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Isomerizatlon Dynamics and the Transition to Chaos 
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Reaction dynamics in a Hamiltonian system with two degrees of freedom is studied as a function of the coupling 
strength between the reactive and nonreactive degrees of freedom. Rate constants and unimolecular pheno- 
menology are shown to exist under certain conditions, but RRKM theory is valid only in systems that are "strongly 
stochastic". A statistical theory of reaction rates in nonergodic systems is constructed and the results are discussed 
in the context of this theory. 

I. Introduction 
Geometrical isomerization can be described by the 

motion of a reaction coordinate (often an internal angle) 
in a double or multiple potential well. For isomerization 
to occur, an isolated molecule must suffer an activating 
collision with a photon or another particle.' In a very 
dilute gas or in a molecular beam, the time between suc- 
cessive collisions may be made very long on the time scale 
of molecular vibrations. The subsequent dynamics of the 
activated molecule under collisionless conditions is of 
considerable interest. If the reaction coordinate is not 
coupled to other intramolecular degrees of freedom, the 
motion over the barrier wi l l  be periodic, rate constants will 
not exist, and the usual linear rate laws will be invalid. 
When the reaction coordinate is coupled to other intra- 
molecular degrees of freedom, energy exchange between 
modes may or may not give rise to a linear rate law. If the 
coupling is sufficiently weak, the dynamics will still be 
quasiperiodic and will be described by motion on many- 
dimensional invariant tori in phase space.2 In the KAM 
regime the usual rate laws will be invalid. It is shown here3 
that for weakly coupled two-dimensional systems, for en- 
ergies above the barrier, the tori can be subdivided into 
two distinct classes: trapping tori (TT) and crossing tori 
(CT). Motion on CT corresponds to periodic crossing of 
the barrier with no trapping. As the "~oupling"~ is made 
stronger, there is a transition to "chaos" in which a 
measurable subset of CT are destroyed, but in which the 
TT are preserved. In this regime, motion over the barrier 
cannot get trapped in any of the wells. An important 
consequence of this is that again rate constants will not 
exist and the linear rate law will be invalid. As the cou- 
pling is further increased, more and more of the CT are 
destroyed until all of them are finally destroyed; only then 
do TT start getting destroyed. At  this point, some of the 
trajectories which pass over the barrier get trapped for 
periods of time in one or another of the wells. This is a 
necessary condition for the existence of rate constants, and 
for the validity of linear rate laws. We are still uncertain 
as to whether it is a sufficient condition because, even 
though the motion is irregular, it displays a great deal of 
coherence whenever the trajectory visits regions of phase 
space near undestroyed TT. In these regions the irregular 
trajectories seem to trace out "vague tori" or "fuzzy tori" 
on the Poincar6 surface of section. The correlations in- 
duced by the undestroyed TI' have a very important effect 
on the reaction dynamics. In a qualitative sense, they act 
as "attractors", and induce the system to spend "long 
times" in their neighborhoods with the concomitant effect 
that these trajectories do not spend equal times in regions 

*Invited Lecture at American Conference on Theoretical Chem- 
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of the irregular part of phase space of equal microcanonid 
measure. For very strong coupling, almost all the CT and 
TT are finally destroyed. The trajectories are then highly 
stochastic and appear to visit regions of equal measure for 
equal times. In this regime it is clear that rate constants 
exist and, moreover, can be determined. 

It follows from the foregoing that when the reaction 
coordinate is coupled strongly enough to other intramo- 
lecular degrees of freedom such that all of the TI' and all 
CT are destroyed, energy exchange between the modes can 
give rise to linear rate laws and well-defined rate constants. 
If there is a very rapid equipartitioning of the energy be- 
tween these modes, it might be expected that the RRKM 
theory applies and that the rate constant can be computed 
by using purely statistical arguments. In the moderate 
coupling regime, where all the CT are destroyed but where 
a measurable set of TI' are preserved, the "non ergodicity" 
of the trajectories in the irregular region of phase space 
has the important consequence that a statistical theory of 
the rate constant will not suffice and a full dynamical 
theory will be required. 

In this paper, we present a summary of a study of how 
the topological structure of phase space affects the chem- 
ical rate processes. First, we discuss RRKM theory and 
how it can be generalized to systems that are not ergodic. 
This discussion leads us to the question of how to deter- 
mine rate constants in isomerizing systems. For this 
purpose we exploit the properties of the reactive flux. This 
is followed by a detailed study of a model system consisting 
of a bistable oscillator coupled to a Morse oscillator. It 
is shown that the lessons learned from this system are 
applicable to a more realistic system such as n-butane. 

