, while in the static
coupling approach the off-diagonal coupling matrix elements
are taken to be constants. In solid-state theory, both approaches
were employed by Kubo and Toyozawa,134 Perlin,135 Miyakawa
and Dexter,136 and others.87,88,103-111,137-141 Recently, they have
become widely used in the field of liquid phase chemistry in
the context of calculating nonradiative relaxation rates of
solvated electrons.57,142,143

As in the case of vibrational relaxation, we now focus on
assessing the accuracy of a mixed quantum-classical treatment
in the calculation of the electronic relaxation rate. We consider
an impurity embedded in a condensed phase environment and
concentrate on the nonradiative transitions between the initial
electronic state|0〉 and the final electronic state|1〉 of the
impurity. As before, the bath (which constitutes the nuclear
degrees of freedom) is taken in the harmonic approximation,
cf. eq 16. Regarding the diagonal coupling term∆, we write it

as a quadratic form in the bath coordinates:

This form of diagonal coupling would arise when the two
potential energy surfaces corresponding to the two electronic
states can be described by two multidimensional harmonic
surfaces with different equilibrium positions and different
frequencies with the additional possibility of mode mixing
between the two states. The first two terms in∆ are due to the
displacements of the equilibrium positions of the normal modes,
while the last term corresponds to the frequency shifts and
Duschinsky rotations of the normal modes between the two
electronic states. The procedure of obtaining the coupling
constantδR andgRR′ is given in our recent work.77

Under the assumption of the constant off-diagonal coupling
(static coupling approach), the quantum mechanical expression
for the transition rate reduces to the Fourier transform (evaluated
at the frequency (ωel ) (E1 - E0)/p) of the thermal average of
the time-ordered exponential:

As discussed in the previous section, in order to obtain a mixed
quantum-classical approximation to the above result, one needs
to replace the quantum mechanical average with the classical
one, neglect the time ordering, and treat∆(t) as a function of
dynamic classical variables. In addition, one needs to specify
the Hamiltonian used for the propagation of the nuclear degrees
of freedom, i.e., the form of the interaction picture used. Here
we will limit ourselves to the following two propagation
schemes: (a) the dynamic classical limit is obtained by
propagating∆(t) on the initial HamiltonianH0 and (b) the
average classical limit is obtained by propagating∆(t) on the
arithmetic averaged Hamiltonian1/2(H0 + H1) (both mixed
quantum-classical approximations are very different from the
mixed quantum-classical TDSCF approach).

The fully quantum mechanical results are calculated by
employing the density matrix formalism of Kubo and Toy-
ozawa,134 which is based on Gaussian integrals. (Equivalently,
one could use the boson algebra technique of Balian and
Brezin,144 which allows evaluation of the thermal averages of
exponentiated quadratic functions of phonon operators.145-147)
The method to obtain the mixed quantum-classical result is
based on phase space Gaussian integrals, and the details can be
found in our recent work.75 In all cases, the calculations can be
done only for a finite number of bath modes (convergence tests
have shown that 100 bath modes is always sufficient to obtain
converged results for the relaxation rate). Interested readers may
consult ref 77 for explicit expressions of the relaxation rate in
the exact quantum mechanical case and in the various mixed
quantum-classical approximations.

The results of our calculations are shown in Figure 3, where
we present a semilog plot of the transition rate (scaled by a
typical phonon frequency of the bath) versus the energy gap
(scaled by the same frequency). One sees that for the largest
energy gap considered, the dynamic classical approximation
underestimates the transition rate by nearly two orders of
magnitude, while the average classical approximation is nearly
one order of magnitude smaller than the quantum mechanical
rate.

∆ ) ∑
R

ωR
2δRQR +

1

2
+

1

2
∑

R
ωR

2δR
2 + ∑

RR′
gRR′QRQR′ (20)
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∞
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Motivated by the work of Shemetulskis and Loring,148 we
have analyzed the Wigner form of the time correlation function
appearing in the static coupling approach (see eq 21), and have
arrived at the conclusion that a mixed quantum-classical
treatment should employ the average Hamiltonian for the
propagation of the nuclear degrees of freedom.75,77 Therefore,
the somewhat better performance of the average classical
propagation scheme is hardly surprising. However, we empha-
size that the above conclusion is only valid for the static coupling
scheme, i.e., forconstantoff-diagonal coupling matrix elements.
It no longer holds when these matrix elements depend on the
nuclear coordinates and/or momenta, as will be shown below.

Our analysis of the Wigner form of the time correlation
function has suggested performing thermal averaging with the
Wigner form of the initial distribution. As can be seen from
Figure 3, the results of the above approximation are in excellent
agreement with the exact quantum mechanical relaxation rates.
Once again, such good agreement is not expected in the case
of momentum-dependent coupling (the adiabatic approach, see
below).

