J. Phys. Chem. B004,108,6595-6602 6595
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We propose a general methodology for calculating the self-diffusion tensor from molecular dynamics (MD)
for a liquid with a liquid—gas or liquid-solid interface. The standard method used in bulk fluids, based on
computing the mean square displacement as a function of time and extracting the asymptotic linear time
dependence from this, is not valid for systems with interfaces or for confined fluids. The method proposed
here is based on imposing virtual boundary conditions on the molecular system and computing survival
probabilities and specified time correlation functions in different layers of the fluid up to and including the
interfacial layer. By running dual simulations, one based on MD and the other based on Langevin dynamics,
using the same boundary conditions, one can fit the Langevin survival probability at long time to the MD
computed survival probability, thereby determining the diffusion coefficient as a function of distance of the
layers from the interface. We compute the elements of the diffusion tensor of water as a function of distance
from the liquid vapor interface of water. Far from the interface the diffusion tensor is found to be isotropic,
as expected, and the diffusion coefficient has the value 0.22 A/ps, in agreement with what is found in

the bulk liquid. In the interfacial region the diffusion tensor is axially anisotropic, with valués e¢ 0.8

AZps andD ~ 0.5 A%/ps for the components parallel and normal the interface surface, respectively. We also
show that diffusion in confined geometries can be calculated by imposing appropriate boundary conditions
on the molecular system and computing time correlation functions of the eigenfunctions of the diffusion
operator corresponding to the same boundary conditions.

I. Introduction boundary conditions and are thus suitable only for calculations

Molecular dynamics (MD) computer simulations provide a in homogeneous fluids.
powerful tool for analyzing macroscopic transport coefficients  If, instead, we wish to determine the diffusion coefficient of
such as diffusion at a microscopic level. The use of computer liquids confined to cavities, or in inhomogeneous regions such
simulation to analyze the properties of water is a commonttdol, ~as, for example, either the aiwater interface or the interface
and the calculation of the self-diffusion coefficient from between water and various solfi8? neither the Einstein
simulation has yielded results consistent with experiment for relation nor the Kubo relation are valid approaches. In confined
many modern water modeig.In uniform fluids, two methods liquids the mean square displacement will be bounded by the
have been used to compute the self-diffusion coefficient from size of the confined region and it will be difficult to unambigu-
molecular dynamics trajectories. In one of these methods, oneously find the diffusion coefficient. In inhomogeneous systems,
computes the mean-square displacement (MSD) of the mol- molecules will stay in the region of interest only for a finite
ecules, [Ar(t)20] as a function of time and fits this to the time and then will explore other regions. Since the diffusion
asymptotic time dependence predicted from the diffusion coefficient will be different for different regions, the time
equation dependence of the MSD, computed for particles initially in the
region of interest, will become linear only at times long enough
mr(t)zD—> 2dDt Q) for the molecules to sample all regions, and then its slope will
give the diffusion coefficient averaged over all regions. How
This is the Einstein relation, from which the diffusion coefficient then will we be able to determine the diffusion coefficient for
can in turn be expressed in terms of the MD calculated the region of interest? Moreover, for such systems the spatial
autocorrelation function of the velocity, giving the Gredubo distribution at equilibrium will not be uniform and the appropri-
relation, ate phenomenological equation will be the Smoluchowski
equation and not the free diffusion equation from which the
D :%fom dtv(t)-v(0)O @) Einstein relation is derived. In this paper we present various
strategies for determining the diffusion coefficients in such
systems. In the case of a liquid vapor interface, the asymmetry
of the interface region introduces unique features in interfacial
self-diffusion. Special care is required in the analysis of such
T Part of the special issue “Hans C. Andersen Festschrift”. properties and necessitates an accurate determination of the
* Corresponding author. diffusion tensor in the interfacial region.
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whered is the dimensionality of the system. These methods
are derived from the ordinary diffusion equation with free
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This article introduces a new methodology for calculating separable irx, y, andz The original eq 3 can be decomposed
the diffusion tensor in an inhomogeneous system in Section Il into three independent equations:
and applies this methodology to the study of the-aiater
interface in Section 1ll. The methodology is different for
diffusion in a direction perpendicular to the interface than for
a direction parallel to the interface. In both cases we introduce
virtual absorbing boundaries at the boundaries of layers. For
determination of the diffusion coefficient parallel to the interface,
Dy, we generalize the Einstein relation and show that the MSD
of particles that remain in the layer asymptotically varies-as
2P(t)Dyt, so that an MD determination of the survival probability
in the layer,P(t), and the MSD allow determination of the @)
parallel component of the diffusion tensor. For determination

of the diffusion coefficient perpendicular to the interface we 14 gna)y7e the dependence of diffusion on position relative
propose a dual simulation technique. The gist of this method is ; the interface we derive and compute the components of the

to perform MD with virtual absorbing boundary conditions at it ,sion tensor for finite regions that range from the bulk water
each layer and to perform a sequence of Langevin dynamicSypaqe to the interface. Any molecule initially present in a

simulations each with the potential of mean force determined gnecified region that passes the boundaries no longer contributes
from the MD, but with different values of friction coefficient 5 the calculation. In the coordinates parallel to the interface (

