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A new approach is developed to study the dynamics of the localized process in solutions and other condensed
phase systems. The approach employs a fluctuating elastic boundary (FEB) model which encloses the simulated
system in an elastic bag that mimics the effects of the bulk solvent. This alleviates the need for periodic
boundary conditions and allows for a reduction in the number of solvent molecules that need to be included
in the simulation. The boundary bag is modeled as a mesh of quasi-particles connected by elastic bonds. The
FEB model allows for volume and density fluctuations characteristic of the bulk system, and the shape of the
boundary fluctuates during the course of the simulation to adapt to the configuration fluctuations of the explicit
solute-solvent system inside. The method is applied to the simulation of a Lennard-Jones model of liquid
argon. Various structural and dynamical quantities are computed and compared with those obtained from
conventional periodic boundary simulations. The agreement between the two is excellent in most cases, thus
validating the viability of the FEB method.

I. Introduction

Molecular dynamics (MD) simulations have provided a basis
for understanding the structure and dynamics of protein
molecules. The choice of boundary conditions plays an impor-
tant role in molecular dynamics simulations of condensed phase
systems. Periodic boundary conditions are conventionally used
to accurately model the bulk solution by only 102-104 particles.1

On the other hand, many reactive processes of interest in liquids
are characterized by spatial localization. For example, an
enzyme-catalyzed reaction occurs in a spatially well-defined
active site of the protein. To study such processes, we are
interested in the trajectory of a relatively few atoms. However,
under the traditional periodic boundary approach, a significant
amount of computational time is consumed in computing the
trajectories of solvent molecules, large numbers of which must
be included to accurately model the environment of the solvated
reaction center. As a result, the use of molecular dynamics with
periodic boundary conditions is inefficient. Another case where
the direct use of periodic boundary conditions is not suitable
includes the study of inhomogeneous systems and nonequilib-
rium phenomena. For instance, the use of periodic boundary
conditions to model a nonequilibrium system with a thermal
gradient is inappropriate.

Numerous methods have been developed in an attempt to
reduce the computational time and avoid the difficulties
associated with periodic boundary conditions. The MTGLE
method, developed by Berkowitz, Brooks, and Adelman,2-4

represents one of the first approaches to modeling the localized
processes in the condensed phase based on partitioning the
system into a primary part, consisting of a few relevant degrees
of freedom, and a secondary part which consists of the remaining
degrees of freedom and functions as a heat bath for the first. In
the MTGLE aproach, the influence of the bath dynamics on
the system is modeled in terms of linear harmonic chains
coupled to the primary degrees of freedom, which are governed
by Langevin dynamics. The authors have successfully used the

model to compute liquid and solid response functions2 and to
simulate inelastic gas-surface collisions, vibrational energy
relaxation in solids, and radical recombination reactions in
liquids.3 Berkowitz and McCammon proposed a model based
on stochastic boundary conditions.5 They divided the many-
body condensed phase system into three principal spherical
regions: a reaction region, a bath region, and a static reservoir
region. The motion of atoms in the reaction zone is treated with
standard MD, whereas Langevin equation based stochastic
dynamics is used to model the atomic motion in the bath region.
The configuration of particles in the reservoir region remains
fixed and provides a potential that confines the dynamics to
the two inner regions. The configuration of the reservoir particles
is selected from an equilibrated molecular dynamics trajectory
of a larger system. Brooks and Karplus expanded this model
by employing a mean field force approximation (MFFA), which
computes the boundary potential based on the average influence
of the particles in the reservoir region.6

There are several difficulties associated with this approach.
As the dynamical algorithms are different for the three regions,
each atom must be assigned to a particular region. When the
atom crosses the boundary between the regions, the dynamical
algorithm for the motion of this atom must be changed
appropriately. The difficulties arise as the atoms move beyond
the reservoir region during simulation. Although the MFFA was
extended to simulations of aqueous systems,7 no provision was
made to account for the polarization effects due to long-range
electrostatic interactions which are dominant in polar solvents.
Several attempts were made to treat the contribution of the
electrostatic field to the boundary potential in an average way,
including the surface constrained all atom solvent model
(SCAAS) of King and Warshel8,9 and the reaction field with
exclusion (RFE) of Rullman and van Duijnen.10