Recall that in the case of vibrational energy relaxation a fully
classical treatment provides more accurate results than the mixed
quantum-classical approximation. Motivated by this finding, we
became interested in performing a fully classical treatment of
the electronic relaxation problem. Since our model for the
electronic relaxation involves two discrete states (two distinct
PESs), this is more difficult to formulate compared to the
vibrational relaxation case. One possibility is to employ the
method of Meyer and Miller,149,150which provides a classical
analog for a system involving on several electronic states. In
the Meyer-Miller method, the Hamiltonian of the discrete
system is mapped to a continuous one, and the dynamics of the
electronic degrees of freedom and the bath degrees of freedom
are treated classically. The mapping procedure for the present
problem is described in detail in our recent publication.151 We
note in passing that Stock and Thoss152 have shown that the
Meyer-Miller Hamiltonian can be obtained by taking the

classical limit of a more general Hamiltonian obtained by using
second quantization formalism.

To study the fully classical limit of the nonradiative electronic
relaxation we will treat the electronic degrees of freedom and
the bath degrees of freedom in the Meyer-Miller Hamiltonian
classically. The only nonclassical feature of this computation
involves the use of the Wigner form of the appropriate initial
distribution.60,153In semiclassical language, this approximation
is referred to as the linearized SC-IVR.60

The most convenient way to obtain the rate in this approach
is to use the reactive-flux method,154-157which was generalized
to the quantum mechanical case by Miller, Schwartz, and
Tromp.158 This approach has been recently applied to the
unbiased spin-boson problem by Miller and co-workers.59,61

Our Hamiltonian is more general and reduces to their model
when∆ is taken to be a linear function of the bath modes and
E0 is taken to be equal toE1. The implementation details for
applying the reactive-flux method to our model Hamiltonian
will be reported elsewhere.151

The results for the electronic relaxation rate of the Meyer-
Miller reactive-flux calculations are also shown in Figure 3.
Due to the fact that the method is computationally quite
demanding, the relaxation rates were calculated only for a few
selected values of the electronic energy gaps. We find that the
results for the electronic relaxation rate are in good agreement
with the exact quantum results. In addition, we would like to
point out that in contrast to the mixed quantum-classical
approximation, the transformation of the Hamiltonian into the
Meyer-Miller form does not suffer from nonuniqueness.
Therefore, we believe that this treatment is more robust to the
aforementioned mixed quantum-classical approximations.

We now proceed to discuss the adiabatic approach to
electronic relaxation processes. In this case, the off-diagonal
coupling term depends linearly and quadratically on the bath
momenta. Following Kubo and Toyozawa,134 we neglect the
quadratic term and make the Condon approximation in the
remaining linear term. The diagonal coupling term∆ is given
by eq 20 and is the same as in the static coupling approach.
The quantum mechanical expression for the transition rate is
given by the Fourier transform (evaluated at the frequency (ωel

) (E1 - E0)/p) of the thermal average of the time-ordered
exponential:

where according to the Condon approximation the nonadiabatic
coupling vectorS is taken to be independent of the bath
coordinates.77 The quantum mechanical result and various mixed
quantum-classical approximations (dynamical classical, averaged
classical, and averaged classical with the Wigner initial distribu-
tion) for the relaxation rate are then calculated using the same
procedures as in the case of static coupling. Interested readers
may consult ref 77 for the details.

The results of our calculations are shown in Figure 4, where
we present a semilog plot of the transition rate (scaled by a
characteristic phonon frequency) versus the dimensionless
energy gap (scaled by the same frequency). For the largest
energy gap considered, the dynamical classical approximation
underestimates the transition rate by several orders of magnitude,
while the averaged classical result is about 2 orders of magnitude
smaller than the quantum mechanical rate. The averaged
classical result with the Wigner initial distribution still provides

Figure 3. A semilog plot of the electronic relaxation rate versus the
electronic energy gap for the static coupling approach. The solid, dotted,
dashed, and dashed-dotted lines are the results of the electronic
relaxation rate for the quantum mechanical, dynamic classical limit,
averaged classical limit, and averaged classical limit with a Wigner
initial distribution respectively. The filled circles are the electronic
relaxation rate calculated within the Meyer-Miller Hamiltonian ap-
proach (see the text for more details).
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the best approximation to the exact quantum result, although
in the present case it is less accurate compared to the case of
the static coupling scheme. Note that we did not present the
fully classical approximation in the form of the Meyer-Miller
Hamiltonian for the adiabatic approach since the momentum
coupling introduces a technical complication into this method.

In summary, the major difference between the electronic
relaxation case and the vibrational relaxation (in its present
formulation) lies in the nonuniqueness of the mixed quantum-
classical approximation. While worrisome, this nonuniqueness
can be actually turned into an advantage: one can improve the
results of mixed quantum-classical treatment by choosing the
optimal propagation scheme. We have illustrated this point by
performing the analysis of the Wigner form of the time
correlation function in certain cases studied. The outcome of
this analysis has allowed us to formulate the optimal propagation
scheme, and thereby to improve the agreement of the mixed
quantum-classical treatment with the exact quantum result.

IV. Radiative Processes

In addition to nonradiative relaxation processes, quantum time
correlation functions are of major importance in calculating
various types of spectra.82,159 The effect of nuclear dynamics
of the bath particles on the line shape reveals itself in the shift
and broadening of individual spectral lines comprising the gas
phase electronic absorption spectrum of the chromophore. As
such, the absorption spectrum of a molecule embedded in a
crystal or in a liquid provides valuable information about the
structure and dynamics of the host and the chromophore
perturbed by the host.

