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In this paper we develop a “diatomic in molecules semiempirical ligand field” (DIMSELF) method to calculate
ground and excited many-body potential energy surfaces for an arbitrary transition metal ion in an arbitrary
complex system. This method is not restricted to a high-symmetry environment and is meant to be inexpensive
and suitable for nonadiabatic excited states dynamics on-the-fly. Within the approximations employed, the
method includes full CI (configuration interaction) and SO (spin-orbit) interactions, essential to the description
of nonradiative transitions such as those of myoglobin in the presence of carbon monoxide. We test our
method against high level ab initio calculations for a simple model system of myoglobin’s heme pocket.
Finally, we discuss our results and compare with previous calculations in the literature.

1. Introduction

Transition metal complexes play a fundamental role in many
technological and biological areas. They act as catalysts in the
oil industry during the processes of cracking and reforming,
they are also fundamental for oxygen transport in blood, and
they are key to plant respiration. Some of these processes can
be well understood without the need to include the small
contribution of spin-orbit (SO) interaction which, for the most
part, is of the order of the error one performs in ab initio
calculations of these kind of systems. In some cases, however,
nonradiative transitions occur between states with different spins.
Of particular interest are heme proteins, a biologically important
group of molecules that have a unique common active site: an
iron-protoporphyrin-IX complex, where changes in spin state
can be an integral part of the protein function. One of the most
striking biological manifestations of this modulation is the
binding of molecular oxygen and carbon monoxide (CO)1-9 to
the five-coordinated ferrous heme site of globins. Another well-
studied example is the situation of several spin changes in the
enzymatic activation cycles of cytochromes P450. These transi-
tions are solely due to SO coupling and are otherwise forbidden.

Ab initio calculations are performed within the framework
of Hund’s Case A and hence assume that S, the total spin of
the system, is a good quantum number. Spin-orbit coupling
matrix elements could then be added, and rediagonalization of
the Hamiltonian matrix would provide us with the spin coupled
eigenstates of the system. Obtaining several electronic excited
states for a given spin multiplicity is complex, and for medium-
sized systems only configuration interaction for single excita-
tions (CIS) is affordable. However, a more complete description
of excited states might be required for the study of dynamics.
For large systems, where the environment can be introduced
by mixing quantum chemistry with molecular mechanics,
electronically excited states are rarely computationally accessible

and only the fundamental ground state for each spin multiplicity
might be computed. For nonsymmetric systems, even at the
density functional theory (DFT) level of theory, several attempts
with different initial guesses should be considered in order to
achieve the true ground state. The computational effort is
drastically increased when several nuclear configurations are
required for a complete study of the dynamics, and calculations
on-the-fly, including excited states and SO coupling, are simply
out of the question. Therefore, a semiempirical approach that
includes excited states and SO coupling is very desirable.

The method we develop in this paper is a generalization of
Gerloch’s10 cellular AOM (angular overlap model) version of
ligand field theory, combined with a semiempirical version of
Ellison’s11-13 DIM (diatomics in molecules). Neither ligand field
theory nor the semiempirical version of DIM are exact ab initio
methods; not all the parameters can be obtained by analytical
methods and they ought to be fitted either to experimental data
or other calculations. On the other hand, once these parameters
are known, fast computation of ground- and excited-state
potentials can be performed without having to recalculate wave
functions and their matrix elements.

We test this method against a simplified model of the heme
pocket. This reduced system, shown in Figure 1, is composed
of the Fe(II) ion, the heme ring, the CO molecule, and a histidine
residue. Others have used the same system14,15 to quantify the
size of potential energy barriers between ground-state quintet
and ground-state singlet and make predictions about reaction
rates. It is known that in the absence of CO the electronic state
of the Fe(II) ion is a quintet while a singlet state is populated
when CO is present. One of the difficulties about this approach
is that, to first order, these states are not coupled. On the
contrary, quintets and triplets as well as triplets and singlets,
are coupled due to spin-orbit interactions. It is therefore more
intuitive to think that dynamics might be nonadiabatic, and that
crossings between triplets and quintets contribute to the popula-
tion of the triplet states, which in turn give rise to transitions
into the singlet ground state. Moreover, there is no reason to
assume that only one quintet or triplet state is involved in this
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process. In the following sections we outline the strategy for
the calculation of these coupled many-body potential energy
surfaces.

