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We propose a general methodology for calculating the self-diffusion tensor from molecular dynamics (MD)
for a liquid with a liquid-gas or liquid-solid interface. The standard method used in bulk fluids, based on
computing the mean square displacement as a function of time and extracting the asymptotic linear time
dependence from this, is not valid for systems with interfaces or for confined fluids. The method proposed
here is based on imposing virtual boundary conditions on the molecular system and computing survival
probabilities and specified time correlation functions in different layers of the fluid up to and including the
interfacial layer. By running dual simulations, one based on MD and the other based on Langevin dynamics,
using the same boundary conditions, one can fit the Langevin survival probability at long time to the MD
computed survival probability, thereby determining the diffusion coefficient as a function of distance of the
layers from the interface. We compute the elements of the diffusion tensor of water as a function of distance
from the liquid vapor interface of water. Far from the interface the diffusion tensor is found to be isotropic,
as expected, and the diffusion coefficient has the valueD ≈ 0.22 Å2/ps, in agreement with what is found in
the bulk liquid. In the interfacial region the diffusion tensor is axially anisotropic, with values ofD| ≈ 0.8
Å2/ps andD⊥ ≈ 0.5 Å2/ps for the components parallel and normal the interface surface, respectively. We also
show that diffusion in confined geometries can be calculated by imposing appropriate boundary conditions
on the molecular system and computing time correlation functions of the eigenfunctions of the diffusion
operator corresponding to the same boundary conditions.

I. Introduction

Molecular dynamics (MD) computer simulations provide a
powerful tool for analyzing macroscopic transport coefficients
such as diffusion at a microscopic level. The use of computer
simulation to analyze the properties of water is a common tool,1,2

and the calculation of the self-diffusion coefficient from
simulation has yielded results consistent with experiment for
many modern water models.3,4 In uniform fluids, two methods
have been used to compute the self-diffusion coefficient from
molecular dynamics trajectories. In one of these methods, one
computes the mean-square displacement (MSD) of the mol-
ecules, 〈∆r(t)2〉, as a function of time and fits this to the
asymptotic time dependence predicted from the diffusion
equation

This is the Einstein relation, from which the diffusion coefficient
can in turn be expressed in terms of the MD calculated
autocorrelation function of the velocity, giving the Green-Kubo
relation,

whered is the dimensionality of the system. These methods
are derived from the ordinary diffusion equation with free

boundary conditions and are thus suitable only for calculations
in homogeneous fluids.

If, instead, we wish to determine the diffusion coefficient of
liquids confined to cavities, or in inhomogeneous regions such
as, for example, either the air-water interface or the interface
between water and various solids,5-10 neither the Einstein
relation nor the Kubo relation are valid approaches. In confined
liquids the mean square displacement will be bounded by the
size of the confined region and it will be difficult to unambigu-
ously find the diffusion coefficient. In inhomogeneous systems,
molecules will stay in the region of interest only for a finite
time and then will explore other regions. Since the diffusion
coefficient will be different for different regions, the time
dependence of the MSD, computed for particles initially in the
region of interest, will become linear only at times long enough
for the molecules to sample all regions, and then its slope will
give the diffusion coefficient averaged over all regions. How
then will we be able to determine the diffusion coefficient for
the region of interest? Moreover, for such systems the spatial
distribution at equilibrium will not be uniform and the appropri-
ate phenomenological equation will be the Smoluchowski
equation and not the free diffusion equation from which the
Einstein relation is derived. In this paper we present various
strategies for determining the diffusion coefficients in such
systems. In the case of a liquid vapor interface, the asymmetry
of the interface region introduces unique features in interfacial
self-diffusion. Special care is required in the analysis of such
properties and necessitates an accurate determination of the
diffusion tensor in the interfacial region.

† Part of the special issue “Hans C. Andersen Festschrift”.
* Corresponding author.
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This article introduces a new methodology for calculating
the diffusion tensor in an inhomogeneous system in Section II
and applies this methodology to the study of the air-water
interface in Section III. The methodology is different for
diffusion in a direction perpendicular to the interface than for
a direction parallel to the interface. In both cases we introduce
virtual absorbing boundaries at the boundaries of layers. For
determination of the diffusion coefficient parallel to the interface,
D|, we generalize the Einstein relation and show that the MSD
of particles that remain in the layer asymptotically varies asf
2P(t)D|t, so that an MD determination of the survival probability
in the layer,P(t), and the MSD allow determination of the
parallel component of the diffusion tensor. For determination
of the diffusion coefficient perpendicular to the interface we
propose a dual simulation technique. The gist of this method is
to perform MD with virtual absorbing boundary conditions at
each layer and to perform a sequence of Langevin dynamics
simulations each with the potential of mean force determined
from the MD, but with different values of friction coefficient
ú⊥ characterizing motion in a direction perpendicular to the
interface. One can find the value of the friction coefficient that
gives the best fit of the Langevin survival probability in a layer
to that found by MD for that layer.D⊥ can then be found from
the Stokes-Einstein relation,D⊥ ) kBT/ú⊥. This “Dual Simula-
tion Method” requires a rather subtle definition of the boundaries
for the Langevin dynamics. We also show that, in some cases,
we can determine the diffusion coefficient for fluids in confined
geometries as well as forD⊥ in layers with absorbing boundary
conditions from a computation of the autocorrelation function
of the eigenfunctions of the diffusion operator corresponding
to these boundary conditions. The various approaches are tested
in a variety of ways.

