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Theories of solvation free energies often involve electrostatic potentials at the position of a solute charge.
Simulation calculations that apply cutoffs and periodic boundary conditions based on molecular centers result
in center-dependent contributions to electrostatic energies due to a systematic sorting of charges in radial
shells. This sorting of charges induces a surface-charge density at the cutoff sphere or simulation-box boundary
that depends on the choice of molecular centers. We identify a simple solution that gives correct, center-
independent results, namely the radial integration of charge densities. Our conclusions are illustrated for a
Lennard-Jones solute in water. The present results can affect the parametrization of force fields.

Accurate simulation calculations of free energies of solvation
require a careful treatment of long-range electrostatic interac-
tions. Recent computational and theoretical work on single-
ion free energies1 has converged upon a common set of ideas
that are, however, discussed in slightly different ways,i.e.,
Gaussian fluctuations of electrostatic potentials,2 second-order
perturbation theory,3 or linear-response theory.4,5 These ap-
proaches require the calculation of electrostatic potentials at
atom positions on a solute molecule at fractional charge states
(e.g., uncharged or fully charged). However, a lack of consensus
on how electrostatic potentials should be evaluated means that
calculated partial contributions to single-ion free energies are
often not fully comparable. Differences arise because of a
common practice of evaluating electrostatic interactions con-
sidering whole molecules. This can lead to spurious depend-
ences on the choice of the center of a molecule. Similar issues
arose in calculations of the electrostatic potential difference of
the water-vapor interface: seemingly identical calculations of
electrostatic potentials can produce different final results.6

Discrepancies in calculated electrostatic potentials were noted
recently by A° qvist and Hansson.5 The present letter resolves
the difficulties noted there. We will focus on the calculation
of electrostatic potentials at the position of a solute molecule
in a polar fluid, discussing the effects of different methods of
summing charge interactions. This leads us to a simple, center-
independent, and feasible recipe used to analyze electrostatic
potentials, both in finite and infinite systems, namely spherical
integration of charge densities. To illustrate our general results,
we will show data for Lennard-Jones (LJ) solutes in water.
Two different center dependences will be considered (see

Figure 1). The first is associated with the center of the solvent
molecule denoted by M used to bin electrostatic interactions
between solvent molecules and the solute molecule. The second
center dependence to consider is the dependence on the solvent

center P that might be used in implementing minimum-image
periodic boundary conditions (PBCs) by translating a whole
solvent molecule into the primary simulation box. These two
centers M and P would often coincide, but they need not. The
effects considered are distinct.
For molecule-based summation, the electrostatic potential at

the center of a spherical LJ solute molecule depends strongly
on the choice of the center M of a water molecule that defines
into which shell it belongs. Shown in Figure 2 are curvesφM-
(r) of potential contributions of water molecules with their center
M within a radiusr of the solute molecule
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Figure 1. M- and P-center sorting of molecular partial charges. Left:
Different M-centers considered for the water molecule. M and M′
coincide with the hydrogen bisector and the oxygen position. Middle:
Charges of the upper molecule are counted in the shaded spherical shell
(bin) but not the charges of the lower molecule. The lower molecule
with an outward-pointing dipole moment is placed in a more distant
bin. Right: P-center sorting, where P coincides with the oxygen
position. The bottom image of the molecule is considered in the
electrostatic potential calculations. For the particular choice of P) O
and isotropic molecular orientations, the charge density is depleted just
inside the simulation cell around the solute (outlined as square and
circle, respectively) and enriched just outside.