2. Methods

We assume that the reader is somewhat familiar with the DIM
approach so we will not go into much detail; however, for
completeness we will outline the basic procedures for setting
up the full system electronic Hamiltonian. Extensive examples,
derivations, and applications can be found in the following
articles and references therein.11-13,16-32 The DIM Hamiltonian
is an exact rewriting of the full electronic Schroedinger
Hamiltonian,

whereĤij andĤi are diatomic and monatomic operators. They
are defined so that they apply only to the electrons originally
assigned to atomi and atomj, respectively. For a rigorous
description of how antisymmetrization is achieved, the best
source is still the original papers by Ellison.11-13 The first
summation runs over all possible pairs of atoms, while the
second one runs over all atoms. The latter sum multiplied by
(n - 2), n being the total number of atoms, is included to correct
for the number of times monoatomic operators have been
overcounted in the diatomic operator sum. In the semiempirical
version of DIM, one starts with some basis set of the form

and usually approximates the diatomic matrix elements in the
following way:

similarly for the monoatomic matrix elements

In general, the atomic basis elements are assumed to be
eigenstates of their corresponding atomic Hamiltonian, hence
〈ψ1|Ĥ1|φ1〉 ) δ(ψ1,φ1) × Eφ1. It is common practice to allow
for electronic excitations only in a very small subset of atoms.
This is justifiable in those cases when the excited states involved
are localized in space. Depending on the choice of basis set
elements, the DIM formalism allows for the study of both charge
transfer and non-charge-transfer processes.

In particular, we are interested here in the case of transition
metal ions surrounded by ligands that are, in principle, attached
to some protein which in turn might be in solution. We do not
wish to study at this point electronic processes that involve
charge transfer to or from the ligands; hence, we are mainly
concerned with the usual nonbonding or antibonding transitions
that occur among d orbitals of the transition metal ion in an
arbitrary complex environment.

In general, DFT methods to calculate potential energy surfaces
for transition metal ions with different spin multiplicities have
proven to be very effective because of their accuracy and low
computational cost. As already introduced, excited electronic
states for each of these given multiplicities are hard to calculate,
and SO coupling is usually not included. Ligand field theory
as a semiempirical method has been widely applied in the
past33-37 and is still used in fitting and understanding electronic,
Mössbauer, and Zeeman spectra of transition metal ions in
proteins and other very complex environments, see for example
refs 37 and 38 and references therein.

Within the same semiempirical spirit, we propose here to
partition the DIM Hamiltonian in two: a first term involving
all operators that include atom 1 (the metal ion), and a second
term with the remaining operators.

Within this approach we apply Gerloch’s cellular AOM
parametrization of the ligand field model as a means to compute
an approximation to the matrix elements ofĤI. Only a few sites
which are closest to the metal ion are assumed to be ligands.
Interactions of the metal ion with atoms or molecules further
away are assumed to be smaller and can be incorporated in some
MM (molecular mechanics) fashion.

It is worthwhile noticing that if only one atom, i.e., the metal
ion, is allowed to have electronic excitations, the basis elements
of the space used will have the following fixed form:

where the subscript denotes atoms and the superscript the
different excited electronic wave functions of the metal ion. All
matrix elements ofĤII, which of course do not involve atom 1,
the metal center, will be diagonal because of the approximation
in eqs 3 and 4.