Quantum mechanical calculations of electronic absorption
spectra in condensed phases are extremely difficult in view of
the large number of degrees of freedom involved. For any
realistic system this many-body problem can only be solved
approximately. The simplest approximation would be to retain
the quantum nature of the electronic degrees of freedom only,
and to treat all nuclear degrees of freedom (including those of
the chromophore) classically.75,76,81,160-163 This approximation
is equivalent to the mixed quantum-classical treatment of the

electronic relaxation, and thus is not unique. In due course we
will discuss the results of different propagation schemes.

When the nuclear coordinates of the primary system are
strongly perturbed by the electronic transition, it would seem
appropriate to extend the quantum methodology to these degrees
of freedom, and to couple their quantum dynamics in some way
to the classical dynamics of the bath particles.75,76 For this
purpose we have formulated a Feynman path integral description
of the vibronic absorption spectrum where the primary nuclear
degrees of freedom of the chromophore are treated quantum
mechanically. The effect of the bath on the spectrum in this
approach is entirely given by the influence functional of
Feynman and Vernon,64 which was generalized for the present
problem.75 The mixed quantum-classical approximation is then
obtained by taking the classical limit of the influence functional.
We note that this classical limit, like many others, does not
preserve detailed balance per se. More recently, Makri and
Thompson62,63 studied a semiclassical limit of an influence
functional for a different physical problem. Their approach is
likely to provide a more accurate solution than the fully classical
limit (in the case of a harmonic bath, the semiclassical limit of
the influence functional is exact).

We calculate the electronic spectrum within the Fermi golden
rule and the electric dipole approximation.164 We also adopt
the Condon approximation where the electric dipoleµ does not
depend on the nuclear coordinates. Hence, the off-diagonal
coupling term is given by

whereµ01 ) 〈0|µ|1〉 andµ10 ) 〈1|µ|0〉 are independent of the
nuclear coordinates;ε andω are the amplitude and the frequency
of the field coupling the two electronic states, respectively. The
normalized electronic absorption spectrum is given by the
Fourier transform of the normalized real-time dipole autocor-
relation function:

whereω10 ) (E1 - E0)/p. Here we consider a more particular
quadratic form for the diagonal coupling term∆ to model a
primary diatomic mode (q) treated in the harmonic approxima-
tion and bilinearly coupled to the harmonic bath:

Note that our model accounts for different vibrational frequen-
cies of the primary mode (ωm0 andωm1) and different solute-
bath coupling strength (gR

0 andgR
1) in the two electronic states.

The procedure of obtaining the coupling constantgR
0,1 is

described in ref 75.
We calculate the fully quantum mechanical vibronic spectrum

and also the dynamic and averaged mixed quantum-classical
approximations to it using the techniques mentioned in the
previous section. (Recall that the dynamic classical approxima-
tion involves propagation with the initial Hamiltonian, while
in the averaged classical approximation the propagation is done
using the arithmetic average Hamiltonian.) As mentioned earlier,
we have also obtained another mixed quantum-classical pre-
scription in which the primary mode (the vibrational mode of

Figure 4. A semilog plot of the electronic relaxation rate versus the
electronic energy gap for the adiabatic approach. The solid, dotted,
dashed, and dashed-dotted lines are the results of the electronic
relaxation rate for the quantum mechanical, dynamic classical limit,
averaged classical limit, and averaged classical limit with a Wigner
initial distribution respectively.

V ) εeiωt µ01|0〉 〈1| + ε*e-iωt µ10|1〉 〈0| (23)
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the molecule) is treated quantum mechanically, based on taking
a classical limit of the appropriate influence functional.75

Within our model, the two important time scales in calculating
the vibronic spectrum are the vibrational relaxation rate for the
primary mode (1/T1

vib) and the electronic dephasing rate (1/
T2

elec). The two rates have very different dependencies on the
temperature and on other physical parameters specifying the
model. In general, the electronic dephasing rate increases with
the magnitude of thedifference between the system-bath
coupling strengths in the two electronic states, while the
vibrational relaxation rate in each of these states is proportional
to the magnitude of the coupling strength. Thus, by adjusting
these parameters, one can achieve the situation where the
electronic dephasing is faster than vibrational relaxation (1/
T2

elec > 1/T1
vib) or vice versa, as illustrated in Figure 5. On the

basis of the discussion of mixed quantum-classical treatments
of vibrational energy relaxation in the bilinear coupling case,
one may anticipate that the optimal mixed quantum-classical
scheme would be different for these two situations.

In our work, we have considered both the case of 1/T2
elec >

1/T1
vib and the opposite case when 1/T2

elec > 1/T1
vib.75,76 The

performance of various mixed quantum-classical approximations
was indeed found to be markedly different in the two cases. In
Figure 6 we present the exact quantum mechanical vibronic
absorption spectrum and various mixed quantum-classical
approximations to it for the case when the electronic dephasing
is much faster than vibrational relaxation. One sees immediately
that the dynamic classical approximation captures only the
envelope of the exact spectrum but not the vibronic structure,
similar to the classical Franck-Condon result.165 We note that
this failure of the dynamic classical approximation is related to
a rather specific choice of parameters; in a more general case,
the performance of this method is somewhat better, as will be
shown below. The averaged classical treatment provides a good
approximation to the absorption spectrum, albeit somewhat

misplaces the positions of individual vibronic features. The best
agreement is obtained using the mixed quantum-classical
treatment in which both the two states and the primary mode
are treated quantum mechanically and the bath is treated
classically. This approximation captures the position and very
slightly overestimates the width of the individual lines.