€ characterizing motion in a direction perpendicular to the anqyy water diffusion is unbounded. In thedirection, we can
|qterface. One can find the valge of the friction cqleffl.uent that postulate the boundary condition:
gives the best fit of the Langevin survival probability in a layer

P(X,t1Xo.te) = Dod, 2Pt X to) (4)
(5)

(6)

APY:tlYorto) = Dy, Y :tYorte)
8tp(Z!“ZO’tO) = Dzzaz[az + ﬁ(aZW(Z))] p(z!t|20’t0)
where,

P(r tiroto) = P(Z.t1Zo,te) PCY Yo to) POX,EX0,to)

to that found by MD for that layeiDr can then be found from p(x— o,t) = 0 (8)
the Stokes-Einstein relationDp = kgT/¢p. This “Dual Simula-

tion Method” requires a rather subtle definition of the boundaries and the initial condition

for the Langevin dynamics. We also show that, in some cases,

we can determine the diffusion coefficient for fluids in confined |t|_f]t'(l) Pt Xg,tg) = O(X — Xg) ()]

geometries as well as f@p in layers with absorbing boundary
conditions from a computation of the autocorrelation function o same can be done for diffusion along thalirection.
of the eigenfunctions of the diffusion operator corresponding \without loss of generality, we takl = 0 in the following.
to these boundary conditions. The various approaches are testeghq mpined with eqs 4 and 5, we can get the familiar results for

in & variety of ways. diffusion in thex andy directions:
This study was motivated by our interest in water hydrogen

bond dynamics in the liquidvapor interfacé?! Previous studies 1 (x— Xo)2

have shown that diffusion makes an important contribution to p(X,t|%,0) = ex D1 (20)

the hydrogen-bond dynamié$Before understanding hydrogen VATD,t xx

bond dynamics in interfaces we must understand diffusion there. 5

Thus we apply our methodology to the liguigdapor interface 1 Y — Yo

of liquid water. P(YtlYp,0) = ex (11)
/4‘77Dy)1 4Dyyt

II. Methodology

Since the presence of the interface breaks the symmetry of
the liquid, diffusion in such a system is described by an

A very similar approach can be used for fluids in a confined
geometry. For example, for a uniform fluid in a rectangular box
with reflecting boundary conditions, one may find the eigen-
functions and eigenvalues of the diffusion operator subject to

anisotropic Smoluchowski equation: reflecting boundary conditions at the walls. Then the decays of

the autocorrelation functions are exponential with well-defined
time constants. MD of a fluid between reflecting walls can then
be used to calculate these correlation functions, and from their
exponential decay at long times one can find the diffusion
coefficients. In spherical cavities, one can solve the diffusion
equation with reflecting boundary conditions. The eigenfunctions
are spherical Bessel functions multiplied by spherical harmonics.
A. Diffusion Coefficients Parallel to the Interface. In the
water—vapor system, we apply virtual absorbing boundary
conditions to the MD to localize the contributions to the
diffusion coefficient to our specified finite regions. These are

OP(r tiroty) = V-D-[V + S(VW(2)Ip(r tirety)  (3)
where p(r,tiroto) is the conditional probability distribution
function, andD is the diffusion tensor. Taking theaxis to be
perpendicular and theandy axes to lie parallel to the interface,
a system with a flat interface will be axially symmetric around
thez axis. The equilibrium density profile along tzelirection

is given byp(2) = po exp(—pW(2)), whereW(2) is the potential

of mean force (PMF). The densip(z) is easily determined by
MD, and from this the PMF can be determined. The diffusion
tensor will be diagonal in this frame witD,, # Dyx = Dyy. In virtual in that they are applied only to the analysis of MD
general, the diffusion coefficients will be a function af trajectories and not to the generation of these trajectories. The
however, if we study molecules in sufficiently thin layers parallel eigenfunctions\Py, of eq 6 subject to these boundary conditions,
to the interface, we expect the diffusion coefficients not to vary and the evaluation of the perpendicular component of the
with z within a layer, but of course they may vary from layer diffusion tensorDy = D_, that follows will be discussed shortly.