All diagonal elements of the Hamiltonian will incorporate
the same contribution fromĤII. These contributions correspond

Figure 1. Snapshot of the molecular system used for ab initio
calculations and for testing our semiempirical approach. It includes
the heme ring, the CO molecule, the Fe(II) ion, and a histidine residue.
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to the ground-state Born-Oppenheimer (BO) energy surface
for the interaction of atoms labeled 2 ton. In the usual
semiempirical applications of DIM, these are assumed to be
given by some force-field parametrization. In the following
subsection we will describe how ligand field theory can be used
to calculate at least in an approximate fashion, matrix elements
of ĤI.

2.1. Angular Overlap Model. In this subsection we will
briefly describe how an approximation toĤI is calculated. The
ligand field Hamiltonian can be understood as a zero-th order
perturbation over a set of unperturbed degenerate atomic states.39

After diagonalization of the perturbation Hamiltonian, gaps
between different electronic states are obtained. Following
Gerloch’s approach,10 the ligand field Hamiltonian is written
as

whereri,j is the distance between theith andjth electrons, and
Ri is the ith ligand to metal relative position. The first term
corresponds to the electron-electron repulsion within the metal
ion, the second is the ligand-metal interaction, and the third is
the sum over the single electron spin-orbit coupling operators.
The spin-orbit coupling operator is diagonal in the coupledJ
representation, hence in what follows we will use the following
basis set for the whole molecular system:

The quantum numbers in parentheses correspond to the coupled
representation of the atomic electronic terms of the transition
metal ion. We proceed writing, up to an additive constant, the
DIM matrix elements in the following way:

where in this casen - 1 is the total number of atoms assumed
to be ligands to the central ion. Recalling that we do not allow
for electronic excitations on atoms other than the transition metal
ion, the matrix elements for the electron-electron repulsion
within the metal ion become

Following Gerloch10 we write

where the reduced matrix elements〈L, S||Fk||L′, S′〉 are tabulated
in Nielson and Koster,40 andFk are the Condon-Shortley radial
integrals. Spin-orbit coupling matrix elements are calculated

in a similar way:10

The double tensor reduced unit matrices〈L, S||V11||L′, S′〉 are
tabulated in Nielson and Koster40 as well. Finally we are left
with the calculation of the ligand-metal interactions:

In the cellular version of AOM,10 the sum over ligands∑iVLF

is expanded in terms of spherical harmonics operators. Only
matrix elements ofY0

0, Yq
2, andYq

4 survive due to the fact that
the basis set for the metal ion includes only d orbitals:

Here R is a multidimensional vector representing the relative
coordinates of all the ligands to the metal ion. Theckq(R)
spherical tensor global coefficients can be cast in terms of the
properly rotated local frameσ, π, and δ energies (see Table
9.1 in reference 10).

For a detailed description of the way in which the expansion
in terms of Yq

k operators is inverted to obtain the relations
between the local or global frame spherical tensor coefficients
ckq in terms ofσ, π, andδ energies, the reader is advised to
look at the original derivations by Gerloch34 and the book by
Silver.41 Much of the transition metal chemistry literature is
devoted to finding the proper value of these interactions for
different ligands at their equilibrium distance from the metal
ion. Linear combinations of these correspond to the usual 10
Dq splitting in octahedral and tetrahedral complexes.10,39Interac-
tionsσ, π, andδ are diagonal in a local frame of reference that
has each particular ligand-ion bond in the localZ axis. To
correctly add up the different ligand contributions, these local
diagonal Hamiltonians must be rotated using the Wigner rotation
matrices to the lab frame in which the total Hamiltonian is
written.10,30,31,34On performing these unitary transformations
for each of the ligands, the ligand field Hamiltonian matrix
becomes in the most general case off-diagonal and complex.
In eq 15,Y0

0 is a scalar operator, therefore its matrix elements
are some constant times the unit matrix and do not contribute
to the gaps between electronic states. This is why in the usual
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cellular parametrizationc00 is set to zero. It is important to note
thatc00 is in factc00(R). In our parametrization scheme, we leave
c00(R) out for the sake of fitting the gaps between electronic
states (this is achieved by fittingσ, π, andδ to an appropriate
functional form), but use it as an extra degree of freedom to fit
the singlet ground-state energy function. Matrix elements of the
spherical harmonics are calculated10 in the following way:

where the unit tensor matrix elements〈L, S||Uk||L′, S〉 are
obtained from Nielson and Koster.40