This study was motivated by our interest in water hydrogen
bond dynamics in the liquid-vapor interface.11 Previous studies
have shown that diffusion makes an important contribution to
the hydrogen-bond dynamics.12 Before understanding hydrogen
bond dynamics in interfaces we must understand diffusion there.
Thus we apply our methodology to the liquid-vapor interface
of liquid water.

II. Methodology

Since the presence of the interface breaks the symmetry of
the liquid, diffusion in such a system is described by an
anisotropic Smoluchowski equation:

where p(r ,t|r 0t0) is the conditional probability distribution
function, andD is the diffusion tensor. Taking thez axis to be
perpendicular and thex andy axes to lie parallel to the interface,
a system with a flat interface will be axially symmetric around
thez axis. The equilibrium density profile along thez direction
is given byF(z) ) F0 exp(-âW(z)), whereW(z) is the potential
of mean force (PMF). The densityF(z) is easily determined by
MD, and from this the PMF can be determined. The diffusion
tensor will be diagonal in this frame withDzz * Dxx ) Dyy. In
general, the diffusion coefficients will be a function ofz;
however, if we study molecules in sufficiently thin layers parallel
to the interface, we expect the diffusion coefficients not to vary
with z within a layer, but of course they may vary from layer
to layer, especially as we approach the interfacial region. The
Smoluchowski equation will then be separable in each layer.
In this case the Smoluchowski equation in each layer will be

separable inx, y, andz. The original eq 3 can be decomposed
into three independent equations:

where,

To analyze the dependence of diffusion on position relative
to the interface we derive and compute the components of the
diffusion tensor for finite regions that range from the bulk water
phase to the interface. Any molecule initially present in a
specified region that passes the boundaries no longer contributes
to the calculation. In the coordinates parallel to the interface (x
andy) water diffusion is unbounded. In thex direction, we can
postulate the boundary condition:

and the initial condition

The same can be done for diffusion along they direction.
Without loss of generality, we taket0 ) 0 in the following.
Combined with eqs 4 and 5, we can get the familiar results for
diffusion in thex andy directions:

A very similar approach can be used for fluids in a confined
geometry. For example, for a uniform fluid in a rectangular box
with reflecting boundary conditions, one may find the eigen-
functions and eigenvalues of the diffusion operator subject to
reflecting boundary conditions at the walls. Then the decays of
the autocorrelation functions are exponential with well-defined
time constants. MD of a fluid between reflecting walls can then
be used to calculate these correlation functions, and from their
exponential decay at long times one can find the diffusion
coefficients. In spherical cavities, one can solve the diffusion
equation with reflecting boundary conditions. The eigenfunctions
are spherical Bessel functions multiplied by spherical harmonics.

A. Diffusion Coefficients Parallel to the Interface. In the
water-vapor system, we apply virtual absorbing boundary
conditions to the MD to localize the contributions to the
diffusion coefficient to our specified finite regions. These are
virtual in that they are applied only to the analysis of MD
trajectories and not to the generation of these trajectories. The
eigenfunctions,Ψn, of eq 6 subject to these boundary conditions,
and the evaluation of the perpendicular component of the
diffusion tensor,D⊥ ) Dzz, that follows will be discussed shortly.
First we will focus on the simpler problem of evaluating the
parallel component,D|, of the diffusion tensor, which is equal
to eitherDxx or Dyy.