to layer, especially as we approach the interfacial region. The First we will focus on the simpler problem of evaluating the
Smoluchowski equation will then be separable in each layer. parallel component),, of the diffusion tensor, which is equal

In this case the Smoluchowski equation in each layer will be to eitherDyy or Dyy.
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The probability for a particle to remain in this regians z 17 to obtain the solution of the form
< b, can be determined by integrating the joint probability, eq

7, overx, Xo, Y, Yo, Zo, andz

P = . dz 7 dz, p(ztI2,,0) p(z)
where

Itis important to recognize that because of the virtual absorbing
boundary conditions, trajectories that leave and then re-enter
the layer do not contribute to eq 12. To calculate the components
Dy and Dyy we formulate the mean square displacement for a are eigenfunctions of the diffusion operator satisfying the

P(zt|2,,0) = Z‘Pz(z)wn(zo) exp(-(n/L)’D,t) (18)
(12)

W (2) =V2LLsin(w(z—a)Ll) n=1,2,.. (19)

finite region. In thex direction the mean square displacement,
[AX(t)?[agy, Of particles that remain in regiofa,b} is

XV oy = Jy,, O S, Ao LR (x = Xp)?
(13)
= 2P()D, ¢

whereVi,p is the volume of the layer. It is important to note
that (AZ2(t)[dp = 2D, P(t)t. The mean square displacement and
the survival probabilityP(t) are calculated from the simulation
as follows. Let/(t, t + 7) designate the set of all particles that
stay in the layefa,b} during the time interval betwedrandt

+ 7, let N(t, t + 7) be the number of such particles, and finally
let N(t) designate the number of particles in the layer at time
Then we compute

121
ACO Ly ==Y — (t+17) — x(0)* (14
KORy =7 250 2, BT D = XOF (1)

and
1T Nt t+17)

P = —
M=72 N(t)

(15)

In the foregoingT is the total number of time steps averaged
over. Thus we can obtain the expressiongg and similarly
for Dyy:

AX() Yoy

2tP(7) (16)

—00

D,{ab}) = lim

It is important to note that the correlation functions defined in

boundary conditions, whele = b — a.
The autocorrelation of any such eigenfunction is easily
determined to be

W, (2(t)) W(2(0))C
= [ dz [ dzp(ztizyto) Pz, Wi(2)

1 _ 2
o (VLD

L (20)

Herep(z) is the initial normalized probability distribution along
zin the interval, which is a uniform distribution=(l/L) in the
bulk water regions.

The autocorrelation of the eigenfunction is easily determined
from the simulation as

(W (1) W(20){ay

1ot W (z(t + D)Wi(z(M) (21)
=—) — n\4 D) %nl4
T ; N(t) e/ o) i ’

where once again(t,t + 7) designates the set of all particles
that stay in the layefa,b}. During the time interval between
andt + , N(t) is the number of particles in the layer at time
andT is the total number of time steps averaged over.

Near the interface one must use the Smulochowski equation.
Although not applied in this paper, the eigenfunctions of this
equation (after being made self-adjoint) can easily be found
numerically. Evaluation of the autocorrelation function will
again decay exponentially, allowing one to determine the
diffusion coefficient as above. If used, the solution of the
Smulochowski equation will be a valid approach under the same
conditions as would be required for deriving the Smulochowski
equation from the underlying Langevin (or Fokké?lanck)

eq 14 and eq 15 are not ordinary two-point correlation functions equationt4 which are that the time be longer than the velocity
because the requirement that the particle be in the layer for thecorrelation time;zy = nv¢, and that the fractional change of

whole time between andt + 7 makes this a function of the

the potenial of mean force be small over the diffusion length

whole history in this time interval and not jUSt on its values at Corresponding to that ve|0city correlation time, |g, =

tandt + 7.
B. Diffusion Coefficient Perpendicular to the Interface.