3. Parametrization Scheme

In the previous section we showed how, at least in a
semiempirical fashion, one is able to cast DIM in terms of force
field potentials and ligand field parameters. The force field
potentials for the ligand-ligand interactions and for species far
from the metal center are widely available. They enter the DIM
Hamiltonian matrix in a very simple diagonal form that
corresponds to the interaction of species on their ground-state
Born-Oppenheimer potential energy surface. The necessary
parameters to fit the metal ligand interactions, namely oneσ,
two π, and two δ local energies for each ligand, are to be
obtained either from fits to ab initio calculations or in the more
conventional way to spectra. The problem arising from fitting
to spectra is that one cannot, in general, extract theRdependency
of the parameters. Ab initio calculations can provide detailed
information about the ground state of each spin multiplicity in
a particular system as a function of ligand coordinates. This
information, however, may not be enough to obtain the
functional form of the ligand field parameters, it is known that
in the absence of the magnetic interaction the same “correct”
eigenvalues can be obtained with more than one combination
of σ andπ local energies, hence some criteria has to be used to
deal with this over-parametrization of the model.10,39

In the method we present here, the eigenvalues of the whole
system Hamiltonian are a function of the aforementionedσ-
(Ri), π(Ri), andδ(Ri) local energy functions. To reduce over-
parametrization, some simplification in parameter space should
be implemented.10,39 Being much smaller thanσ(Ri) andπ(Ri)
energies,δ(Ri) interactions are usually dropped from the
computation. For the particular implementation of CO in
myoglobin, further restrictions can be applied. The CO molecule
has cylindrical symmetry, hence bothπ(Ri) interactions, between
CO and the metal ion, should be assigned the same value.
Furthermore the heme ring is assumed to be a four-ligand
system; each of the ligands being the same should possess the
same set ofσ(Ri) and π(Ri) energy functions. In this case,
however, as opposed to the case of CO,πx(Ri), andπy(Ri) are
not equivalent because of the lack of symmetry. The same
argument holds for the sixth ligand, a histidine residue. Hence
the total number of functions to be fitted in this particular
application is eight.

As we should recall, ligand field theory provides us with the
corresponding splittings between otherwise degenerate electronic
states. However, to obtain absolute energies we still need one
more parametrization step. We use the extra degree of freedom
c00(R) to fit the absolute value of the singlet ground state of the

system. Having obtained the gaps, this fixes the absolute value
of the energy eigenvalues of the system.

For the particular application we present in the following
section, we did not fit the ground state singlet energy, we simply
used the ab initio calculated values and added the gaps obtained
from DIMSELF to obtain the excited-state potential energy
surfaces.

4. Results

We generated a set of eighteen geometries for the reduced
system displayed in Figure 1 composed of the heme ring, the
Fe(II) ion, the CO molecule, and a histidine residue.42 The
configurations were chosen along different cuts in the potential
energy landscape of our reduced system. In each of them, the
CO molecule was kept at a fixed angle with the C atom pointing
toward the Fe(II) ion and pulled upward perpendicular to the
heme ring. The difference between these curves is that in each
case the remaining atoms were allowed to relax, assuming the
system was either in the ground singlet, triplet, or quintet state.
Hence we obtained nine ab initio potential energy curves. A
singlet, a triplet, and a quintet, with geometries minimized
according to the singlet are displayed in Figure 2a; a singlet, a
triplet, and a quintet minimized for the triplet are displayed in
Figure 2b; and, finally, a singlet, a triplet, and a quintet
minimized for the quintet are depicted in Figure 2c. One
interesting feature about these ab initio curves is the fact that
neither the ground state triplet nor the ground state quintet cross
the ground state singlet in Figure 2a, while they do in the case
of Figure 2b and c. In Figure 2b the ground state triplet is lower
in energy than the quintet, while in Figure 2c the lower one is
the quintet. This clearly points to the fact that conical intersec-
tions between these two exist, and spin-orbit coupling interac-
tions could lead to nonadiabatic transitions.