In addition, the above methods do not take into account the
fluctuations of density and volume, characteristic of constant
pressure conditions under which most processes of interest
evolve. The latter was addressed by Beglov and Roux, who
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developed the spherical solvent boundary potential (SSBP),
based on the potential of mean force derived from the solvation
free energy of a hard sphere containing the solute and a layer
of solvent molecules nearest to the solute.11 The solvation free
energy is computed by a formal separation of the multidimen-
sional solute-solvent configurational integral in terms of inner
solvent molecules and the bulk solvent molecules out of the
hard sphere. The hard sphere represents a configurational
restriction on the outer bulk solvent molecules, and its radius
fluctuates to include the most distant inner solvent molecule.
The latter provides a flexible solvent boundary potential that
can model volume and density fluctuations inside the sphere.
The model was used to study various biomolecular systems,
including the electron transfer in proteins,12,13solvation14,15and
thermal stability of biomolecules,16-18 and the folding kinetics
of proteins.19-21 The method was further generalized to non-
uniform solvents through a finite difference Poisson-Boltzmann
treatment of electrostatics,22 which allowed selective simulation
of protein reaction centers. However the method still restricts
the shape of the boundary to be either spherical or orthorhombic.
Moreover, the boundary potential must be updated in every time
step because it depends on the distance from the solute to the
farthest inner solvent molecule. More recently, there have been
several attempts to develop a more flexible boundary potential
which can respond to fluctuations in the shape of the confined
solute. Beglov and Roux23 introduced the primary hydration
shell method, in which a small number of solvent molecules
are kept in contact with the surface of the solute through the
use of a simple harmonic restraining potential, and used it to
compute the relative torsional free energies of small peptide
conformers. In a different approach, Lounnas, Lu¨demann, and
Wade introduced the shell approximation for protein hydration
(SAPHYR) model,24 in which a small number of explicit water
molecules surrounding the solute are subject to a boundary
potential consisting of a van der Waals component and an
electrostatic component approximated by an average dipole-
dipole interaction. The forces always act normal to the boundary
surface, the position of which is dynamically adjusted based
on the distance from solute atoms. The authors were able to
successfully reproduce the structural properties of several
solvated proteins. On the other hand, Kimura, Brower, Zhang,
and Sugimori developed the surface of active polarons (SOAP)
method25 in which the effects of the bulk solvent are modeled
by dynamically adjusting the partial charges of the oxygen atoms
of explicitly represented water molecules to account for the
effects of the surface charge induced on the boundary due to
the polarization of the bulk solvent, while a stochastic restoring
force is used to prevent their evaporation. The method was
successfully used to estimate solvation free energies of ions and
amino acid analogues.

In this paper, we introduce a new solvent boundary model,
the fluctuating elastic boundary (FEB), that is both suitable for
molecular dynamics simulations and removes some of the above
restrictions. In this model, the solute and a few layers of solvent
molecules are surrounded by a tight-fitting elastic bag, akin to
a latex glove or a balloon, which keeps the solvent molecules
close to the surface of the solute. The shape of the boundary
fluctuates during the simulation and evolves dynamically to
accommodate the shape fluctuations of the solute-solvent
system inside. This should remove the artifacts due to the fixed
shape of the boundary potential present in previous models.
Hence, we expect the FEB to provide a more accurate model
of solvation, with relatively few explicit solvent molecules
needed to account for effects of short-range solvent-solute

interactions (such as hydrogen bonding or dewetting of hydro-
phobic regions).

The paper is organized as follows. In section II we present
the fluctuating elastic boundary model, and in section III we
apply the model to the simulation of liquid argon. We conclude
in section IV.

II. Method

A. Fluctuating Elastic Boundary Model. In this implemen-
tation, the elastic boundary is modeled as a network of quasi-
particles, each of massmb, connected by elastic bonds. The
resulting macromolecular arrangement has a topology of a
regular icosahedron (similar to that found in fullerenes) with
nearest neighbor bonds and is illustrated in Figure 1. In
particular, each of the quasi-particles is bonded to 6 of its
neighbors, except for the 12 particles located at the vertexes of
the icosahedron. The boundary confines the solute-solvent
system inside through a short-range repulsive interaction.

Figure 2 outlines the principal interactions in the solute system
FEB model. The functional form of the bond potential was

Figure 1. Fluctuating boundary bonding topology. The solid circles
show the locations of the boundary quasi-particles, while the lines show
the bond network. Each quasi-particle is bonded to six nearest neighbors
except those on the vertexes of the icosahedron that have five bonds
each.