∂tp(r ,t|r 0,t0) ) ∇‚D‚[∇ + â(∇W(z))]p(r ,t|r 0,t0) (3)

∂tp(x,t|x0,t0) ) Dxx∂x
2p(x,t|x0,t0) (4)

∂tp(y,t|y0,t0) ) Dyy∂y
2p(y,t|y0,t0) (5)

∂tp(z,t|z0,t0) ) Dzz∂z[∂z + â(∂zW(z))]p(z,t|z0,t0) (6)

p(r ,t|r 0,t0) ) p(z,t|z0,t0)p(y,t|y0,t0)p(x,t|x0,t0) (7)

p(x f ∞,t) ) 0 (8)

lim
tft0

p(x,t|x0,t0) ) δ(x - x0) (9)

p(x,t|x0,0) ) 1

x4πDxxt
exp[-

(x - x0)
2

4Dxxt ] (10)

p(y,t|y0,0) ) 1

x4πDyyt
exp[-

(y - y0)
2

4Dyyt ] (11)
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The probability for a particle to remain in this region,a e z
e b, can be determined by integrating the joint probability, eq
7, overx, x0, y, y0, z0, andz:

It is important to recognize that because of the virtual absorbing
boundary conditions, trajectories that leave and then re-enter
the layer do not contribute to eq 12. To calculate the components
Dxx andDyy we formulate the mean square displacement for a
finite region. In thex direction the mean square displacement,
〈∆x(t)2〉{a,b}, of particles that remain in region{a,b} is

whereV{a,b} is the volume of the layer. It is important to note
that 〈∆z2(t)〉a,b * 2DzzP(t)t. The mean square displacement and
the survival probabilityP(t) are calculated from the simulation
as follows. LetS(t, t + τ) designate the set of all particles that
stay in the layer{a,b} during the time interval betweent andt
+ τ, let N(t, t + τ) be the number of such particles, and finally
let N(t) designate the number of particles in the layer at timet.
Then we compute

and

In the foregoing,T is the total number of time steps averaged
over. Thus we can obtain the expression forDxx and similarly
for Dyy:

It is important to note that the correlation functions defined in
eq 14 and eq 15 are not ordinary two-point correlation functions
because the requirement that the particle be in the layer for the
whole time betweent and t + τ makes this a function of the
whole history in this time interval and not just on its values at
t and t + τ.

B. Diffusion Coefficient Perpendicular to the Interface.
It remains to discuss methods used to evaluate the component
of the diffusion tensor perpendicular to the interface,D⊥ ) Dzz.
For finite regions sufficiently far away from the interface, the
density is uniform, the potential of mean force,W, is zero, and
the Smoluchowski equation, eq 6, reduces to the diffusion
equation,

We can derive an analytical expression for the diffusion
coefficient with absorbing boundary conditions by applying
the commonly used Smoluchowski boundary condition de-
fined byp(z ) a,t) ) 0 andp(z ) b,t) ) 0. The initial condition
is p(z,t0|z0,0) ) δ(z - z0). Using the standard method of sepa-
ration of variables,13 we setp(z,t|z0,0) ) f(z)g(t) and solve eq

17 to obtain the solution of the form

where

are eigenfunctions of the diffusion operator satisfying the
boundary conditions, whereL ) b - a.

The autocorrelation of any such eigenfunction is easily
determined to be

Herep(z0) is the initial normalized probability distribution along
z in the interval, which is a uniform distribution ()1/L) in the
bulk water regions.

The autocorrelation of the eigenfunction is easily determined
from the simulation as

where once againS(t,t + τ) designates the set of all particles
that stay in the layer{a,b}. During the time interval betweent
andt + τ, N(t) is the number of particles in the layer at timet,
andT is the total number of time steps averaged over.

Near the interface one must use the Smulochowski equation.
Although not applied in this paper, the eigenfunctions of this
equation (after being made self-adjoint) can easily be found
numerically. Evaluation of the autocorrelation function will
again decay exponentially, allowing one to determine the
diffusion coefficient as above. If used, the solution of the
Smulochowski equation will be a valid approach under the same
conditions as would be required for deriving the Smulochowski
equation from the underlying Langevin (or Fokker-Planck)
equation,14 which are that the time be longer than the velocity
correlation time,τV ) m/ú, and that the fractional change of
the potenial of mean force be small over the diffusion length
corresponding to that velocity correlation time, i.e.,µ )
〈z̆2〉1/2τV/σ < 1. In the case of the water interface,µ ≈ 0.04.