M?rylo < 1. In the case of the water interfagex 0.04.
Another route to determining the diffusion coefficient, and

It remains to discuss methods used to evaluate the componenthe one adopted here, avoids solving eq 6 directly, involves

of the diffusion tensor perpendicular to the interfade,= D,
For finite regions sufficiently far away from the interface, the
density is uniform, the potential of mean for&#, is zero, and

running Langevin dynamics simulations for the motion perpen-
dicular to the interface (the direction) in parallel with our
molecular dynamics simulations. This “dual simulation method”

the Smoluchowski equation, eq 6, reduces to the diffusion js particularly useful for regions where the potential of mean

equation,

atp(zr”ZO’tO) = Dzzazzp(ZvUZO'tO) (17)

We can derive an analytical expression for the diffusion

coefficient with absorbing boundary conditions by applying

the commonly used Smoluchowski boundary condition de-

fined byp(z= a,t) = 0 andp(z = b,t) = 0. The initial condition
is p(z,to|20,0) = 6(z — z). Using the standard method of sepa-
ration of variabled? we setp(zt|z,0) = f(2)g(t) and solve eq

force is nonzero and one can no longer use the simple diffusion
equation to solve foD,, The Langevin equation for motion
along thez direction is

oW(Z
mz=- 0D ¢+ R (22)
where the first term on the right is the mean force on the particle
(arising from the presence of the interface) derived from the
potential of mean forcdV(2), R(t) is the random force, which
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is assumed to be a Gaussian random process with a white noist
spectrum, and,; is the static friction coefficient along the
direction, which is related to the diffusion tensor through the
Stokes-Einstein relation:

CZZ = kBTDZZ_l

By comparing the survival probability, eq 15, determined from
a full MD simulation with that determined from an analogous
Langevin dynamics (LD) simulation, we can determine the best-
fit value for the diffusion coefficienD,, The dual simulation
method proceeds as follows. One computes the survival prob-
ability from both molecular dynamics and from a series of
Langevin simulations corresponding to different values of the
diffusion coefficientD,, for a region defined by < z < b.
The correct value of the diffusion coefficient is chosen to be
the one that gives the best fit of the survival probability from
LD to that from MD. As we show below, it will be necessary
to make corrections to the positions of the virtual absorbing
boundaries in the LD simulations.

Another strategy, bearing a close connection to the above
but not used in this study, is to devise a dual simulation method
in which one runs Smoluchowski dynamics (simulating the
diffusion process defined by the Smoluchowski equation,
unfortunately sometimes called Brownian dynamics) in parallel
with full MD. In this case one would use virtual absorbing
boundaries for the MD as defined above, but with relevant
corrections to the boundaries for the Smoluchowski dynamics
(SD) simulation as discussed below. In fact, whenever one
calculates the time dependence of dynamical properties that
spring from the Smoluchowski or Langevin equation (LE), such
as the corresponding autocorrelation function of its eigenfunc-
tions or survival probability, it will be necessary to apply the
relevant boundary corrections wherever the width of the layers
appears explicitly.

C. Two Corrections to the Positions of the Virtual
Boundaries. It is important to recognize that many dual
simulation methods will require corrections to the positions of
the virtual absorbing boundaries.

Smoluchowski Dynamiaegersus Langein Dynamics.In our
molecular dynamics simulation of the awater interface
system, the virtual absorbing boundary conditions are defined
by the flux,jou(z = a,t) = 0 andjouz = b,t) = 0, for a region
defined withina < z < b. Virtual absorbing boundaries are
also defined by the flu§ou(z = boundaryt) = 0, in Langevin
dynamics. However, in the Smoluchowski equation, absorbing

(23)
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Figure 1. (a) To calculate the components of diffusion parallel to our
boundary surface we use the generalized Einstein equation for the
anisotropic diffusion, eq 16. The bulk region is defined as a 3.5 A
region in the center of our water phase. The interface region is defined
in the text with a width of 3.4 A. The portions of the curve we fitted
are between 2.0 ps and 3.9 ps. (b) Plot of the diffusion coefficient in
all three Cartesian coordinates for 3.5 A regions extending from the
bulk up to the interface. A 400 ps trajectory is run in the NVE ensemble
using the velocity-verlet integrator to update the atomic positions and
velocities. The atomic configuration is recorded for data analysis every
20 fs. The coordinate correction algorithm, RATTEE]s used to
constrain the bond lengths, allowing for a time step of 1 fs in our
simulations. To efficiently calculate the electrostatic interactions, mesh-
based approximations to the Ewald Sroan be used 3 We use

the P3ME® method.

boundaries are defined by the Smoluchowski boundary condi- can accurately predict the decay of either the survival probability
tion, p(z = boundaryt|2,,0) = 0. The discrepancy between the or the decay of the autocorrelation function of any eigenfunction
Smoluchowski boundary condition for absorption and the real of the diffusion operator (or Smoluchowski operator) for thin
absorbing boundary condition defined by the flux has been layers of liquid. There is extensive literature showing that in
discussed at lengt¥-17 Razi Naqvi et ak’ have derived a  real bulk liquids the generalized Langevin equation (GLE), not
correction factor for the width of the region that equates the the static friction LE, describes the single-particle dynamics.
boundary conditiorp(z = boundaryt|z,0) = 0 with the flux For example, the velocity correlation function exhibits marked
boundary conditiofjoy = 0: deviations from the exponential decay predicted by the LE with
static friction. This arises from the fact that the correlation time