We now turn to the case when the vibrational relaxation is
faster than the electronic dephasing. The corresponding results
for the absorption spectra are presented in Figure 7; the relevant
parameters are given in the caption. Since we have seen that
for the problem of vibrational relaxation the mixed quantum
classical treatment is inferior to the fully classical one, in the
present case one would anticipate a breakdown of the ap-

Figure 5. A plot of the electronic dephasing rate 1/T2
elec and the

vibrational relaxation rate on the ground electronic state 1/T1
vib versus

the coupling strength in the ground electronic state,F0 and for F1 )
0.24 (see our original work76 for the definitions ofF0,1). Note that 1/
T2

elec decreases withF0 until a minimum is reached, and then it
increases withF0, while 1/T2

vib scales linearly with the coupling
strength.

Figure 6. The vibronic absorption spectrum of a diatomic molecule
coupled to a harmonic bath in the limit of fast electronic dephasing.
The thin solid line is the fully quantum mechanical result. The dotted
and dashed lines are the dynamic and average classical approximations,
respectively. The thick solid line is the result of the mixed quantum-
classical treatment where the primary mode is treated quantum
mechanically and the bath is treated classically (Q-solute, C-Solvent).

Figure 7. The vibronic absorption spectrum of a diatomic molecule
coupled to a harmonic bath in the limit of fast vibrational relaxation.
The thin solid line is the fully quantum mechanical result. The dotted
line is the dynamic classical approximation. The dashed line is the result
of the mixed quantum-classical treatment where the primary mode is
treated quantum mechanically and the bath is treated classically (Q-
solute, C-Solvent). The results of the averaged classical limit agree
with the fully quantum mechanical result and thus are not shown.
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proximation where the primary mode is treated quantum
mechanically and the bath is treated classically. As can be clearly
seen from Figure 7, this is indeed the case: the above
approximation captures only the envelope of the spectrum, and
fails to predict the individual vibronic features. As expected
from the work of Bader and Berne,73 the problems with this
method are somewhat less pronounced at higher temperatures.
In contrast to the case of fast electronic dephasing, for the
present choice of parameters the dynamic classical approxima-
tion does capture the overall shape and width of individual
vibronic features; however, they are shifted with respect to the
exact quantum result. Finally, the averaged classical result is
essentially indistinguishable from the fully quantum spectrum,
and therefore is not shown in Figure 7. As in the case of
nonradiative electronic relaxation, performing the averaging with
the Wigner initial distribution is expected to improve the
performance of mixed quantum-classical treatments. However,
the major improvement occurs at high frequencies, i.e., in the
tails of the spectra, where the magnitude of the spectra are rather
small, and therefore the improvement is not noticeable.

As is clear from the above discussion, one of the major
deficiencies of mixed quantum-classical treatments in calculating
vibronic spectra is that they produce incorrect results for the
positions and widths of individual vibronic features. The above
quantities are given by the frequency shifts and dephasing rates
which, in turn, are determined by the long-time behavior of the
corresponding time-correlation functions. In order to address
this issue, we have adopted and generalized the theory of
Skinner and Hsu166-168 which allowed us to calculate the
frequency shifts and the dephasing rates for the fully quantum
mechanical case and for the dynamic and averaged classical
approximations. The results of our calculations are presented
in Figure 8. The dynamic classical treatment underestimates the
dephasing rates severely as the coupling strength in the initial
electronic state goes to zero, while the averaged classical
approximation reproduces the quantum dephasing rates reason-
ably well over the whole range of the coupling strengths. For
the approximation where the primary mode is treated quantum

mechanically and the solvent is treated classically, we can only
calculate the dephasing rate analytically in the absence of
coupling in the initial electronic state, the result is also shown
in Figure 8, it is slightly larger than the quantum dephasing
rate.

To summarize this Section, we have considered the vibronic
absorption spectrum of a diatomic molecule (taken in the
harmonic approximation) bilinearly coupled to a harmonic bath
(with different equilibrium positions, coupling strengths, and
molecular vibrational frequencies for the two electronic states),
and tested various mixed quantum-classical approximations. We
considered separately two situations: the case when the
electronic dephasing is fast compared to vibrational relaxation,
and the opposite casesthe vibrational relaxation is faster than
the electronic dephasing. We have found that in the first case
the approximation where the primary mode is treated quantum
mechanically and the solvent is treated classically provides the
best overall agreement with the quantum mechanical spectrum.
In the second case, the best mixed quantum-classical ap-
proximation is provided by the averaged classical treatment.
These findings are consistent with the results from the previous
Section on the vibrational energy relaxation in the case of
bilinear coupling.