Another route to determining the diffusion coefficient, and
the one adopted here, avoids solving eq 6 directly, involves
running Langevin dynamics simulations for the motion perpen-
dicular to the interface (thez direction) in parallel with our
molecular dynamics simulations. This “dual simulation method”
is particularly useful for regions where the potential of mean
force is nonzero and one can no longer use the simple diffusion
equation to solve forDzz. The Langevin equation for motion
along thez direction is

where the first term on the right is the mean force on the particle
(arising from the presence of the interface) derived from the
potential of mean forceW(z), R(t) is the random force, which

p(z,t|z0,0) ) ∑
n)1

∞

Ψn
/(z)Ψn(z0) exp(-(nπ/L)2Dzzt) (18)

Ψn(z) ) x2/L sin(nπ(z - a)/L) n ) 1, 2, ... (19)

〈Ψn(z(t))Ψn
/(z(0))〉

) ∫a

b
dz∫a

b
dz0p(z,t|z0,t0) p(z0)Ψn(z)Ψn

/(z0)

) 1
L

e-(nπ/L)2Dzzt (20)

〈Ψn(z(t))Ψn
/(z(0))〉{a,b}

)
1

T
∑
t)1

T 1

N(t)
∑

iεS (t,t+τ)

Ψn(zi(t + τ))Ψn
/(zi(t)) (21)

mz̈) -
∂W(z)

∂z
- úzzz̆ + R(t) (22)

P(t) ) ∫a

b
dz∫a

b
dz0 p(z,t|z0,0) p(z0) (12)

〈∆x(t)2〉{a,b} ) ∫V{a,b}
dr ∫V{a,b}

dr 0p(r ,t|r 0,t0)p(r0)(x - x0)
2

(13)

) 2P(t)Dxxt

〈∆x2(t)〉{a,b} )
1

T
∑
t)1

T 1

N(t)
∑

iεS (t,t+τ)

(xi(t + τ) - xi(t))
2 (14)

P(τ) )
1

T
∑
t)1

T N(t, t + τ)

N(t)
(15)

Dxx({a,b}) ) lim
τf∞

〈∆x(τ)2〉{a,b}

2τP(τ)
(16)

∂tp(z,t|z0,t0) ) Dzz∂z
2p(z,t|z0,t0) (17)
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is assumed to be a Gaussian random process with a white noise
spectrum, andúzz is the static friction coefficient along thez
direction, which is related to the diffusion tensor through the
Stokes-Einstein relation:

By comparing the survival probability, eq 15, determined from
a full MD simulation with that determined from an analogous
Langevin dynamics (LD) simulation, we can determine the best-
fit value for the diffusion coefficientDzz. The dual simulation
method proceeds as follows. One computes the survival prob-
ability from both molecular dynamics and from a series of
Langevin simulations corresponding to different values of the
diffusion coefficientDzz for a region defined bya < z < b.
The correct value of the diffusion coefficient is chosen to be
the one that gives the best fit of the survival probability from
LD to that from MD. As we show below, it will be necessary
to make corrections to the positions of the virtual absorbing
boundaries in the LD simulations.

Another strategy, bearing a close connection to the above
but not used in this study, is to devise a dual simulation method
in which one runs Smoluchowski dynamics (simulating the
diffusion process defined by the Smoluchowski equation,
unfortunately sometimes called Brownian dynamics) in parallel
with full MD. In this case one would use virtual absorbing
boundaries for the MD as defined above, but with relevant
corrections to the boundaries for the Smoluchowski dynamics
(SD) simulation as discussed below. In fact, whenever one
calculates the time dependence of dynamical properties that
spring from the Smoluchowski or Langevin equation (LE), such
as the corresponding autocorrelation function of its eigenfunc-
tions or survival probability, it will be necessary to apply the
relevant boundary corrections wherever the width of the layers
appears explicitly.

C. Two Corrections to the Positions of the Virtual
Boundaries. It is important to recognize that many dual
simulation methods will require corrections to the positions of
the virtual absorbing boundaries.

Smoluchowski DynamicsVersus LangeVin Dynamics.In our
molecular dynamics simulation of the air-water interface
system, the virtual absorbing boundary conditions are defined
by the flux, jout(z ) a,t) ) 0 andjout(z ) b,t) ) 0, for a region
defined withina < z < b. Virtual absorbing boundaries are
also defined by the flux,jout(z ) boundary,t) ) 0, in Langevin
dynamics. However, in the Smoluchowski equation, absorbing
boundaries are defined by the Smoluchowski boundary condi-
tion, p(z ) boundary,t|z0,0) ) 0. The discrepancy between the
Smoluchowski boundary condition for absorption and the real
absorbing boundary condition defined by the flux has been
discussed at length.15-17 Razi Naqvi et al.15 have derived a
correction factor for the width of the region that equates the
boundary conditionp(z ) boundary,t|z0,0) ) 0 with the flux
boundary conditionjout ) 0:

and wherelp)0 is the corrected region width, necessary if one
wants to use the Smoluchowski boundary condition to solve
the diffusion equation (or run SD) for a simulation with
boundary conditionjout ) 0 and width of lengthljout)0 ) L.