Ip=o = Ijom=0 +24 (24) of the force experienced by a particle is of finite duration and
not of zero duration, as is implicit in the ordinary LE. The
A = (amD, 2k, T)"? (25) dynamic friction in the GLE has an important effect on the mean

square displacement. The memory effect in the GLE leads to a
mean-square displacement that initially increases faster than that
predicted by the LE with white noise friction. However, in the
long-time limit, the rate of increase of the MSD is the same for
boundary conditioroy,s = 0 and width of lengthj =0 = L. both the GLE and LE with the same static limit of the friction
Langein versus Generalized Lang® Dynamics.Before coefficient!® The short-time discrepancy becomes important
proceeding we must determine if the static Langevin equation when one considers properties dependent on the boundary such

and wherdp=o is the corrected region width, necessary if one
wants to use the Smoluchowski boundary condition to solve
the diffusion equation (or run SD) for a simulation with



Diffusion Coefficients in Confined Fluids and Interfaces J. Phys. Chem. B, Vol. 108, No. 21, 2008599

| =
I ' ! ! ! ] ! T ! a) T 1 (b) L (c) —— VACFafGLD
. 501 | oL VACE of MD
oxz — DiffsqrtiMsD)| | | — FAC of GLD il
' - Omega ol Kernel from MD 06 d'
L g wl | Y “H
0.1 > 04
5 I 02|
0.08 0 -l
& = e ]
g y | L V\T"I N B
g 006 £ . 0 05 [ 13
5 0= : time (ps)
0.04 |
of |
0.02
0 U
1
0
time (ps)
T . . . . . : . n 0.5 . . T . . .
5]
) GLD (from MD kemel) + \ -~ GLD {w = 3.391 MD kermel) .
r LD (D =0.307) 7 5 LD (w=3.391 Omega= 0.18)
— MD 04 \ MD (w = 3.391) -
150 g
ot 0.3 —
a I ot 1 =
7 - = L 4
z - &
< 02 -
-
I T 1 L i
05} . il _
I ~ ol T r T
0 1 1 L 1 1 o
o 1 2 3 4 5 ] 20
time {ps) time (ps)

Figure 2. (a) Plot of memory correction factor vs inverse of characteristic time. The dash line and solid line are the correction firotarthe
GLD and LD and the biggest difference §ffAz(t)’[] respectively. The static friction correspondsDo= 0.25 A/ps, T = 300 K, and water

molecule mass. (b) Friction kernel. The solid line is calculated from the velocity autocorrelation function of MD by solving the Volterra equation

numerically, see cited reference 21 for details. From the second fluctuatissipation theorem, the relationship between the friction kernel and
the random force autocorrelation function (FAC) can be establishég{§}s—= SIR(0).R(t).L] wherep = 1/(kT) andR; is the random force. The

curve of FAC is scaled bg. (c) Velocity autocorrelation function (VAC) from the molecular simulation and the GLD. (d) Mean-square displacement.
The GLD simulation with the real friction kernel can almost reproduce the same MSD curve as the real MD simulation. The difference of the

/ [Az(t)’Cis obvious. (e) Survival probability from MD, GLD with real friction kernel, and Langevin dynamics with width corrected using mean
square displacement prescription. The coincidence of these curves proves the accuracy of the numerical kernel and the memory correction.

as the eigenfunction autocorrelation function or survival prob- ;g equal to the maximum difference betweghhZ(t)for the
ability. Because the dynamics predicted by the GLE leads to yp (or GLE) and LE simulations.

faster translational motion at short time than would be predicted
by the LE, particles described by the GLE initially distant from |j|. The Application to the Vapor —Water Interface
the boundaries eventually come close to the boundaries, cross, . .
and are absorbed earlier than they would be if their motion was A. Ju.st.|f|cat|on of the_Memory Effect Correctlon. Totest