φM(r) )∫0r dr 〈∑
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where theR sum extends over the water oxygen atom O and
hydrogen atoms H1 and H2.〈‚‚‚〉 denotes a canonical ensemble
average over a system ofNSPC water molecules7 with oxygen
and hydrogen positionsr i,O, r i,H1, andr i,H2, respectively (ri,0 )
|r i,O|, etc.), and one uncharged LJ solute atom at positionrS )
0 with SPC-water LJ parameters.δ(r) is the Dirac delta
function. qO andqH are the charges on the oxygen and hydrogen
sites of SPC water (-0.82e and 0.41e, respectively). r i,M is the
center of water moleculei, defined asr i,M) wr i,O+ ( 1 - w )(
r i,H1+ r i,H2)/2. The atom positionsr i,O, r i,H1, andr i,H2 are shifted
molecule-based under PBCs. (That is, the center P) M is
mapped into the simulation box, leaving the molecule intact so
that individual atoms can actually be outside the simulation box.)
For weightsw ) 1 and 0, the center positionr i,M coincides
with the oxygen position and the hydrogen bisector, respectively.

The molecule-based potential defined in eq 1 contrasts with
the charge-based potentialφq(r):

Fq(r ) is the radially averaged charge density. In eq 2b, PBCs
for the positions of chargesr i,Os, r i,H1s, andr i,H2s are applied on
the basis of atoms rather than molecules.
Each of theφM(r) curves in Figure 2 for different centers M

reaches a plateau value after a 0.6-0.8 nm distance from the
solute. However, the plateau values differ not only in magnitude
but also in sign for different choices of M, whereas identical
choices of M give agreement between simulations under PBCs
and using clusters with 256 and 1024 water molecules. The
differences are caused by the M-dependent sorting of molecules,
even for identical configurations (positions and orientations) of
the solvent molecules. If the center M is close to the oxygen
atom, the first layer of molecules considered in the integration
in eq 1 predominantly includes water molecules with the oxygen
atoms facing the solute. Correspondingly,φM(r) starts out
negative as negative contributions of the oxygen atoms domi-
nate. On the other hand, if the center M is close to the hydrogen
atoms, the first layer of molecules considered in the integration
will predominantly have the hydrogen atoms facing the solute
(see Figure 1, middle). As a consequence,φM(r) starts out
positive and also reaches a positive plateau value. Results for
centers M between the oxygen and the hydrogen bisector fall
between the two curves.
For a finite sample, the different curves all converge to the

same value when all contributions have been summed up (Figure
2, middle and bottom). Convergence is therefore reached only
after crossing the interface to the exterior, so that surface-
potential contributions are included. For the cluster simulations
of Figure 2 (middle and bottom), the potential crosses a liquid-
vacuum interface.
Similar problems arise with molecule-based cutoffs (or

residue-based cutoffs for macromolecules). For instance, if the
distance to the oxygen atom of a water molecule is used to
determine whether a particle interacts with that water molecule,
a characteristic surface-charge density is induced at the cutoff
sphere. The oxygen density seen by the solute is essentially a
step function. The hydrogen density is reduced just inside the
cutoff and nonzero just beyond the cutoff, resulting in a net
negative charge density just inside the cutoff sphere and a net
positive charge density just outside. This effective surface-
dipole density strongly affects the potential at the site of the
particle. That effect isindependentof the cutoff length, as the
surface area and charge-dipole interaction vary with the square
and the inverse square of the cutoff length, respectively.
When whole molecules are shifted under PBCs this leads to

another level of ill-definition of electrostatic potentials. Shifting
molecules as a whole means that PBCs are applied based on a
center P with coordinatesr i,P) ur i,O+ ( 1- u )( r i,H1 + r i,H2)/2
with weightu. If that center P coincides with the center M of
theφM integration, then the plateau inφM(r) reached after the
first layer of water molecules remains essentially unchanged
when reaching the box boundary. However, if P and M do not
coincide,φM(r) crosses over from the M curve to the P curve
when the box boundary is reached. This can be seen in Figure
2 (top) where theφM(r) curve for M equal to O (w ) 1, u ) 0
) crosses over to the hydrogen-bisector curve (w ) 0, u ) 0 )
when the hydrogen bisector is used for PBCs (P) HH).