11. Statistical and Nonstatistical Theories of the 
Rate Constant 

Consider motion on the two-dimensional potential en- 
ergy surface given in Figure 1. The reaction coordinate, 
y, is coupled to an oscillator coordinate x ,  and energy can 

(1) W. Forst, "Theory of Unimolecular Reactions", Academic Press, 
New York, 1973. 

(2) (a) The role of the KAM theorem and the effecta of chaos in 
d y n a m d  system has been discussed in connection with energy-transfer 
and diasociation in coupled oscillator systems. See the excellent reviews 
by D. W. Noid, M. L. Koszykowski, and R. A. Marcus, "Quasi-Periodic 
and Stochastic Behavior in Molecules, Physical Chemistry", Vol. 32,1981; 
P. Brummer, Adu. Chem. Phys., in press; I. C. Percival, ibid., 36, 1-61 
(1977); S. A. Rice, ibid., in press. For an excellent introduction to the 
various concepts in nonlinear mechanics, see J. Ford, ibid., 24,155 (1972). 
(b) S. Nordholm and S. A. Rice, J. Chem. Phys., 62, 157 (1974). 

(3) A large part of this lecture enlargea on N. De Leon and B. J. Beme, 
J .  Chem. Phys., 75,3495 (1981). 

(4) Used here, the term coupling is a rather complicated quantity. It 
depends on the two parameters z and X. Space does not allow us to make 
a clear statement of this quantity. Suffice it to say that the term coupling 
as used here is proportional to the measure of the irregular region of phase 
space. 
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~ / T R  = lim (-dCB(t)/dt) (2.2) 
t 4 +  

When the microscopic definition of 6NB(t) is introduced 
derivatives taken, and time reversal invariance explored, 
it is possible to show that6 
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m e  1. A representative potential energy surface for the Hamiltonian 
(cf. eq 3.1). The parameters for this particular surface are L = 2.30 
and X = 1.95. The transition state is located at y = 0. The reactants 
and products are labeled A and B. 

be exchanged between these two degrees of freedom. The 
configuration space can be divided by the line (y = 0) into 
a reactant region denoted A and a product region B, and 
reactive trajectories must cross over the barrier. The 
saddle point (x = 0, y = 0) has an energy eo, and Figure 
1 is the energy surface corresponding to a total energy E 
k eo, very close to this saddle point. It is important to 
recognize from the outset that the x width of the saddle 
point (the width of the “bottleneck”) increases rapidly as 
E is increased. Since reaction rate constants will exist only 
if the “bottleneck” is sufficiently narrow to ensure long 
trapping times, compared to other “correlation times” in 
the system, let us first consider the case where E is very 
close to eo (E  k eo). We return to the higher energy states 
later. 

The reaction can be described phenomenologically by 

where kXE) and kJE)  are the forward and backward rate 
constants at total energy E. Relaxation kinetics determine 
the kinetic rate constant 

l / T r x n  M E )  + M E )  
This is the rate constant in the exponential time decay of 
an initial deviation from equilibrium. According to the 
fluctuation dissipation theorem of linear response theory! 
a small deviation from equilibrium of the population in 
state B decays to equilibrium in precisely the same way 
as does the autocorrelation function of the spontaneous 
thermal fluctuations of the population; that is 

%(t) - NBo - (aNB(O)SNB(t) ) 
NB(0) - NBo ( ~NB(O)~) 

= cB(t) (2.1) - 

If the phenomenological linear rate law is valid for all time, 
the left-hand side of this equation decays as e - t f r R  even at 
short times, and the autocorrelation function is a pure 
exponential. In this case, the kinetic rate constant 1/7R 
can then be obtained 

(5) See, for example, D. Forstar, “Hydrodynamic Fluctuations, Broken 
Symmetry and Correlation Functions”, W. A. Benjamin, New York, 1975. 

where XA and XB are the equilibrium mole fractions of A 
and B, y = 0 is the value of the reactive coordinate (or- 
dinate in Figure 1) corresponding to the barrier maximum, 
y(O)S(y(O)  - y,) is the flux over the barrier, (y, = 0 ) ,  and 
e@) is the unit step function specifying that j ,  > 0. The 
step function counts only trajectories moving from A to 
B. The (...) indicates an average over either a microca- 
nonical or a canonical ensemble. According to eq 2.3 all 
trajectories initially passing over the barrier and moving 
from A to B contribute to the rate constant-even tra- 
jectories that might during the next instant recross the 
barrier. This formulation of the rate constant will be 
rigorously valid only if every trajectory crossing the barrier 
gets trapped for a long time in a well before it can recross 
the barrier. This can happen only if there is a very rapid 
energy equipartitioning between the reactive degree of 
freedom and the other modes. Thus the assumption of a 
single exponential decay implies a dynamic model in which 
there is no rapid recrossing of the barrier; i.e., it implies 
rapid energy equipartitioning. 