. the validity of our conjecture, we ran stochastic molecular
described by the LE. In some sense we can regard the GLE as . . o 19

o ) . N dynamics based on the GLE with memory frictigs(t):

giving rise to a “jump distance’w, that would not be present
in the LE simulation. Thus, to a particle approaching an
absorbing boundary, the position of the boundary will appear
to be closer by the lengtty in GLE (or MD) as compared to
LE. To correct for this in the dual simulation method, we The generalized Langevin dynamics (GLD) simulations were
propose to use an effective layer width for the LE that is smaller conducted with an exponential memory kergglt) = oo™,
than the width in the MD. This approach is similar in spirit to \here ¢, is the static friction kernel corresponding to eq 23,
the correction factor derived by Razi Naqvi (cf eq 24), discussed and 14 is the memory relaxation time. For a system with
above, fictitious absorbing boundaries at positicmandb whereb —
a = 3.4 A, the survival probability is calculated. Langevin
dynamics with the same static friction kernel and absorbing
boundaries at positiors+ @ andb — o were run varyingo
boundaries) necessary if one wants to use the static LE (or theGLD. The maximum difference ig/ [Az(t)’Cfor GLD and LD

diffusion equation) in the dual simulation method and the width is computed and plotted in Figure 2a along witlas a function
of the region in MD idyp. We conjecture that this jump distance of the memory relaxation time. The two curves fit with each

W@

mz=— ==~ [odtgft— DA R (27)

lle=Ilw — 20 (26)
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other quite well, an observation that supports our conjecture
concerning the adjusted boundaries.
To provide further evidence for the conjecture, we run a 400

Liu et al.

shows how the density varies as a function of position as one
approaches the interface from inside the liquid, as determined
from MD. This profile can be fit to the hyperbolic tangent

ps molecular dynamics simulation of a homogeneous isotropic functior?? as

sample of liquid water consisting of 256 TIP#Rvater mole-
cules with periodic boundary conditions. From the velocity auto-
correlation function, we adopt the method of Berne and Harp
to calculate the friction kernel numerically, as shown in Figure

2b. We determined the maximum difference {fiAz(t)?0]
between GLD (with this empirical friction kernel) and LD (with
the corresponding static friction coefficient), giving a value of
w = 0.16 A. A plot of the survival probabilityP(t), for this
GLD with the empirical kernel, for the original MD and for
LD with width corrected bys = 0.16 A, is given in Figure 2e.
The close correspondence betwd®t), determined from LD
with the corrected width g, andP(t) determined from either
MD or GLD (with a friction kernel found from the MD) further
justifies our conjecture. [Agreement between the original MD
and GLD velocity autocorrelation functions and mean-square
displacements, and between the random force autocorrelatio
function used in the GLD and the friction kernel found from
MD shown in Figure 2b,c,d demonstrates the accuracy of this
test of our above conjecture.] Given the validity of this
conjecture, we can now fit the friction coefficient in LD
simulations with corrected boundary conditions to MD using

the dual method described before. We do not need to determinete

the explicit time dependence of the friction kernel.

B. Parallel Components.Before applying eq 16 to a liquid
with an interface, we first test this approach on the same bulk
water system used in our justification of the correction factor.
We compute the diffusion coefficients in slabs of water of width
3.5 A perpendicular to theaxis using eq 16. This method gives
Dyx = 0.30+ 0.02 A?/ps, Dyy = 0.30+ 0.02 A/ps. We also
used the Einstein relation (cf. eq 1), in the standard way, to
compute the diffusion coefficient for this homogeneous system
and found it to beD = 0.307 A/ps, in agreement with our
calculation, therefore validating this methodology.

Liquid water with a liquid-vapor interface is prepared using
512 water molecules of the TIP4P/F8 model. The resultant
3-D periodic simulation box is rectangular with dimensiags
= Ly = 25 andL, = 75. The width of the water phase is
approximately 25 A and is centered about the middle of the
box z= 0. Further simulation details are given in the Figure 1
caption. Two watervapor interface regions perpendicular to
the z coordinate are present on either sidezef 0. The liquid
is subdivided into layers of water of widthz = 3.5 A
perpendicular to the axis. The interface width is 3.4 A and
the center of the region is positioned at= 12.46 A. We
evaluateDy, andDyy in each of the layers of the liquid from eq
16. Plots offAX3(t)[12P(t) and [AY2(t)[12P(t) for the slab in the
middle of the bulk water phase and in the interface layer are
given in Figure 1. This figure also show the range over which
the linear fitting is applied, from 2:03.0 ps. The plot 0Dyy,Dyy
ranging from the middle of the bulk phase to the interface is
given in Figure 1. The error bars are calculated using block
averaging over the trajectofy.

C. Perpendicular Component.For finite regions that border
on the interface with water vapor, the potential of mean force
is significantly different from zero and the long time diffusional
motion will be given by the Smoluchowski equation, eq 6. For
the purposes of the following discussion we define the liquid
side boundary at = | and the vapor side boundary zt= 0.