One final remark is that all spectra in our work were
calculated within the Franck-Condon approximation, and the
averaged classical method was generally found to give highly
accurate results. However, if one goes beyond the Franck-
Condon approximation, the off-diagonal matrix elements of the
dipole operator acquire a dependence on the bath coordinates,
and the analysis of the Wigner form of the corresponding time
correlation function would no longer suggest classical propaga-
tion with the average Hamiltonian. In other words, the averaged
classical method then can no longer be expected to provide
accurate results. This is similar to our findings on the electronic
relaxation rates calculated in the adiabatic approximation
presented in the previous Section.

V. Discussions and Conclusions

The problem of obtaining accurate quantum mechanical time
correlation functions in many-body systems is of primary
importance for calculating numerous observables of interest in
physics and chemistry. Unfortunately, at the present time the
exact solution to the above problem is possible only for highly
simplified models, such as harmonic baths. As an alternative,
various mixed quantum-classical treatments have been widely
used over the past several decades. In these methods, the full
many-body system is generally divided into a few highly
quantum degrees of freedom (for which the characteristic
energies are higher than the temperature), and the remaining
modes, for which the characteristic energies are lower than the
temperature, and which are treated classically. However, the
above criterion for selecting the classical modes does not
necessarily guarantee the accuracy of the mixed quantum-
classical treatments, since it is imperative to achieve a consistent
dynamical treatment of quantum and classical degrees of
freedom, and to properly describe the feedback between the two
subsystems.

The above goals are achieved in different ways depending
on a particular realization of the mixed quantum-classical
approximation, but in most cases certain ad hoc assumptions
and uncontrollable approximations are unavoidable. Therefore,
it is of great importance to assess the accuracy and the range of
validity of the mixed quantum-classical treatments by comparing
their predictions to the quantum mechanical results for exactly

Figure 8. Plots of the temperature and coupling dependence of the
dephasing rate 1/T2

elec. Shown are the fully quantum mechanical result
(solid line), dynamic classical approximation (dotted line), average
classical approximation (dashed line), and the result of the mixed
quantum-classical treatment where the primary mode is treated quantum
mechanically and the bath is treated classically (b, Q-solute, C-solvent).
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solvable models. It also would be advantageous to adopt a
systematic approach for developing mixed quantum-classical
treatments, since it would allow not only the systematic
improvement of the results for the observables of interest, but
would also elucidate the mechanisms for the processes under
consideration. One such systematic proceduresexpansion of the
quantum time correlation functions in powers of Planck’s
constantsforms the basis of our recent work, which has been
reviewed in the present article.

Starting with a general harmonic Hamiltonian, we have
specialized it and adopted it to study various physical processes,
including both radiative and nonradiative transitions of impuri-
ties (solutes) in condensed phase environments (baths). We have
calculated the observables such as vibronic absorption spectra,
electronic dephasing rates, and electronic and vibrational energy
relaxation rates. In each case, our major interest was to compare
the exact quantum result for a given observable with a mixed
quantum-classical approximation to it, where (generally) the
solute is treated quantum mechanically, and the bath classically.
For that reason, we have always modeled the condensed phase
environment as a harmonic bath.

A. Vibrational Energy Relaxation. For the problem of
vibrational energy relaxation, we have considered two specific
models for the system-bath couplingsbilinear and exponentials
and have found that in both cases a fully classical treatment
gives more accurate results than the mixed quantum-classical
one.

In the case of bilinear coupling (i.e., single-phonon relaxation)
the error in the mixed quantum-classical approximation is
entirely due to the incorrect thermal averaging, since classical
and quantum dynamics for this model are the same. Concomi-
tantly, the fully classical result for the relaxation rate in this
case agrees exactly with the quantum mechanical one. This
suggests that, for single-phonon processes, it is enough to correct
only the initial distribution with which the averaging is
performed. However, in highly anharmonic systems this may
not be sufficient.

In the case of highly nonlinear system-bath coupling (that
is appropriate for multiphonon relaxation processes) the most
severe breakdown of mixed quantum-classical and fully classical
treatments occurs at high solute vibrational frequencies, where
these treatments can underestimate the relaxation rates by several
orders of magnitude. This situation has been recently illustrated
with a particular physical example by Everitt et al.,101 who
studied vibrational energy relaxation in liquid oxygen, where
the vibrational frequency of the solute exceeds the temperature
of the solvent and its typical translational frequency by more
than 30 times. The above breakdown of mixed quantum-classical
approximation is a consequence of both incorrect thermal
averaging and incorrect dynamics, with the latter factor ac-
counting for the major part of the error. More specifically, the
high-frequency vibrational relaxation rates are mostly sensitive
to the short-time behavior of the relevant time correlation
function. It can be shown that the mixed quantum-classical
treatment produces large errors in the short-time expansion
coefficients of TCFs, which, in turn, leads to the errors in the
relaxation rates. The above errors arise primarily due to the
incorrect treatment of the dynamics, and to a much lesser extent
to the incorrect thermal averaging. Thus, employing a Wigner
initial distribution is not expected to improve the results
significantly. One possible way of improving the results of
mixed quantum-classical treatment is to perform a systematic
expansion of the first few time-series expansion coefficients of

the quantum time correlation function in powers of Planck’s
constant and to incorporate this information into correcting the
results of the mixed quantum-classical approximation. Another
way is to resort to semiclassical methods, such as the afore-
mentioned linearized SC-IVR which implies a Wigner-Weyl
transform of the correlation function, or to its fully-blown
version which would also partially correct part of the incorrect
dynamics.