Figure 2. Integrated electrostatic potentials at the position of an
uncharged LJ solute in SPC water using 1/r interactions. Results are
shown for different ways of sorting the charges and applying PBCs
(atom or molecule based). The top panel shows the results of averaging
over 140 000 Monte-Carlo passes of a system with 255 SPC water
molecules and one LJ solute with SPC-water LJ parameters (using
Ewald summation; see ref 8 for simulation details). M and P denote
the centers of sorting and applying PBCs, respectively, where O is the
oxygen and HH the hydrogen-bisector position. The middle and bottom
panel show the results of averaging over 100 000 and 300 000 Monte-
Carlo passes of clusters of 256 and 1024 SPC water molecules,
respectively, and one LJ particle at the center, again with SPC-water
LJ parameters. In the cluster simulations, electrostatic interactions were
calculated using 1/r Coulomb interactions without cutoff. The asymp-
totic value of charge-based integration using the Ewald potential is
shown for reference.

φq(r) ) 4π∫0r r2 dr Fq(r)/r (2a)

Fq(r) ) 〈∑
i)1

N

∑
R)1

3

qR(4πr2)-1δ(r-ri,R
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Clearly, this is an unphysical behavior associated with summing
electrostatic interactions and applying PBCs on the basis of
molecules.
How can we eliminate these difficulties of calculating

electrostatic potentials in computer simulations? The unphysical
false plateaus observed forφM(r) in Figure 2 stem from
associating partial charges with molecular centers. By choosing
a center M, the water molecules were systematically sorted for
analysis. For afinite system, integration to infinity is required
to get the correct result, and that result will then contain
troublesome and undesired surface-potential contributions.
Under PBCs, that integration cannot be performed easily, as is
manifest from the dependence of the limiting value of the
potential on the choice of the molecular center P upon which
PBCs are applied.
However, if we alternatively integrate overcharge densities

Fq(r ) rather than sum overmolecules, we will obtain a well-
defined result for the potential that coincides with taking the
limit of an infinite system before extending the integral to
infinity. The charge-based potentialφq(r) is defined in eq 2a.
For a finite system, eqs 1 and 2 will give identical results if the
integration volume covers the whole system (extending beyond
the interface to the container, vacuumetc.). However, unlike
in eq 1 the potentialφq(r) defined in eq 2a will reach a plateau
beyond the correlation length of the charge correlationFq(r)
independent of an arbitrary choice of the center M of a molecule.
(As shown in Figure 2, that plateau is reached within about 1
nm from the neutral LJ solute. Larger correlation lengths were
observed for a charged solute.9)
These issues would be largely irrelevant with conventional

Ewald treatment of electrostatic potentials, where the simulation
box is replicated periodically in space. However, center
dependences can arise with modifications of the standard Ewald
approach. The electrostatic potentials of periodic images can
be summed up using the Ewald potentialæE(r ).9,10æE(r ) is the
periodic solution of Poisson’s equation∆æE(r ) ) -4π[ δ(r ) -
1/V ] for a unit point charge and a homogeneous background
in the unit cellV. The equivalents of the electrostatic potentials
φM(r) andφq(r) defined in eqs 1 and 2a for periodic systems
are then

Again, minimum-image PBCs forr i,R andr i,R
s are applied on

the basis of molecular centers P and individual atoms, respec-
tively. Figure 3 shows that the charge-based Ewald potential
and 1/r curvesφq

E(r) andφq(r) converge but that the molecule-
based curveφM

E (r) for periodic systems also converges to
φq
E(r) rather thanφM(r). This is expected because the Ewald
potential is fully periodic.
Physical modifications of the Ewald potential sacrifice this

periodicity. The Ewald potential is the limit of performing the
lattice sum with the growing lattice embedded in a sphere cut
out of a medium with infinite dielectric constantε′ ) ∞ (tin-
foil boundary conditions). Total potential energies without the
effect of that dielectric backgroundε′ ) ∞ require subtraction
of a term proportional to the square of the net dipole moment
M of the simulation box.11 Expressed as an effective potential,
we can subtract a term 2πr2/3V from æE(r ): æE,ε′)1(r ) ) æE(r )
- 2πr2/3V. This destroys the periodicity. Use of the modified