The first stringent test our proposed method should pass is
being capable of reproducing the ab initio energy functions in
Figure 2. Figure 3 presents the same energy plots as in Figure
2 computed with our DIMSELF method. The solid lines
correspond to the DIMSELF surfaces, while the symbols
correspond to the ab initio values. As can be seen the agreement
is excellent. In Figure 3a there seems to be a discontinuity in
the ground-state triplet at short values of the CO-Fe(II) distance.
This prediction of DIMSELF actually corresponds to an excited
triplet state crossing that seems to occur at around 1.8 Å. This
crossing may explain the apparently different results reported
in two papers recently published in the literature.14,15

In a recent work, using the same model system we employ
here, Harvey15 computed three minimum energy crossing point
geometries using a DFT method for the singlet to quintet, singlet
to triplet, and triplet to quintet ground states. With these and
the energy at infinite separation of the CO from the ring, he is
able to estimate energy barriers for “adiabatic transitions”
between them. It is clear from Figure 1 in Harvey’s work15 that
both triplet and quintet ground states are dissociative curves.
Other recent work by McMahon and co-workers14 seems to
indicate that the triplet ground state is actually bound, the
minimum of this triplet state being at a CO-Fe(II) distance of
about 1.8 Å. In Figure 4, we show the ground-state singlet and
first few excited triplet and quintet states computed using
DIMSELF. Geometries are chosen to be the same as those
employed in our ab initio calculations, and for the sake of
comparison with them, the effect of SO coupling was left out
of the plots.

In Figure 4a we observe that although the adiabatic ground-
state triplet seems to be dissociative, it is in fact composed of

〈(J, M, L, S),φ2,..φn|Yq
k|(J′, M′, L′, S′),φ2,..φn〉 )

(-1)J+J′+L+S+M+k+l × ((2J + 1)(2J′ + 1))1/2 × (2l + 1) ×
((2k + 1)/(4π))1/2 × (l k l

0 0 0)× (J k J′
-M q M′ )×

{L J S
J′ L′ k }× 〈L, S||Uk|| L′, S〉 × δ(S, S′) (16)
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at least two crossing diabats. Our DIMSELF results indicate
that the aforementioned discrepancies between the two papers
is the result of following a symmetry state and not an energy
eigenstate. To further test the validity of this conclusion, we
have computed43 single-point time-dependent density functional
excited-state energies (TDDFT)44,45at several geometries other
than those depicted in Figure 4a. Time-dependent density
functional methods have proven to be very useful in the
calculation and interpretation of spectra of transition metal
compounds. Comparison of the accuracy of the TDDFT results
in the case of transition metal ions against other ab initio
methods and against experiments can be found in refs 46-48
and references therein. In all cases, TDDFT compares well with
other more expensive fully correlated ab initio methods. In fact,
it seems to produce better results than most other methods in

the cases studied by Gisbergen46 and co-workers. The accuracy
of these methods46 is on the order of a few tenths of an eV
compared to experiments. Figure 5a shows the singlet ground
state and the first three triplet states as obtained with TDDFT.
Figure 5b shows the same results obtained with our DIMSELF
method. The agreement between our DIMSELF approach and
TDDFT is quite remarkable if we consider the fact that no
excited-state information was used to fit the energy functions
deployed in the DIMSELF calculation. Tables 1 and 2 display
a comparison of the gaps we obtained between triplet states
and the ground-state singlet using DIMSELF and TDDFT. The
TDDFT calculations predict a crossing between triplet states at
about 1.8 Å, and another crossing at 2 Å. This is exactly the
same pattern we observe in Figure 5b and in Tables 1 and 2.
Preliminary results from our group also confirm the existence
of crossings between quintet states as predicted by our DIM-

Figure 2. (a), (b), and (c) display ab initio potential energy scans of
the CO-Fe distance perpendicular to the heme ring minimized
according to ground-state singlet, triplet and quintet, respectively. Solid
lines corresponds to ground-state singlet while dashes and points
correspond to ground-state triplet and quintet, respectively.