Figure 2. A diagram of the simulation cell with the FEB model. The
blue circles represent the boundary quasi-particles, while the black coils
indicate the elastic bonds connecting them. The green circles represent
the solute-solvent system enclosed by the boundary. The principal
interactions are also shown.
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chosen empirically, with the aim of providing flexibility to the
boundary network, yet maintaining sufficient stiffness to prevent
leakage of the solvent molecules through the boundary. In this
implementation, we use a cubic interaction,

wherekb is a constant governing the stiffness of the bond, and
rij is the distance between two bonded boundary particles. Note
that the bond potential minimum corresponds to zero bond
length. Hence, in the absence of a solute-solvent system inside,
all the quasi-particles would collapse to a point at zero
temperature. However, at a finite temperature one would expect
a nonzero average bond length even in the absence of the solute
due to the thermal fluctuations of boundary particles. In addition,
the cubic interaction provides a correct statistical weighing in
an isobaric ensemble, which requires the boundary free energy
to scale linearly with the volume. Although the latter is strictly
true only for an ideal gas, nonetheless we find it to be a good
starting point for further boundary potential development.

The confining potential is provided through a pairwise
interaction of each of the boundary particles with the atoms of
the solute-solvent system inside. The interaction form is taken
to be the repulsive Lennard-Jones (LJ) of the Weeks-Chandler-
Andersen (WCA) form,26 given by

where εsb and σsb are adjustable parameters governing the
strength and the range of the boundary potential, although other
choices are possible. (We have tried using the full LJ potential
to model the boundary-solute interaction, but we found that
this leads to increase the probability of the particle escaping
the boundary. On the other hand, if the WCA potential was
used these events did not occur during the course of the
simulation.) This interaction models the short-range packing
forces and pressure exerted by the bulk solvent on the cavity
enclosed by the boundary. The repulsive potential is important
to prevent the solvent molecules from escaping outside the
boundary or aggregating near the boundary. Although not
implemented in this study, a long-range electrostatic contribution
to the boundary potential can be included through a grid-based
Poisson-Boltzmann dielectric model analogous to the approach
by Roux et al.22 In particular, we have recently implemented a
Poisson-Boltzmann model based on the DelPhi27 PB solver in
the context of an MD simulation of a protein in an implicit
solvent.28

The adjustable parameters for this model include the mass
of the boundary particles,mb, the boundary potential parameters
εsb andσsb, and the boundary bond constantkb. The magnitude
of the latter will determine the average pressure and hence set
the density of the system at constant temperature conditions.kb

can therefore be adjusted to reproduce the ambient conditions
of the solvated system. The potential parameters should be
chosen according to the molecular properties of the solvent.mb

is a somewhat arbitrary parameter which determines the time
scale of the boundary fluctuations and can be adjusted to allow
the shape fluctuations of the boundary to evolve in parallel with
the conformational dynamics of the enclosed system. In general,
the choice ofmb will not influence the equilibrium configuration
distribution of the solute-solvent system of interest.

B. Fluctuating Elastic Boundary Model of a Lennard-
Jones Fluid.To explore the properties and validate the accuracy
of the FEB model in the study of condensed phase systems, we
have applied the method to the simulation of a Lennard-Jones
fluid. The LJ liquid model was chosen for our initial investiga-
tion due to its computational simplicity and the availability of
well-established properties from conventional simulations.29

The fluctuating boundary was constructed from 1002 quasi-
particles arranged in the icosahedral geometry shown in Figure
1 and connected by a network of 3000 bonds. The representative
configuration of 512 LJ atoms enclosed by the boundary
(subsequently referred to as the “solute”) was initially selected
from a conventional molecular dynamics simulation of 1000
LJ atoms with periodic boundary conditions. The solute atoms
interact with each other according to the LJ potential

whereεs andσs are the LJ parameters governing the strength
and length of the interaction, andrij is the distance between the
atomsi and j. The form of the interaction potential between
the solute atoms and the boundary quasi-particles is an important
aspect of the model since it influences both static and dynamic
properties of the solute system, especially in the regions near
the boundary. In this preliminary study, we have used the WCA
potential26 with the LJ parameters chosen to be the same as the
intersolute interactions,σsb ) σs andεsb ) εs.