potentialæE,ε′)1(r ) in eq 3a forcesφM
E (r) to converge toφM(r),

as shown in Figure 3. However, the result for the potential
φM
E (r) at the solute site then again depends on the particular
choice of the molecular center P upon which PBCs are applied.
Clearly, to reproduce the nonphysical effects of integrating the
potential using 1/r with molecule-based sorting requires subtrac-
tion of a nonperiodic term from the Ewald potential and
application of the potential outside the “universe,”i.e., the
simulation box.
It must be noted that subtracting ther2 term from the Ewald

potential has little effect if the integration is based on charges
rather than molecules (Figure 3). We also emphasize that
changing the dielectric background to a finite valueε′ < ∞ in
the Ewald sum should not affect the charging of an ion at the
center of the box. The dipolar field induced by a background
ε′ beyond a spherical cavity aroundr ) 0 is proportional to
r ‚M , which is zero at the positionr ) 0 of the uncharged
particle. When a point multipole is charged from zero, that
contribution is also zero because of averaging over all orienta-
tions.
The results of this paper explain the differences in the sign

of the electrostatic potential at the position of an uncharged LJ
particle in water between A° qvist and Hansson5 (oxygen center,
1/r: negative potential), Rick and Berne12 (oxygen center, Ewald
with r2 modification: negative potential), and Prattet al.3 as
well as Hummeret al.9 (charge based; Ewald, 1/r and a
generalized reaction-field interaction: positive potential). The
best current value for that potential ispositiVe. In that context
a re-examination of several results regarding free energies of
charged species might be worthwhile. For instance, free
energies of anions were found to be less negative in ref 13 than
in ref 9 but more negative for cations. That can be explained
if molecule-based summation has been used in ref 13 using a
center M at or close to the oxygen atom of water. The present
results also affect the parametrization of force fields involving
charged species. Finally, we emphasize that the errors induced
by molecule-based summation areindependentof the cutoff
length for sufficiently large cutoffs. If the induced surface-
charge distribution were symmetrically distributed on a spherical
shell, then it follows from Gauss’s law that the correction to
the induced electrostatic potential inside the spherical shell
would be a constant. In that case, the contributions of
M-dependent sorting would cancel each other for an overall
neutral, polar solute but not for a solute with a net charge.

Figure 3. Integrated electrostatic potential at the position of an
uncharged LJ solute in SPC water using the Ewald potentialæE(r )
instead of 1/r. Results are shown for charge and molecule-based
integration with and without ther2 modification added toæE(r ). See
Figure 2 for further details.

φM
E (r) )∫0r dr 〈∑

i)1

N

δ(r-ri,M) ∑
R)1

3

qRæE(r i,R)〉 (3a)

φq
E(r) )∫0r dr 〈∑
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N

∑
R)1

3

δ(r-ri,R
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Our results suggest that these issues are primarily matters of
analysis of configurational simulation data. A variety of
methods may be used to obtain the configurational data. The
center dependences considered here are introduced by the
analysis of electrostatic potentials and are often larger than the
secondary differences in the configurational data due to varia-
tions in their production.
The following general recipe for electrostatic-potential cal-

culations emerges: (1) Electrostatic interactions should be
integrated on the basis ofcharge densitiesrather than individual
molecules to give correct results for atoms and molecules
carrying point charges or spatially extended charge distributions.
For molecule-based summation, the calculated potentialsφ(r)
level out nicely but the plateau values depend on the arbitrary
choice of molecular centers. (2) In simulations using PBCs,
all charges should be mapped into the simulation box. Molecule-
based PBCs result in center-dependent surface-charge densities.
(3) Under PBCs, Ewald summation provides an accurate way
of summing up all interactions, minimizing finite-size effects.
Note Added in Proof. Ashbaugh and Wood14 come to

similar conclusions regarding molecule-center dependences of
electrostatic potentials in their comparison of Ewald summation9

and cutoff calculations.15 In particular, these authors also find
the potential to be positive for a neutral LJ solute in water.
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