To use the methods outlined before, we assign fictitious
boundaries that are perfectly absorbingzat 0, |. Figure 1

o(2) = % [1+tanh[2.1972¢— 1I2)]lp,  (28)

for the interfacial region. The potential of mean force in our
water vapor interface is then defined as

W(2) = —KkTIn(o(2)/po) (29)
Needless to say, it is difficult to solve the Smoluchowski
equation with this nonlinear potential of mean force analytically,
thus necessitating the use of the dual LD simulation method
for this region.

We have outlined two routes to determining g compo-
nent of the diffusion tensor. The first involves using the
analytical expression, given by eq 20, for the decay of the

Mutocorrelation of the eigenfunction of the Smoluchowski

equation. When the solution of the Smoluchowski equation is
difficult to obtain, a second route, using dual simulation
Langevin dynamic simulations, can be used to evallate

Before applying the analytical solution, eq 20 and the LD
dual simulation method to a liquid with an interface, we first
st this approach on the same homogeneous, isotropic sample
of liquid water used in the calculation @y and Dy, We
compute the diffusion coefficients in slabs of water of width
3.5 A perpendicular to the axis using eq 20. The autocorre-
lation of the eigenfunction or the survival probability is
calculated from the MD simulation for a region defineday
z < b, whereL = b — a= 3.5 A. Using the diffusion equation
and thus eq 20 to solve f@,, requires two corrections to the
width L. As discussed above, the discrepancy between the
Smoluchowski boundary conditiop (& 0) used to solve the
diffusion equation and the real boundary conditipg: (= 0)
can be corrected using defined in eq 24. Second, one must
include the aforementioned memory correctiongiving an
effective widthles = 3.5+ 24 — 2w, whered = 0.104 A and
o = 0.143 A for this system. This method givBs,= 0.30+
0.02 A/ps = Dy = Dyy. Using the Langevin dual simulation
method requires only the memory correction leading to absorb-
ing boundaries in the LD simulation at+ v andb — w. From
the dual Langevin method,, = 0.30+ 0.02 A%ps in perfect
agreement. The diffusion tensor is found to be isotropic, as we
expect for this system with values in agreement with the correct
diffusion coefficient calculated using the Einstein relation (cf.
eq 1), in the standard way) = 0.307 A/ps. Thus our new
method based on analyzing the MD data by imposing virtual
absorbing boundary conditions gives the same value for the
diffusion coefficient as does the standard method for the
homogeneous system, thus vindicating the method.

To evaluateD,, for the bulk-water-like regionsz(< 10 A)
of our air—water interface system, we compute the autocorre-
lation of the eigenfunction with eigenvalme= 1 and fit to the
exponential in eq 20 (the results from dual simulation are
equivalent for the bulk-like regions). A plot of the fit for a 3.5
A region centered in the middle of the bulk water phase is given
in Figure 3a.

We now apply the above LD dual simulation analysis to
determine the components of the diffusion tensor in the
interfacial layers of our atrwater interface system. The dual
simulation method is a little more complicated than the
procedure for the previously discussed bulk-water-like regions.
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Figure 3. (a) Decay of the autocorrelation function of the eigenfunction
for the first nonzero eigenvalue fit using a least-squares method for
the bulk region. See eq 20. (b) Decay of the survival probability for
the interface region. The survival probability is fit for long times using
a dual simulation with Langevin dynamics.

The correction factor ) is derived from the maximum

difference of /[Az(t)’Obetween MD and LD for the same
value of the diffusion coefficient. Not knowing the value of
the diffusion coefficient on the interface, we resort to an iterative
procedure. Initially we use dual simulation to solve 0y,
without consideringw. We then calculater from the corre-
sponding MSD curves from MD and LD. Using this value of
o, we change the position of the boundaries in the LD
simulation and derive a ne®,, using dual simulation. This

procedure is repeated until the change in the diffusion coefficient

is smaller than 0.01 #ps. A plot of the final fit for the interface
region is given in Figure 3b. The plot &f,;and the previously
calculatedD,x andDyy ranging from the middle of the bulk phase
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value ofD,, = 0.23+ 0.05 A2/ps, approximately half as large
as the input value.