LangeVin Versus Generalized LangeVin Dynamics.Before
proceeding we must determine if the static Langevin equation

can accurately predict the decay of either the survival probability
or the decay of the autocorrelation function of any eigenfunction
of the diffusion operator (or Smoluchowski operator) for thin
layers of liquid. There is extensive literature showing that in
real bulk liquids the generalized Langevin equation (GLE), not
the static friction LE, describes the single-particle dynamics.
For example, the velocity correlation function exhibits marked
deviations from the exponential decay predicted by the LE with
static friction. This arises from the fact that the correlation time
of the force experienced by a particle is of finite duration and
not of zero duration, as is implicit in the ordinary LE. The
dynamic friction in the GLE has an important effect on the mean
square displacement. The memory effect in the GLE leads to a
mean-square displacement that initially increases faster than that
predicted by the LE with white noise friction. However, in the
long-time limit, the rate of increase of the MSD is the same for
both the GLE and LE with the same static limit of the friction
coefficient.18 The short-time discrepancy becomes important
when one considers properties dependent on the boundary such

Figure 1. (a) To calculate the components of diffusion parallel to our
boundary surface we use the generalized Einstein equation for the
anisotropic diffusion, eq 16. The bulk region is defined as a 3.5 Å
region in the center of our water phase. The interface region is defined
in the text with a width of 3.4 Å. The portions of the curve we fitted
are between 2.0 ps and 3.9 ps. (b) Plot of the diffusion coefficient in
all three Cartesian coordinates for 3.5 Å regions extending from the
bulk up to the interface. A 400 ps trajectory is run in the NVE ensemble
using the velocity-verlet integrator to update the atomic positions and
velocities. The atomic configuration is recorded for data analysis every
20 fs. The coordinate correction algorithm, RATTLE,28 is used to
constrain the bond lengths, allowing for a time step of 1 fs in our
simulations. To efficiently calculate the electrostatic interactions, mesh-
based approximations to the Ewald sum29 can be used.30-33 We use
the P3ME30 method.

úzz) kBTDzz
-1 (23)

lp)0 ) l jout)0 + 2λ (24)

λ ) (πmDzz
2/2kBT)1/2 (25)
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as the eigenfunction autocorrelation function or survival prob-
ability. Because the dynamics predicted by the GLE leads to
faster translational motion at short time than would be predicted
by the LE, particles described by the GLE initially distant from
the boundaries eventually come close to the boundaries, cross,
and are absorbed earlier than they would be if their motion was
described by the LE. In some sense we can regard the GLE as
giving rise to a “jump distance”,ω, that would not be present
in the LE simulation. Thus, to a particle approaching an
absorbing boundary, the position of the boundary will appear
to be closer by the lengthω in GLE (or MD) as compared to
LE. To correct for this in the dual simulation method, we
propose to use an effective layer width for the LE that is smaller
than the width in the MD. This approach is similar in spirit to
the correction factor derived by Razi Naqvi (cf eq 24), discussed
above,

where lLE is the corrected region width (for two absorbing
boundaries) necessary if one wants to use the static LE (or the
diffusion equation) in the dual simulation method and the width
of the region in MD islMD. We conjecture that this jump distance

is equal to the maximum difference betweenx〈∆z2(t)〉 for the
MD (or GLE) and LE simulations.

III. The Application to the Vapor -Water Interface

A. Justification of the Memory Effect Correction. To test
the validity of our conjecture, we ran stochastic molecular
dynamics based on the GLE with memory frictionúzz(t):19

The generalized Langevin dynamics (GLD) simulations were
conducted with an exponential memory kernelúzz(t) ) ú0Re-Rt,
whereú0 is the static friction kernel corresponding to eq 23,
and 1/R is the memory relaxation time. For a system with
fictitious absorbing boundaries at positionsa andb whereb -
a ) 3.4 Å, the survival probability is calculated. Langevin
dynamics with the same static friction kernel and absorbing
boundaries at positionsa + ω andb - ω were run varyingω
until the decay of the survival probability coincided for LD and

GLD. The maximum difference inx〈∆z(t)2〉 for GLD and LD
is computed and plotted in Figure 2a along withω as a function
of the memory relaxation time. The two curves fit with each

Figure 2. (a) Plot of memory correction factor vs inverse of characteristic time. The dash line and solid line are the correction factorsω from the