We have evaluated two simulation methods, differing in the
choice of the dynamical algorithm governing the motion of
boundary particles. The initial configurations of the overall
boundary-solute system used in both methods were the same.
A cluster of LJ atoms truncated from a larger bulk liquid system,
previously equilibrated using a conventional periodic boundary
condition (PBC) simulation, was placed into the regular icosa-
hedral boundary, and the configuration of the whole system was
used as the initial configuration for the FEB molecular dynamics
simulation.

In the first method (which we refer to as the standard FEB
model), we performed a “thermostated” simulation using the
Nose-Hoover thermostats coupled to both boundary particles
and solute atoms to maintain constant temperature. The value
of the bond constantkb was chosen so that the argon atoms did
not escape through the boundary and the proper equilibrium
density was maintained in the simulation. After the whole system
reached equilibrium, we selected a number of configurations
as the initial configurations for the subsequent constant energy
simulations. The properties of the solute system enclosed by
the boundary were calculated by averaging over the constant
energy simulation trajectories.

In the second method, subsequently referred to as the
thermalized FEB (TFEB) model, the Nose-Hoover thermostats
were coupled only to the boundary quasi-particles, while the
solute atoms were treated with standard MD. The coupling was
maintained through the data collection stage as well. In this
formulation, the system can exchange energy with a heat bath
through interactions with the thermostated boundary, which is
more in line with the canonical ensemble representation. The
properties of the system were again calculated by averaging
over a number of thus thermalized trajectories.

In parallel, the bulk system of 512 LJ atoms was simulated
under the conventional cubic periodic boundary condition. The
density of the bulk was adjusted to match that observed in the
FEB model. The static and dynamic properties of the solute LJ
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cluster simulated using our model were then compared with
those obtained from the PBC simulations. The results are
reported in the following section.

III. Simulation of Liquid Argon

We performed the FEB boundary simulation of a LJ system
with the parameters consistent with the model of liquid argon
(σs ) 3.41 Å, εs ) 0.2381 kcal/mol). A smooth cutoff was
imposed on the LJ interaction atr ) 2.25σs. For the sake of
simplicity, we choseσsb ) σs andεsb ) εs for the parameters
of the WCA potential. This is also consistent with the view of
our system as comprising a cluster of argon atoms dissolved in
identically interacting liquid argon solvent. We found that using
largerσsb leads to the increase in the range of boundary-induced
artifacts. The mass of the boundary particles was set asmb )
100 au, and the bond constant was chosen askb ) 0.003 kcal/
(mol Å3). These parameters allow sufficient flexibility of the
boundary, while keeping the argon atoms contained throughout
the simulation. All the simulations were performed using the
SIM MD package30 developed in our group. In both simulation
methods, the system was first equilibrated through a canonical
simulation at the temperature of 94.4 K. The structural and
dynamic properties of the FEB model of liquid argon were
computed from 10 microcanonical trajectories for the standard
FEB application as well as 10 trajectories with the boundary
thermalized (TFEB model). Each of the trajectories was 200
ps long generated with the time step 1 fs. The configurations
were saved every 0.5 ps. The density of liquid argon in the
first method was observed to be approximatelyF ) 1.42 g/cm3.

A. Structural Properties. 1. Pair Correlation Function.The
principal goal of the FEB method is to allow accurate simulation
of localized processes in solvated systems. Hence we restricted
our analysis of select properties to atoms close to the center of
mass of the solvated cluster and sufficiently removed from the
boundary.

We calculated the pair correlation functiong(r) according to

by considering the correlation of a subset ofNc argon atoms
within a sphere radiusRc ) 5.0 Å centered at the center of
mass (COM) of the argon cluster, with all the atoms in the
cluster. This is in contrast with the conventional molecular
dynamics simulation with periodic boundary conditions, where
all atoms contribute equally to the pair correlation function. The
results forg(r) are shown in Figure 3. The pair correlation
function obtained from the standard FEB model simulation is
shown in comparison with the result obtained from a simulation
using the TFEB model as well as that of bulk argon with
periodic boundary conditions at the two densitiesF ) 1.42 g/cm3

andF ) 1.405 g/cm3. Forr < 12 Å, both FEB model simulation
results are in excellent agreement with the result obtained from
the PBC molecular dynamics simulations in terms of both peak
positions and heights. The first peak in both FEB models is
slightly higher than the PBC counterpart, indicating a slightly
higher density in the core region of the cluster. For larger
distances,g(r) values of both FEB models are lower than those
of the PBC results. This effect is expected and is due to the
finite size of our system, which leads to a drop-off of the density
as we approach the boundary of the solvated cluster, withg(r)
f 0 asr f Rboundary. The radial distance at which the drop-off
is first observed (r ∼ 12 Å) is consistent with the observed

average radius of gyration of the boundary (Rg ∼ 21 Å) and
the range of the repulsive solute-boundary interaction.