We have also considered various empirical quantum correc-
tions (such as those due to Schofield and Egelstaff) in the context
of vibrational energy relaxation in condensed phases. A common
feature in these empirical prescriptions is the replacement of
the time argument in the classical time-correlation function by
a different argument, which depends on time, temperature, and
Planck’s constant. As a result, the moments of this modified
TCF get closer to the true quantum values. However, such
prescriptions are ad hoc in nature, i.e., they cannot be derived
in a rigorous andsystematicway. Indeed, our studies have
shown that none of these procedures is robust enough to provide
accurate results for vibrational relaxation rates for different
solute-solvent interaction potential.

B. Nonradiative Electronic Relaxation.For the problem of
electronic energy relaxation, we have considered a model with
two PESs, corresponding to the two electronic states of the
solute. Due to a finite energy spacing between these two states,
the relevant time correlation function retains some quantum
character, and the mixed quantum-classical approximation is
not unique. Specifically, there is a certain arbitrariness in the
choice of the Hamiltonian that is used to propagate the classical
degrees of freedom.

We have considered a Wigner form for the appropriate time
correlation function, and have shown that the above arbitrariness
can be used to some advantage, i.e. one can attempt to find an
optimal propagation scheme for the classical degrees of freedom
that produces the best agreement with the quantum results. For
the case of static coupling between the two PESs (i.e., coupling
independent of nuclear coordinates and momenta) we have
shown that for our model the optimal propagation scheme
involves an arithmetic average of the nuclear Hamiltonians
associated with the initial and final electronic states. In the case
when the two multidimensional harmonic surfaces corresponding
to the two electronic states differ only with respect to the
equilibrium positions of individual modes (but the frequencies
of these modes are the same and there is no mode mixing
involved), the above averaged quantum-classical treatment
produces the exact quantum result for the rateproVided it is
combined with the thermal averaging performed with the Wigner
distribution. Once again, the error in the standard mixed
quantum-classical approximation (i.e., the one based on the
initial state classical propagation) arises both due to the incorrect
treatment of the dynamics (which can be fixed by choosing the
optimal propagation scheme) and due to the incorrect averaging
(which can be fixed by using the Wigner distribution). In
contrast to the case of vibrational energy relaxation, both factors
contribute nearly equally (about 1 order of magnitude for the
case studied) to the error in the electronic relaxation rate. Given
the importance of performing thermal averaging with the Wigner
distribution, we note that for anharmonic systems this can be
achieved approximately by employing the same methodology
as the one used in the semiclassical initial value representation
method to treat the time dependence. However, the success of
the Wigner method for anharmonic systems is still open for
future investigations, and the overall good performance for the
presentharmonicsystem is likely to break down.
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For the case of adiabatic (i.e., momentum-dependent) cou-
pling, the analysis of the Wigner form of the time correlation
function is considerably more involved. The only conjecture
we can make at this point is that the optimal propagation scheme
is likely to be different from the averaged Hamiltonian, however
the later propagation scheme provides reasonably good agree-
ment for the quantum mechanical relaxation rates.

Motivated by the finding that for vibrational relaxation
problem in the case of bilinear coupling a fully classical
treatment provided more accurate results than the mixed
quantum-classical approximation, we performed a fully classical
treatment of the electronic relaxation problem. We have
formulated the problem using the Meyer-Miller Hamiltonian,
which we treated classically, in combination with the Wigner
form of the appropriate initial distribution. The results for the
rates obtained with the above method were in good agreement
with the exact quantum results, though the performance of the
averaged classical propagation combined with the Wigner
distribution was somewhat better. However, the success of this
particular mixed quantum-classical scheme (the averaged propa-
gation scheme) might be limited to the case of harmonic models,
and for anharmonic systems the fully classical treatment may
well prove to be superior. In addition, we would like to point
out that in contrast to the mixed quantum-classical approxima-
tion, the transformation of the Hamiltonian into the Meyer-
Miller scheme does not suffer from nonuniqueness. Therefore,
we believe that this treatment is superior to the mixed quantum-
classical approximations.

While our primary interest in considering nonradiative
electronic processes was the calculation of multiphonon energy
relaxation rates (i.e., large gap limit), we note that the same
methodology can be applied to study electron transfer reactions
in condensed phases. However, in the latter case the energy
gaps involved are typically smaller than those involved in the
electronic energy relaxation processes. Therefore, the appropriate
criterion for choosing the best mixed quantum-classical ap-
proximation for electron transfer reactions should be based on
its performance at small and intermediate energy gaps rather
than at large energy gaps. We will return to this point below
after the discussion of radiative processes.