GLD and LD and the biggest difference ofx〈∆z(t)2〉, respectively. The static friction corresponds toD ) 0.25 Å2/ps, T ) 300 K, and water
molecule mass. (b) Friction kernel. The solid line is calculated from the velocity autocorrelation function of MD by solving the Volterra equation
numerically, see cited reference 21 for details. From the second fluctuation-dissipation theorem, the relationship between the friction kernel and
the random force autocorrelation function (FAC) can be established asúzz(t) ) â〈R(0)zR(t)z〉, whereâ ) 1/(kT) andRz is the random force. The
curve of FAC is scaled byâ. (c) Velocity autocorrelation function (VAC) from the molecular simulation and the GLD. (d) Mean-square displacement.
The GLD simulation with the real friction kernel can almost reproduce the same MSD curve as the real MD simulation. The difference of the

x〈∆z(t)2〉 is obvious. (e) Survival probability from MD, GLD with real friction kernel, and Langevin dynamics with width corrected using mean
square displacement prescription. The coincidence of these curves proves the accuracy of the numerical kernel and the memory correction.

lLE ) lMD - 2ω (26)

mz̈) -
∂W(z)

∂z
- ∫0

t
dτúzz(t - τ)z̆(τ) + R(t) (27)
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other quite well, an observation that supports our conjecture
concerning the adjusted boundaries.

To provide further evidence for the conjecture, we run a 400
ps molecular dynamics simulation of a homogeneous isotropic
sample of liquid water consisting of 256 TIP4P20 water mole-
cules with periodic boundary conditions. From the velocity auto-
correlation function, we adopt the method of Berne and Harp21

to calculate the friction kernel numerically, as shown in Figure

2b. We determined the maximum difference inx〈∆z(t)2〉
between GLD (with this empirical friction kernel) and LD (with
the corresponding static friction coefficient), giving a value of
ω ) 0.16 Å. A plot of the survival probability,P(t), for this
GLD with the empirical kernel, for the original MD and for
LD with width corrected byω ) 0.16 Å, is given in Figure 2e.
The close correspondence betweenP(t), determined from LD
with the corrected widthlLE, andP(t) determined from either
MD or GLD (with a friction kernel found from the MD) further
justifies our conjecture. [Agreement between the original MD
and GLD velocity autocorrelation functions and mean-square
displacements, and between the random force autocorrelation
function used in the GLD and the friction kernel found from
MD shown in Figure 2b,c,d demonstrates the accuracy of this
test of our above conjecture.] Given the validity of this
conjecture, we can now fit the friction coefficient in LD
simulations with corrected boundary conditions to MD using
the dual method described before. We do not need to determine
the explicit time dependence of the friction kernel.

B. Parallel Components.Before applying eq 16 to a liquid
with an interface, we first test this approach on the same bulk
water system used in our justification of the correction factor.
We compute the diffusion coefficients in slabs of water of width
3.5 Å perpendicular to thez-axis using eq 16. This method gives
Dxx ) 0.30 ( 0.02 Å2/ps, Dyy ) 0.30 ( 0.02 Å2/ps. We also
used the Einstein relation (cf. eq 1), in the standard way, to
compute the diffusion coefficient for this homogeneous system
and found it to beD ) 0.307 Å2/ps, in agreement with our
calculation, therefore validating this methodology.

Liquid water with a liquid-vapor interface is prepared using
512 water molecules of the TIP4P/FQ3,20 model. The resultant
3-D periodic simulation box is rectangular with dimensionsLx

) Ly ) 25 andLz ) 75. The width of the water phase is
approximately 25 Å and is centered about the middle of the
box z ) 0. Further simulation details are given in the Figure 1
caption. Two water-vapor interface regions perpendicular to
thez coordinate are present on either side ofz ) 0. The liquid
is subdivided into layers of water of width∆z ) 3.5 Å
perpendicular to thez axis. The interface width is 3.4 Å and
the center of the region is positioned atz ) 12.46 Å. We
evaluateDxx andDyy in each of the layers of the liquid from eq
16. Plots of〈∆x2(t)〉/2P(t) and〈∆y2(t)〉/2P(t) for the slab in the
middle of the bulk water phase and in the interface layer are
given in Figure 1. This figure also show the range over which
the linear fitting is applied, from 2.0-3.0 ps. The plot ofDxx,Dyy

ranging from the middle of the bulk phase to the interface is
given in Figure 1. The error bars are calculated using block
averaging over the trajectory.2

C. Perpendicular Component.For finite regions that border
on the interface with water vapor, the potential of mean force
is significantly different from zero and the long time diffusional
motion will be given by the Smoluchowski equation, eq 6. For
the purposes of the following discussion we define the liquid
side boundary atz ) l and the vapor side boundary atz ) 0.
To use the methods outlined before, we assign fictitious
boundaries that are perfectly absorbing atz ) 0, l. Figure 1

shows how the density varies as a function of position as one
approaches the interface from inside the liquid, as determined
from MD. This profile can be fit to the hyperbolic tangent
function22 as

for the interfacial region. The potential of mean force in our
water vapor interface is then defined as

Needless to say, it is difficult to solve the Smoluchowski
equation with this nonlinear potential of mean force analytically,
thus necessitating the use of the dual LD simulation method
for this region.