2. Kinetic and Potential Energy.We compared the average
per-particle kinetic and potential energy of argon atoms in the
two FEB models to those computed from a molecular dynamics
simulation using PBC in Table 1. The potential energy was
computed according to

by averaging all pair-interactions ofNc atoms contained in the
sphere of radiusRc ) 5.0 Å centered at the COM of the solute
cluster, and all solute atoms within the range of interaction. In
the above equation,rij ) |r i - r j| andUs is given by eq 3 for
rij < rc whererc ) 2.25σs. The values of the average per-particle
potential energy are close to each other for the two models.
The potential energy is slightly lower which is consistent with
the higher core density for the FEB models observed from the
pair correlation data.

The kinetic energy was likewise computed for the atoms in
this core region according to

The average per-particle kinetic energy obtained from FEB
models is a little lower than that in the conventional simulation
due to a slight difference in effective temperatures, which was
the consequence of the removal of COM motion for the whole

g(r) )
1

F

1

Nc
∑

i|ri<Rc

〈∑
j*i

δ(r - r ij)〉 (4)

Figure 3. The pair correlation function. Black and green lines show
the results of PBC simulations at densities of 1.420 g/cm3 and F )
1.405 g/cm3, respectively, while the red and blue lines show the result
of the standard FEB model and TFEB model simulations, respectively.
Both models show excellent agreement for the first three peaks with
the PBC results.

TABLE 1: Kinetic Energy and Potential Energy (in kcal/
mol) of the Argon Atoms in the Two FEB Models and Two
Conventional PBC Simulationsa

kinetic energy potential energy

FEB model 0.280 -2.690
TFEB model 0.281 -2.684
PBC model (F ) 1.420 g/cm3) 0.285 -2.656
PBC model (F ) 1.405 g/cm3) 0.280 -2.640

a The values for the standard FEB and the TFEB models were
computed for the particles in the core region, and the agreement with
PBC results is excellent.

〈U〉 ) 〈 1

Nc
∑

i|ri<Rc
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Nc
∑
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2
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system in the FEB method. Overall, both kinetic and potential
energy are in excellent agreement with the PBC result.

B. Dynamic Properties.1. Velocity Autocorrelation Func-
tion. The normalized velocity autocorrelation function

gives a sensitive characterization of the dynamics of the system
and provides the means for computing the self-diffusion
coefficient via the Green-Kubo relation in eq 9. The velocity
autocorrelation function is computed according to

with only the trajectories initiating in the core region (ri(0) <
Rc ) 5.0 Å) contributing to the ensemble average. Figure 4
shows the velocity autocorrelation functions for the two PBC
molecular dynamics simulations and the two FEB models. The
results for both FEB models show very good agreement with
that of the PBC molecular dynamics simulations and for the
most part are within the standard error of each other. Particularly
good agreement is observed between the TFEB model and the
higher density PBC simulation result. The minimum of theCVV
of the FEB model is slightly deeper than that of the PBC result,
while their positions are very close. This is also consistent with
the higher core density of the FEB model cluster. The long time
tails of the CVV computed via the two FEB models are well
behaved with a smooth decay to zero in∼5 ps and fluctuations
that are small compared with the PBC results. This allows the
self-diffusion coefficient to be computed from the velocity
autocorrelation data using the Green-Kubo relation,

The integrals were evaluated numerically for all four functions
up to t ) 5 ps, and the results are shown in Table 2. The
diffusion coefficient computed from the FEB model is slightly

lower than that obtained using PBC, due to a somewhat higher
cluster core density, but the overall agreement is very good.

2. Mean Square Displacement.The mean square displacement
function,

provides another characterization of the dynamics of the system
and allows the calculation of the self-diffusion coefficient via
the Einstein relation,

The results for the two FEB models were computed as in the
previous section, by counting only those trajectories which
originated in the core region,r(0) < Rc (and hence far away
from the boundary), according to

Figure 5 displays the mean square displacement (MSD) func-
tions computed from the two FEB models and the two PBC
simulations of liquid argon. It is apparent from the plot that the
FEB model results exhibit a partial nonlinear behavior. This is
due to the drift motion of the COM of the argon cluster that is
induced by the low frequency modulations in the shape of the
elastic boundary. The effect is somewhat more severe in the
TFEB model as it was not possible to remove the total COM

Figure 4. The velocity autocorrelation function. Black and green lines
show the results of conventional simulation with periodic boundary
conditions at densities of 1.420 g/cm3 andF ) 1.405 g/cm3, respectively.
The red line shows the result of the standard FEB model simulation,
and the blue line is the result of the TFEB model simulation.
Representative error bars are shown for the standard FEB model (red
line). Both models show excellent agreement over the entire correlation
time.