Figure 3. Parts (a), (b), and (c) display with solid lines, potential energy
scans minimized according to ground state singlet, triplet and quintet
respectively using our semiempirical method. Overlayed on the same
graphs with plus signs and crosses are the ab initio results for the triplet
and quintet, respectively.
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SELF method. Our preliminary data indicate that DIMSELF
predicts the correct first excited singlet state energy, at least
qualitatively as well.

Another interesting feature of the scans displayed in Figure
4 is the fact that there are excited quintet and triplet states that
cross the ground singlet state as well. As we mentioned earlier
for different geometries, these manifolds of states actually
change in energy order. In some cases the triplets are lower
than the quintets, while in other cases the opposite is true. This
can be better appreciated in Figure 6 where we plot ground-
state singlet and the first few quintets and triplets on the same
graph. Harvey15 predicts a barrier for crossings from quintet
ground state to the singlet ground state, while McMahon’s
results seem to indicate that the crossing occurs without a barrier.
The question arises as to whether these differences are signifi-
cant or not: Are these barriers important for the actual

dynamics? Is it possible to estimate transition rate constants
from them? From our results, it is clear that the picture presented
in refs 14 and 15 is incomplete. Dynamics in this system will
involve the crossing of many fluctuating barriers and different
transition states. Given the fact that several quintets and triplets
cross, there is no a priori reason to assume that the dynamics
would be completely adiabatic, or completely diabatic. Fur-
thermore, there is no reason to assume that only the ground
triplet or quintet state is involved in the dynamics. Our quantum
mechanics-molecular mechanics (QMMM) calculations cur-
rently in progress, on the whole protein, performed using the
JAGUAR42 package point to the fact that in some cases the
order of the quintet and triplet ground state is reversed from
that obtained in the reduced system.

As we mentioned before, when the CO molecule is confined
in the pocket, the environment will greatly affect the “gas-phase

Figure 4. Parts (a)-(c) correspond to ground-state singlet, ground-state triplet, and first few excited triplet states computed with our semiempirical
approach. Part (a) corresponds to geometries minimized for the ground singlet state, while (b) and (c) correspond to geometries minimized for the
triplet and quintet ground state, respectively. The geometries are the same as those used in Figure 2. Parts (d)-(f) show analogous curves only in
this case ground-state singlet, ground-state quintet, and first few excited quintet states are displayed. It is important to notice that solid linesfollow
“adiabatic” potential energy surfaces as opposed to “diabatic” states, hence the lack of smoothness around crossing points.
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looking” potential energy curves depicted in Figure 2. Hence
even disregarding all possible nonadiabatic channels through
excited triplet and quintet states, it is very difficult to obtain
dynamical information such as rate constants for these kind of
complex systems from “gas-phase-like” models. In Figure 7 we
present an example of this. As in all previous plots we displace
the CO molecule in the direction perpendicular to the heme
plane. In this case, however, using the DIM formalism we
include part of the pocket structure. We find as expected a large
repulsion barrier corresponding to the CO molecule colliding
with the protein. Different conformations of the protein will
accommodate different geometries of the CO molecule. Barriers
for crossings between electronic states will fluctuate accordingly.
Hence we strongly believe that a study of dynamics including

the protein is important to really shed light on the nature of the
processes involved in these kind of chemical reactions.