C. Vibronic Absorption Spectrum. We have also assessed
the accuracy of mixed quantum-classical approximations in
treating radiative processes in condensed phases, taking as a
test case the calculation of the vibronic absorption spectrum of
a diatomic molecule bilinearly coupled to a harmonic bath. To
establish contact with our work on nonradiative processes, we
have considered separately two situations: the case when the
electronic dephasing is fast compared to vibrational relaxation,
and the opposite case of vibrational relaxation faster than the
electronic dephasing. We have found that in the first case the
approximation where the primary (diatomic) nuclear mode is
treated quantum mechanically and the solvent is treated clas-
sically provides the best overall agreement with the quantum
mechanical spectrum. This is expected since in the case of an
isolated molecule (i.e., for vanishing system-bath coupling),
it is necessary to treat all degrees of freedom quantum
mechanically to obtain the proper Franck-Condon overlaps.
Hence, for small system-bath coupling, when the electronic
dephasing dominates the absorption spectrum, a fully quantum
treatment of the subsystem is required. In the second case, the
best mixed quantum-classical approximation is provided by the
averaged classical treatment, and the quantum-solute-classical-
solvent approximation breaks down completely.

The above conclusions are consistent with our findings on
vibrational energy relaxation in the case of bilinear system-
bath coupling. Specifically, in the case of fast vibrational energy
relaxation, the vibrational relaxation rates contribute significantly
to the widths of individual spectral features, and the mixed
quantum-classical treatment (quantum-solvent-classical-sol-
vent) can be expected to give inaccurate results similar to the
vibrational relaxation model of Bader and Berne. On the other
hand, in the case of the fast electronic dephasing the widths of
spectral features are dominated by low-frequency two phonon
processes, as can be easily seen by transforming the Hamiltonian
for the nuclear coordinates into the normal mode representation.
It turns out that, in this case, the widths of individual spectral
features (which are dominated by the electronic dephasing rate)
are given sufficiently accurately by all mixed quantum-classical
treatments. However, the performance of the different methods
is very different in determining the peak positions (or the shifts)
of the vibronic spectral features. The dynamic classical treatment
displaces the spectral features significantly compared to the
quantum results, while the other two approximations provide
fairly accurate results.

Turning now to the ramifications of our findings on radiative
processes for realistic physical systems, we can make the
following remarks. Firstly, when the experimentally measured
spectrum is featureless (which is likely to occur for high
temperatures and/or strong system-bath couplings), any of the
mixed quantum-classical treatments will produce sufficiently
accurate results. Secondly, when the vibronic structure is clearly
pronounced in the spectrum, the choice of the best mixed
quantum-classical approximation is dictated by the relative
magnitude of vibrational relaxation and electronic dephasing
rates. It would be safe to conjecture that in the majority of
physical systems the electronic dephasing will dominate over
vibrational relaxation, and the mixed (quantum primary mode-
classical solvent) treatment would be the optimal one. However,
the above two rates differ markedly in their temperature
dependence, and it is conceivable that for certain temperatures
and system-bath couplings the opposite situation will be realized,
in which case the averaged classical treatment (at least for
harmonic systems) is the method of choice.

Finally, going back to our remark on the electron transfer
reactions, we note that the rates for these processes can be
calculated using the same methodology as the one employed to
calculate the vibronic absorption spectrum. Hence, the mixed
(quantum primary mode-classical bath) treatment is generally
likely to give the most accurate results for the electron transfer
rates.

VI. Future Directions

In this article we have reviewed our recent work on the
validity of mixed quantum-classical approximations for treating
dynamical processes in condensed phases. Our results have
demonstrated that these approximations have to be used with
extreme caution. For problems involving a single potential
energy surface (such as vibrational energy relaxation) the mixed
quantum-classical approximation is unique, and for solute
frequency large compared to the thermal energy it fails to
provide accurate results. For problems with multiple surfaces
(such as electronic relaxation and vibronic spectra) the mixed
quantum-classical approximations are not uniquely defined, and
due to the arbitrariness in the choice of the propagation scheme,
the accuracy of the mixed quantum-classical treatment can be
improved. However, in order to achieve accurate results, one
needs to perform thermal averaging with the Wigner initial
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distribution instead of the classical one. While for harmonic
systems considered in the present work this can be readily done,
for anharmonic systems this is a highly nontrivial problem.

The present study has been based entirely on the Fermi golden
rule, and therefore the later treatment neglects the feedback
between the quantum and classical subsystems. One possible
way to go beyond the lowest order perturbation theory and
include the feedback is provided by the surface hopping
technique.12 However, similar to the approximate treatments
considered in this work, the surface hopping method also relies
on the mixed quantum-classical description of the system. When
the coupling between the quantum states involved is weak, the
perturbation theory is valid, and therefore the results from the
surface hopping calculations are expected to be similar to those
obtained from the mixed quantum-classical perturbative ap-
proach taken in this work. The methods for improving these
results (i.e., “mixed state propagation” and thermal averaging
with the Wigner distribution) can be readily incorporated into
a surface hopping method, although the same limitations as
discussed in the previous Section would also apply.

In the case where mixed quantum-classical approximations
fail, one needs to resort to a higher level of approximation such
as the semiclassical methods. One such possibility is to employ
the linearized semiclassical initial value representation method.60

We have applied this method to the calculation of electronic
relaxation rates based on the reactive-flux approach and obtained
very good agreement with the fully quantum mechanical result
even for large energy gaps.151 The use of the reactive-flux
formalism implies that the method is not limited to the weak
coupling regime. The main limitation of this approach is that it
requires the knowledge of the Wigner distribution, which is
difficult to obtain for anharmonic systems. Another possibility
is the rigorous forward-backward semiclassical formulation of
many-body dynamics.62 More work is needed before this
approach will become practical for many-body systems.