CVV(t) ) 1

〈V2〉
〈v(0)‚v(t)〉 (7)

CVV(t) )
1

Nc〈V
2〉

∑
i|ri(0)<Rc

〈vi(0)‚vi(t)〉 (8)

D ) 1
3∫0

∞
〈v(0)‚v(t)〉 (9)

TABLE 2: Diffusion Coefficients (in Å 2/ps), Computed from
the Mean Square Displacement (MSD) and the Velocity
Autocorrelation Function (VAC) a

MSD VAC

PBC model (F ) 1.420 g/cm3) 0.193 0.193
PBC model (F ) 1.405 g/cm3) 0.200 0.200
FEB model 0.195( 0.019 0.191( 0.015
TFEB model 0.209( 0.026 0.195( 0.016

a The results are shown for the PBC simulations at two different
densities as well as the standard FEB and the TFEB simulations. The
one standard deviation error bars (also in Å2/ps) are computed by block
averaging.

Figure 5. The mean square displacement function. The black line
shows the result of a PBC model simulation at density ofF ) 1.420
g/cm3, and the green line shows the PBC simulation result atF ) 1.405
g/cm3. The red line shows the result of the standard FEB model
simulation, and the blue line gives the result of the TFEB model.
Representative error bars are shown in red for the FEB model. The
agreement is good over the entire range of 20 ps.

〈∆R2(t)〉 ) 〈|r (t) - r (0)|2〉 (10)

D ) 1
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tf∞

d
dt
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motion, since the latter is not conserved. Nevertheless, it is
possible to extract the diffusion coefficient through linear
regression fits. The values of the latter obtained for FEB and
PBC simulations in this fashion are shown in Table 2. Although
the diffusion coefficients are in good agreement, the nonlinear
nature of the mean square displacement curve for the FEB model
does introduce ambiguity in the Einstein relation approach for
computing diffusion coefficients. Morover, since the liquid is
confined, the MSD will eventually level off as it approaches
the values of the square of the average boundary radius. In
addition, the large uncertainty, particularly at long times, that
is evident from the size of the error bars, makes it difficult to
estimate the accuracy of our model vis-a`-vis the PBC results.

The methods for computing the transport coefficients based
on the Kubo-like transport functions, such as the velocity or
displacement autocorrelation function based techniques de-
scribed above, in general apply only to infinite, bulk fluids.
Although it is possible, using these techniques, to extract
information on diffusion in a confined system, such as our bag,
great care should be taken to ensure one considers only the
length and time scales on which the effect of the confinement
on the bulklike properties is minimal.31 In our case, this implies
computing time correlation functions for the atoms that are
located near the center of the bag, and far away from the edges,
and do not stray far from this region throughout the analysis
time. This restriction results in a small fraction of generated
particle trajectories being suitable for diffusion analysis, thus
limiting the statistical quality of the results. To overcome this
limitation, an alternate, more suitable approach is presented in
the following section.

3. Diffusion Operator Eigenfunction Autocorrelation Func-
tions. In the previous section, we have demonstrated how self-
diffusion coefficients in bulk liquids can be accurately computed
from the displacement correlation function via the Einstein
relation. We have also shown how the diffusion coefficient can
be computed from the velocity autocorrelation function via the
Green-Kubo relation. The latter method is generally less stable
numerically as it requires accurate determination of the long
time tails of the velocity correlation function. However both of
these methods assume a uniform distribution at infinite time,
which is generally not the case for a system enclosed by the
elastic boundary. Such a system exhibits a pronounced density
deficit in the region near the boundary. Hence the above methods
would be applicable only in regions far away from the boundary
and not very suitable for computing the diffusion coefficient in
this system. An alternate method was recently proposed31 for
determining diffusion coefficients of fluids in confined regions
and near interfaces. We present a modified approach in this
study.