IV. Discussion and Conclusion

Far from the interface, the diffusion tensor is found to be
isotropic, as expected, and the diffusion coefficient has the value
D ~ 0.22 Aps, in agreement with what is found in the bulk
liquid.® As the layers approach the interface region, all
components of the diffusion tensor increase. This can be
understood when one considers the source of water’s relatively
slow mobility in bulk water. In bulk water each molecule forms
on average 3.6 hydrogen bonds with neighboring water mol-
ecules. This hydrogen bonding network impedes the translational
motion of the water molecules. In the interface region the
number of hydrogen bonds is approximately 2.5 per water
molecule!! This phenomenon is well known and has been
demonstrated by theory and experimé&ns

The fewer hydrogen bonds reduce the effective friction felt
by the water molecules, resulting in the larger diffusion
coefficient. TheD,, component of the diffusion coefficient of
the interface is approximately two times the value in bulk water,
(~0.5 A2ps), while the components parallel to the interface
(Dxx = Dyy = 0.8A2/ps) are approximately three and a half times
the bulk value. The axial anisotropy in the diffusion is related
to the structural asymmetry of the interface.

We suspect that the same qualitative behavior will be seen
in all liquids, including classical liquids such as liquid argon.
In fact, our simulations of liquid argon at reduced temperature
and density 0.75 and 0.83 galg, = D,y = D,,~ 0.2 A%ps in
the bulk andDyy = Dyy ~ 0.8A%ps andD,, ~ 0.4A2/ps in the
interfacial layer.

One can rationalize this behavior as follows. The barriers for
diffusion perpendicular to the interface will be larger than for
diffusion parallel to the barrier, but will be smaller than for
diffusion in the bulk. A vacancy model for diffusion illustrates

to the interface is given in Figure 1. The error bars are calculated this. For diffusion to occur, a vacancy must be next to the

using block averaging over the traject@ry.

Implicit in the MD simulation is thez-dependent interfacial
potential of mean force. Because of this, the ordinary Einstein
relation and the GreerKubo equation for the diffusion
coefficient (the time integral of the velocity autocorrelation
function (VAF)) are no longer valid. Consider, for example,
Langevin dynamics along with the systematic force arising
from the interfacial potential of mean force and with a given
static friction coefficientZ,» In general, the VAF will be
functionally dependent on the PMF as will be its integral, i.e.,
the presumed diffusion coefficient will also be functionally
dependent on the PMF. In contrast, for the Smoluchowski
equation, the diffusion coefficient is independent of the PMF.
Disregarding this, one might wonder what the valu®gfwould
be if applying the Einstein equation on the interface was correct.
Using eq 1 for particles initially in the same interface region
used above, we gé&i,,= 0.23+ 0.02 ﬁ?/ps. The value fob,,
is clearly much smaller than that found from the dual simulation
method. Integrating the first 3 ps of the Gredfubo relation
givesDy = 0.8+ 0.5 A%/ps,Dy, = 0.7+ 0.5 A%ps, andD,, =
0.3 + 0.5 A%ps. One may argue that the uncertainties

diffusing particle. Since fluid relaxes around this vacancy, the
barrier opposing a jump into the vacancy depends on the
“stiffness” of the fluid with respect to density fluctuations
transverse to the direction of the jumping particle. For a jump
into a vacancy along theor y direction, we must consider the
stiffness along the direction, whereas for a jump into the
vacancy along the direction, we must consider the stiffness
along thex or y directions. In the interface we expect the
stiffness alongz to be smaller than along andy. Thus the
barrier to diffusion along will be greater than the barrier to
diffusion along eithex or y, andD,, < Dyx = Dyy. Likewise,

we expect that all barriers in the bulk will be larger than in the
interface because the fluid will be stiffer there. This hand-waving
argument is consistent with our observations.

The methodology introduced in this paper allows for predic-
tion of the variation in the diffusion tensor with distance from
the interface. The behavior observed on the ligtidpor
interface, using this methodology, is significantly different than
what was predicted using the mean-square displacéroetiie
velocity correlation functioi? It would be interesting to apply
this method to the liquigtsolid interface and to compare results

encountered are too large to make a definitive statement. Towith those predicted using the older meth8de will do this

clarify the inadequacy of using the Greelubo relation to
computeD,, we performed a very long LD simulation, similar
to the one used in the dual simulation method of the interfacial
region. This mimics the MD. We determine tgecomponent

of the VAF for a static friction consistent with,, = 0.52 A/

ps. Integrating the first 10 ps of the VAF gives an erroneous

in a subsequent paper.

In summary, we have developed a general method to calculate
the self-diffusion coefficient in a finite region. This is very
important since the mobility of the solvent molecules greatly
affects the reactivity and dynamics of solutes such as proteins.
In principle, our method can be extended to more complicated
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