We have outlined two routes to determining theDzz compo-
nent of the diffusion tensor. The first involves using the
analytical expression, given by eq 20, for the decay of the
autocorrelation of the eigenfunction of the Smoluchowski
equation. When the solution of the Smoluchowski equation is
difficult to obtain, a second route, using dual simulation
Langevin dynamic simulations, can be used to evaluateDzz.

Before applying the analytical solution, eq 20 and the LD
dual simulation method to a liquid with an interface, we first
test this approach on the same homogeneous, isotropic sample
of liquid water used in the calculation ofDxx and Dyy. We
compute the diffusion coefficients in slabs of water of width
3.5 Å perpendicular to thez axis using eq 20. The autocorre-
lation of the eigenfunction or the survival probability is
calculated from the MD simulation for a region defined bya <
z < b, whereL ) b - a ) 3.5 Å. Using the diffusion equation
and thus eq 20 to solve forDzz requires two corrections to the
width L. As discussed above, the discrepancy between the
Smoluchowski boundary condition (p ) 0) used to solve the
diffusion equation and the real boundary condition (jout ) 0)
can be corrected usingλ defined in eq 24. Second, one must
include the aforementioned memory correctionω giving an
effective widthleff ) 3.5 + 2λ - 2ω, whereλ ) 0.104 Å and
ω ) 0.143 Å for this system. This method givesDzz ) 0.30(
0.02 Å2/ps ) Dxx ) Dyy. Using the Langevin dual simulation
method requires only the memory correction leading to absorb-
ing boundaries in the LD simulation ata + ω andb - ω. From
the dual Langevin method,Dzz ) 0.30( 0.02 Å2/ps in perfect
agreement. The diffusion tensor is found to be isotropic, as we
expect for this system with values in agreement with the correct
diffusion coefficient calculated using the Einstein relation (cf.
eq 1), in the standard way,D ) 0.307 Å2/ps. Thus our new
method based on analyzing the MD data by imposing virtual
absorbing boundary conditions gives the same value for the
diffusion coefficient as does the standard method for the
homogeneous system, thus vindicating the method.

To evaluateDzz for the bulk-water-like regions (z < 10 Å)
of our air-water interface system, we compute the autocorre-
lation of the eigenfunction with eigenvaluen ) 1 and fit to the
exponential in eq 20 (the results from dual simulation are
equivalent for the bulk-like regions). A plot of the fit for a 3.5
Å region centered in the middle of the bulk water phase is given
in Figure 3a.

We now apply the above LD dual simulation analysis to
determine the components of the diffusion tensor in the
interfacial layers of our air-water interface system. The dual
simulation method is a little more complicated than the
procedure for the previously discussed bulk-water-like regions.

F(z) ) 1
2

[1 + tanh[2.1972(z - l/2)/l]]F0 (28)

W(z) ) -kT ln(F(z)/F0) (29)
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The correction factor (ω) is derived from the maximum

difference ofx〈∆z(t)2〉 between MD and LD for the same
value of the diffusion coefficient. Not knowing the value of
the diffusion coefficient on the interface, we resort to an iterative
procedure. Initially we use dual simulation to solve forDzz

without consideringω. We then calculateω from the corre-
sponding MSD curves from MD and LD. Using this value of
ω, we change the position of the boundaries in the LD
simulation and derive a newDzz using dual simulation. This
procedure is repeated until the change in the diffusion coefficient
is smaller than 0.01 Å2/ps. A plot of the final fit for the interface
region is given in Figure 3b. The plot ofDzzand the previously
calculatedDxx andDyy ranging from the middle of the bulk phase
to the interface is given in Figure 1. The error bars are calculated
using block averaging over the trajectory.2

Implicit in the MD simulation is thez-dependent interfacial
potential of mean force. Because of this, the ordinary Einstein
relation and the Green-Kubo equation for the diffusion
coefficient (the time integral of the velocity autocorrelation
function (VAF)) are no longer valid. Consider, for example,
Langevin dynamics alongz with the systematic force arising
from the interfacial potential of mean force and with a given
static friction coefficientúzz. In general, the VAF will be
functionally dependent on the PMF as will be its integral, i.e.,
the presumed diffusion coefficient will also be functionally
dependent on the PMF. In contrast, for the Smoluchowski
equation, the diffusion coefficient is independent of the PMF.
Disregarding this, one might wonder what the value ofDzzwould
be if applying the Einstein equation on the interface was correct.
Using eq 1 for particles initially in the same interface region
used above, we getDzz ) 0.23( 0.02 Å2/ps. The value forDzz