5. Conclusions

In this paper, we have shown how ligand field theory and
diatomics in molecules can be connected to generate ground
and excited electronic potential energy surfaces of complex
systems with transition metal ions. The ligand-ion potentials
calculated using the AOM model are cast in terms of the usual
DIM monatomic and diatomic matrix elements, the ligand-
ligand and other nonmetal interactions are calculated as usual
in the semiempirical DIM approach assuming they enter as
diagonal contributions in the electronic Hamiltonian. The
computational cost of adding extra atoms not considered
“ligands” to the metal ion is the same as in MM calculations.

To perform dynamical studies, more configurations will need
to be added to better fitσ andπ energy functions. One could

Figure 5. Part (a) corresponds to the singlet ground state and the first
three triplet states computed with excited-state density functional theory
at four significant geometries minimized for the singlet ground state.
Part (b) shows the same energy levels computed with DIMSELF.

TABLE 1: DIMSELF Triplet to Singlet Gaps in eV a

CO-Fe(II)
distance in Å lowest triplet first excited second excited

1.7 1.79 2.27 2.87
1.8 1.82 1.91 2.52
1.98 1.25 1.77 1.86
2.38 0.6 1.25 1.81

a We only consider gaps between states that are nondegenerate. Each
of the triplet states is in fact either degenerate or quasi-degenerate.

TABLE 2: TDDFT Triplet to Singlet Gaps in eV

CO-Fe(II)
distance in Å lowest triplet first excited second excited

1.7 1.16 2.27 2.39
1.8 1.77 1.77 2.17
1.98 1.06 1.52 1.58
2.38 0.41 0.80 1.13

Figure 6. Parts (a)-(c) display, in the same graph, the ground-state
singlet (lowest in energy at 2 Å) and first few triplet and quintet states.
In parts (a) and (b), triplets are lower in energy than quintets, while in
part (c) quintets are lower than triplets.
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also use the excited-state information that TDDFT provides to
better adjust the energy of the excited-state potentials in an
iterative fashion.

In our calculations, parameters were not fit to reproduce
excited states; however, they do predict the correct energy
structure for them. This result is very exciting. Although further
testing on other systems must be performed to establish the
transferability of these results, current data suggests that this
opens the possibility for inexpensive study of excited-state
reaction dynamics, light induced phenomena, and would offer
a general method for computing excited states, that is both
accurate and computationally feasible.

From a computational point of view, once parameters are
known, this scheme is simple and fast (fractions of a second
on a desktop PC) allowing it to be applied many times on-the-
fly. Moreover, it includes the necessary couplings due to spin-
orbit and configuration interaction, and hence correctly describes
most of the otherwise forbidden transitions in the chemistry of
transition metal ions in complex systems. However, states that
correspond to charge transfer from the metal ion to the ligands
or from the ligands to the metal ions as well as excited electronic
states of the ligands themselves will not be captured with the
current choice of basis set elements. These states could be
important in the case where excitation energies to them are
similar to the corresponding d energy splitting in the metal ion.

We believe that the semiempirical information about excited
states provided here for the myoglobin system will be very
useful to spectroscopists and ab initio quantum chemists in
search of the exact characterization of avoided crossings and
conical intersections. In this case in particular, it helped us
understand the seemingly contradictory data available in the
literature and the discontinuities in our own ab initio ground-
state triplet potential energy curve. Without the evidence we
obtained from our DIMSELF method, one could have believed
that those discontinuities were due to poor convergence in the
ab initio calculations.

Even in those cases where this method might not provide
accurate quantitative information, it will at least provide
qualitative information about excited states cheaply and thus
can be used to target those molecular configurations expected
to be important for avoided crossings and transition states.

We plan in the future, to extend our ab initio computations
to better fit other regions of configuration space. With this we
will recalculate our energy functions to make them reliable over
a larger region of space. We also plan to add the rest of the
protein and solvent, which should increase the computational

cost only in the same way it does in a molecular mechanics
calculation. Finally we plan to compare these results with more
expensive QMMM calculations, specially in regions of interest
where avoided crossings occur.
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