Finally, we would like to mention that there exists and is
currently being developed an entirely different approach to
quantum dynamics in condensed phases that is based on
performing the fully quantum simulations in imaginary time
(thus obviating the sign problem), and performing an analytic
continuation to the real time using various methods,169 such as
maximum entropy,170-172 singular value decomposition,173,174

etc. The above analytic continuation is a well known ill- defined
problem, which makes it extremely difficult to obtain accurate
real-time information from the simulated quantum imaginary-
time data with realistic levels of noise. To achieve this goal,
much further work is required.

Acknowledgment. We would like to thank Dan Gezelter
and Marc Pavese for helpful comments on the manuscript. The
Rothschild and Fulbright foundations are acknowledged for
partial financial support to E.R. This work was supported by a
grant to B.J.B. from the National Science Foundation.

References and Notes

(1) Rapp, D.Quantum Mechanics; Holt, Rinehart and Winston, Inc.:
New York, 1971.

(2) Nikitin, E. E. Theory of Elementary Atomic and Molecular
Processes;Clarendon: Oxford, 1974.

(3) Levine, R. D.; Bernstein, R. B.Molecular Reaction Dynamics and
Chemical ReactiVity; Oxford University Press: Oxford, 1987.

(4) Redfield, A. G.AdV. Mag. Reson.1965, 1, 1.
(5) Ehrenfest, P. Z.Physik1927, 45, 455.
(6) Preston, R. K.; Tully, J. C.J. Chem. Phys.1971, 55, 562.
(7) Heller, E. J.J. Chem. Phys.1976, 64, 63.
(8) Gerber, R. B.; Buch, V.; Ratner, M. A.J. Chem. Phys.1982, 77,

3022.

(9) Gerber, R. B.; Ratner, M. A.AdV. Chem. Phys.1988, 74, 97.
(10) Tully, J. C. Mixed quantum-classical dynamics: mean-field and

surface-hopping. InClassical and Quantum Dynamics in Condensed Phase
Simulations;Berne, B. J., Ciccotti, G., Coker, D. F., Eds.; World Scientific
Publishing Co.: Singapore, 1998.

(11) Tully, J. C. Nonadiabatic processes in molecular collisions. In
Dynamics of Molecular Collisions; Miller, W. H., Ed.; Plenum: New York,
1976.

(12) Tully, J. C.J. Chem. Phys.1990, 93, 1061.
(13) Sholl, D. S.; Tully, J. C.J. Chem. Phys.1998, 109, 7702.
(14) Hammes-Schiffer, S.; Tully, J. C.J. Chem. Phys.1994, 101, 4657.
(15) Hammes-Schiffer, S.J. Phys. Chem. A1998, 102, 10443.
(16) Coker, D. F. Computer simulation methods for nonadiabatic

dynamics in condensed systems. InComputer Simulation in Chemical
Physics; Allen, M. P.; Tildesley, D. J., Eds.; Kluwer Academic: Dordrecht,
1993.

(17) Xiao, L.; Coker, D. F.J. Chem. Phys.1994, 199, 8646.
(18) Coker, D. F.; Xiao, L.J. Chem. Phys.1995, 102, 496.
(19) Batista, V. S.; Coker, D. F.J. Chem. Phys.1997, 106, 6923.
(20) Herman, M. F.J. Chem. Phys.1995, 103, 8081.
(21) Herman, M. F.J. Chem. Phys.1999, 110, 4141.
(22) Prezhdo, O. V.; Rossky, P. J.J. Chem. Phys.1997, 107, 825.
(23) Blais, N. C.; Truhlar, D. G.J. Chem. Phys.1983, 79, 1334.
(24) Krylov, A. I.; Gerber, R. B.; Apkarian, V. A.Chem. Phys.1994,

189, 261.
(25) Krylov, A. I.; Gerber, R. B.; Coalson, R. D.J. Chem. Phys.1996,

105, 4626.
(26) Martens, C. C.; Fang, J. Y.J. Chem. Phys.1997, 106, 4918.
(27) Kapral, R.; Ciccotti, G.J. Chem. Phys.1999, 110, 8919.
(28) Pechukas, P.Phys. ReV. 1969, 181, 166.
(29) Pechukas, P.Phys. ReV. 1969, 181, 174.
(30) Pechukas, P.; Davis, J. P.J. Chem. Phys.1972, 56, 4970.
(31) Webster, F. J.; Rossky, P. J.; Friesner, R. A.Comput. Phys.

Commun.1991, 63, 494.
(32) Webster, F. J.; Schnitker, J.; Friedrichs, M. S.; Friesner, R. A.;

Rossky, P. J.Phys. ReV. Lett. 1991, 66, 3172.
(33) Schwartz, B. J.; Rossky, P. J.J. Chem. Phys.1994, 101, 6902.
(34) Schwartz, B. J.; Rossky, P. J.J. Chem. Phys.1996, 105, 6997.
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