is clearly much smaller than that found from the dual simulation
method. Integrating the first 3 ps of the Green-Kubo relation
givesDxx ) 0.8( 0.5 Å2/ps,Dyy ) 0.7( 0.5 Å2/ps, andDzz )
0.3 ( 0.5 Å2/ps. One may argue that the uncertainties
encountered are too large to make a definitive statement. To
clarify the inadequacy of using the Green-Kubo relation to
computeDzz, we performed a very long LD simulation, similar
to the one used in the dual simulation method of the interfacial
region. This mimics the MD. We determine theú-component
of the VAF for a static friction consistent withDzz ) 0.52 Å2/
ps. Integrating the first 10 ps of the VAF gives an erroneous

value ofDzz ) 0.23( 0.05 Å2/ps, approximately half as large
as the input value.

IV. Discussion and Conclusion

Far from the interface, the diffusion tensor is found to be
isotropic, as expected, and the diffusion coefficient has the value
D ≈ 0.22 Å2/ps, in agreement with what is found in the bulk
liquid.3 As the layers approach the interface region, all
components of the diffusion tensor increase. This can be
understood when one considers the source of water’s relatively
slow mobility in bulk water. In bulk water each molecule forms
on average 3.6 hydrogen bonds with neighboring water mol-
ecules. This hydrogen bonding network impedes the translational
motion of the water molecules. In the interface region the
number of hydrogen bonds is approximately 2.5 per water
molecule.11 This phenomenon is well known and has been
demonstrated by theory and experiment.23-26

The fewer hydrogen bonds reduce the effective friction felt
by the water molecules, resulting in the larger diffusion
coefficient. TheDzz component of the diffusion coefficient of
the interface is approximately two times the value in bulk water,
(≈0.5 Å2/ps), while the components parallel to the interface
(Dxx ) Dyy ≈ 0.8Å2/ps) are approximately three and a half times
the bulk value. The axial anisotropy in the diffusion is related
to the structural asymmetry of the interface.

We suspect that the same qualitative behavior will be seen
in all liquids, including classical liquids such as liquid argon.
In fact, our simulations of liquid argon at reduced temperature
and density 0.75 and 0.83 gaveDxx ) Dyy ) Dzz≈ 0.2 Å2/ps in
the bulk andDxx ) Dyy ≈ 0.8Å2/ps andDzz ≈ 0.4Å2/ps in the
interfacial layer.

One can rationalize this behavior as follows. The barriers for
diffusion perpendicular to the interface will be larger than for
diffusion parallel to the barrier, but will be smaller than for
diffusion in the bulk. A vacancy model for diffusion illustrates
this. For diffusion to occur, a vacancy must be next to the
diffusing particle. Since fluid relaxes around this vacancy, the
barrier opposing a jump into the vacancy depends on the
“stiffness” of the fluid with respect to density fluctuations
transverse to the direction of the jumping particle. For a jump
into a vacancy along thex or y direction, we must consider the
stiffness along thez direction, whereas for a jump into the
vacancy along thez direction, we must consider the stiffness
along thex or y directions. In the interface we expect the
stiffness alongz to be smaller than alongx and y. Thus the
barrier to diffusion alongz will be greater than the barrier to
diffusion along eitherx or y, andDzz < Dxx ) Dyy. Likewise,
we expect that all barriers in the bulk will be larger than in the
interface because the fluid will be stiffer there. This hand-waving
argument is consistent with our observations.

The methodology introduced in this paper allows for predic-
tion of the variation in the diffusion tensor with distance from
the interface. The behavior observed on the liquid-vapor
interface, using this methodology, is significantly different than
what was predicted using the mean-square displacement5 or the
velocity correlation function.27 It would be interesting to apply
this method to the liquid-solid interface and to compare results
with those predicted using the older methods.8 We will do this
in a subsequent paper.

In summary, we have developed a general method to calculate
the self-diffusion coefficient in a finite region. This is very
important since the mobility of the solvent molecules greatly
affects the reactivity and dynamics of solutes such as proteins.
In principle, our method can be extended to more complicated

Figure 3. (a) Decay of the autocorrelation function of the eigenfunction
for the first nonzero eigenvalue fit using a least-squares method for
the bulk region. See eq 20. (b) Decay of the survival probability for
the interface region. The survival probability is fit for long times using
a dual simulation with Langevin dynamics.
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geometries and different boundary conditions in order to handle
problems that include the diffusivity of water in the ion channel
or “pocket” near the active site in some enzymes.
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