In a homogeneous bulk fluid, we can model the self-diffusion
by “labeling” certain particles, without changing their properties
in any way. The conditional distribution of these labeled particles
Ks(r , t|r0, 0), which is the probability of finding a particle atr
at timet given it was atr0 initially, would then obey the classic
diffusion equation:

To estimate the diffusion in a finite region of space, we define
a virtual boundary surfaceSb as a sphere of radiusRb, centered
at the COM of the fluid. The boundary is considered to be
absorbing, so thatKs(r ∈ Sb, t) ) 0. The family of functions

that satisfy eq 13 and these boundary conditions are given by

where jl are the spherical Bessel functions andYl
m are the

spherical harmonics. The absorbing boundary condition requires
thatklRb be equal to the roots ofjl and leads to the orthogonality
of the eigenfunctions,

The above functions form a complete orthonormal set. Any
conditional probability distribution satisfying eq 13 can then
be written in terms of this set of eigenfunctions,

A family of diffusion operator eigenfunction autocorrelation
functions can then be defined as

whereps(r , t;r0, 0) is the joint probability distribution, defined
as the probability of finding a particle atr at timet and a particle
at r0 initially. The joint probability distribution can be expressed
in terms of the conditional probability distribution as

whereps(r0, 0) is the initial distribution. Equation 17 can then
be written as

Taking the initial distribution to be uniform,ps(r0, 0) ) pjs0

(which is appropriate for a bulk solvent), and using the
orthogonality property of eq 15, it can be shown that

Hence,Cklm(t) ∝ exp[-kl
2Dt] and the diffusion coefficient can

be obtained fromCklm(t) by

Note that in theory anyCklm(t) can be used in computing the
diffusion coefficient, but only at sufficiently long times to allow
for all initial effects to decay. This means one should use only
the smallest eigenvalues of the diffusion operator. In practice,
one should select the eigenfunctions for whichCklm(t) exhibits
appreciable, but not too fast, decay over the time scale accessible
by simulation, and which are not too oscillatory as the latter
slows down convergence. In this work, we use the four low
order eigenfunctions, withklmequal to 100, 110, 200, and 211.

The above results are derived based on the assumption that
the self-diffusion in a liquid system is adequately described by
eq 13. On the other hand, a confined system such as a fluid
enclosed by the fluctuating boundary would exhibit a non-

∂
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uniform equilibrium distribution and hence is better described
by the Smoluchowski equation:

whereW(r ) is the potential of mean force derived from the
equilibrium distribution. A complete discussion of these points
is available in ref 31. Nonetheless, we expect our treatment to
give accurate results, since our absorbing boundary is located
sufficiently far from the FEB and the radius of this “virtual
cavity” is large compared to corrections to the boundary position
observed in the previous studies.

Figure 6a shows four low order eigenfunction correlations
functions (ECF) for the argon system, computed by placing a
virtual boundary atRb ) 12.0 Å from the COM of the argon
droplet. The ECF were computed for both the standard FEB
model (black lines) as well as the thermalized (TFEB) simulation
(red lines). All cases exhibit a decay tail that is exponential to
high degree of accuracy. A least-squares fit to the ln[C(t)] shown
as green lines in Figure 6b was used to extract the diffusion
coefficients for both models, which are shown, along with
accompanying eigenvalueskl, in Table 3. All are in good
agreement with the results of PBC simulations of bulk argon
and within standard error of each other. In particular, the lower
order slower decaying eigenfunctionsC100 and C200 fit expo-
nential decays more closely than their faster counterparts and
exhibit tighter error bars. This is not surprising as nondiffusive
ballistic motion plays a more prominent role at shorter time
scales which dominate the latter. In addition, higher order Bessel

functions are more oscillatory which leads to increased statistical
uncertainty evident from larger error bars.

4. Boundary Shape Fluctuation Dynamics.Finally, we
investigated the dynamics of the shape fluctuations of the elastic
boundary. The understanding of the latter is important in
designing a boundary that would successfully adapt to confor-
mational changes of the solute system, while preserving the
solvation properties and not introducing too many dynamic
artifacts. In particular, we examine the radial dynamics of the
boundary, which is the only degree of freedom in the Beglov-
Roux SSBP model.11,22 This motion can be described via a
dynamic radius of gyration of the boundary quasi-particles,

wherej runs over all boundary particles, andrCM is their center
of mass. Figure 7a showsRg(t) computed for three randomly
chosen microcanonical trajectories of the standard FEB liquid
argon model. The radial fluctuations are very small, on the order
of 0.2 Å, indicating a stable, equilibrium system. The oscillations
are quasi-periodic with an estimated period of∼25 ps, which
is much slower than the time scale of motion of the argon atoms
inside. We next examined the anisotropic fluctuations of the
boundary by computing the inertia tensor anisotropy autocor-
relation function (ICF)C∆I, defined as the dyadic colon product
of the anisotropic inertia tensor residuals,

with

where I is the inertia tensor of the boundary quasi-particle
system and1 is the unit tensor. The ICF provides insight into
the nature and the time scale of the deviations of boundary shape
from a perfectly isotropical spherical object. Hence it comple-
ments the gyration radius, which provides an estimate of volume

Figure 6. Diffusion eigenfunction autocorrelation functions (a) and their respective logarithms (b) are shown for the several low lying members
of the family. Black lines correspond to the standard FEB model results, while the red lines show the results obtained from the TFEB model. The
green lines show linear regression fits to the standard FEB model in panel b. All the functions are well-behaved and show good exponential decay
with correct decay constants.

TABLE 3: Self-Diffusion Coefficients in Å2/ps for Liquid
Argon Enclosed by the Fluctuating Boundary, Extracted
from Four Low Order Diffusion Eigenfunction
Autocorrelation Functions, with the Corresponding
Eigenvalueskl

a

function kl FEB TFEB

C100(t) 0.2617 0.204( 0.010 0.209( 0.013
C200(t) 0.5236 0.194( 0.012 0.213( 0.033
C110(t) 0.3744 0.204( 0.016 0.207( 0.012
C210(t) 0.6438 0.190( 0.016 0.208( 0.029

a The data are shown for the FEB model and the TFEB model with
one standard deviation error bars computed by block averaging.
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∑
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fluctuation of the bounded cavity, with the information on
fluctuations of the shape. In Figure 7b, we show the normalized
ICF for the standard FEB with the argon cluster as the solid
line. The correlation data show pronounced periodicity, with
slow dephasing and coherence that persists over more than 200
ps. Moreover, the coherent fluctuations are dominated by low
frequency modes, with an average period of∼50 ps, or about
twice the period of radial fluctuations. Given that the correlations
in the argon dynamics dissipate much more rapidly (on the order
of ∼5 ps, as evident from the velocity correlation function data),
we do not expect significant dynamic coupling between these
boundary modes and the argon cluster. For comparison, we also
show the result obtained from the TFEB simulation (dotted line).
In this case the decoherence occurs much more rapidly, as the
boundary particles are able to dissipate energy much more
effectively through coupling with the thermostats than in the
constant energy simulation. In the latter the only channel through
which dissipation was possible was weak coupling to the argon
cluster. Hence, we would expect the TFEB model to provide a
more uniform representation of the fluctuating boundary and
reduce the occurrence of boundary-induced artifacts that affect
the dynamics of the enclosed system.

IV. Conclusions

A fluctuating elastic boundary model has been introduced
for circumventing the difficulties associated with the conven-

tional periodic boundary condition. We studied a cluster of liquid
argon using this new approach. Both structural and dynamic
properties calculated from the FEB models in two different
implementations are in excellent agreement with the results of
the conventional molecular dynamics simulation.

In this paper, we considered an atomic solvent surrounded
by an elastic boundary, but the concept of the FEB model can
be applied to simulations of more general systems. In particular,
a long-range electrostatic contribution to the boundary potential
can be incorporated through the use of a Poisson-Boltzmann
model by representing the region outside the boundary as a
dielectric continuum. This would allow the model to be applied
to charged systems, such as polar solvents (primarily water) as
well as solvated biomolecules. We expect that the FEB and
TFEB models will be valuable tools in the study of the dynamics
of biomolecules. For example, this would include the simulation
of the dynamics of the protein and surrounding solvent in the
protein-folding process. The shape of the boundary would vary
conforming to the configuration change of the protein. This
should allow proper simulation of solvation using just a few
explicit solvent molecules to simulate the bulk solvent.
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Figure 7. Boundary fluctuation dynamics. The radius of gyration of
the boundary as a function of time is shown in panel a for three
randomly selected microcanonical trajectories (black, red, and green).
The inertia tensor anisotropy autocorrelation function is shown in panel
b for the first method (all-constant energy) (solid) and the second
method (thermostated boundary) (dashed).
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