If the ensemble used is a constant temperature ensemble 
(a canonical ensemble), the predicted kinetic rate constant, 
l/rR, as given by eq 2.3, is the transition-state rate con- 
stant, i.e., ~ / T R  = ~ / T T S T .  If the ensemble used here is the 
constant energy ensemble (the microcanonical ensemble), 
the rate constant obtained is the RRKM rate constant, i.e. 
~ / T R  E ~ / T R R K M  

1 S d r  6 ( ~  - H(r)) j ,S(y  - y,)ew 
(2.4) 

where we have explicitly expressed (y6b - yc)O@))E as an 
average over the microcanonical distribution function 

-- 
TRRKM - S d r  6(E - H(I’)) 

Here I’ denotes a point in phase space; that is, a micro- 
scopic state of the system (all positions and conjugate 
momenta), H ( r )  is the Hamiltonian evaluated at  I’, and 

O(E) = S d r  6(E - H(I’)) (2.6) 

is the density of classical states. Clearly the RRKM theory 
implies that all classical states in the energy shell are ac- 
cessible to the system, and moreover all of these states are 
equally probable. 

The RRKM rate constant depends on an equilibrium 
microcanonical average. It is a purely statistical theory, 
and as such the RRKM rate constant contains no dynam- 
ical information. The dynamics are hidden in the initial 
assumption that the correlation function decays as a single 
exponential over all time, or, concomitantly, that a tra- 
jectory crosses the barrier and gets trapped for long periods 
of time before recrossing. Implicit in this is the assumption 
that there is no correlation in the times spent trapped in 
each well. Of course, these dynamical assumptions are very 

(6) D. Chandler, J. Chem. Phys., 68, 2959 (1978). 
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restrictive and we will return to them later. 
Because RRKM theory plays a very important role in 

the theory of chemical kinetics and in the interpretation 
of experiments, it is worth considering the circumstances 
under which it breaks down. If conditions are such that 
the energy hypersurface, H ( r )  = E,  is metrically decom- 
posable into regular and irregular regions, then any given 
trajectory crossing the barrier will not be able to visit some 
measurable regions of phase space. The motion will then 
be nonergodic and any statistical theory, such as RRKM 
theory, which assumes ergodicity will be in error. As 
pointed out in the Introduction, the mechanical system 
studied in this paper has the property that, for moderate 
coupling strength between the reactive and nonreactive 
degree of freedom, the phase space decomposes into a 
regular region consisting only of trapped tori (TI’) and an 
irregular region in which all the crossing tori (CT) and 
some of the TT are destroyed. Thus all of the reactive 
trajectories, that is, all of the trajectories that can cross 
the barrier are irregular. Because some TT are destroyed, 
some of these reactive trajectories can get trapped. If one 
assumed that all states in the irregular region of phase 
space are equally probable, it is a simple matter to derive 
a modified statistical theory of the rate ~ o n s t a n t . ~  The 
details are given in Appendix A. This leads to a rate 
constant ~ / T B D  for a symmetric double well: 

The Journal of Physical Chemistty, Vol. 86, No. 12, 1982 Berne et al. 

(2.7) 

where we assume that all crossing tori have been destroyed 
by the coupling, and where 

(2.8a) 

are respectively the full density of states at energy E and 
the density of states counting only the irregular region of 
the energy hypersurface. Obviously 

flirr(E) 5 Q ( E )  (2.9) 

1 / T B D  1/7RRKM (2.10) 

In this modified RRKM theory it is assumed that a tra- 
jectory starting at  the barrier can visit all parts of the 
irregular region of phase space; that is, the motion in the 
irregular region must be “ergodic” in the sense that the 
trajectory spends equal times in irregular regions of equal 
measure. 

In the system studied in subsequent sections (particu- 
larly section 3), it is found that as the coupling strength 
between the reactive degree of freedom and the nonreac- 
tive degree of freedom is made larger, the measure of the 
irregular region grows, and concomitantly &(E) ap- 
proaches Q(E). Thus we expect that ~ / T B D  (expressed in 
units of 1/7RRKM) should decrease with coupling strength 
as shown schematically in Figure 2. This is a definite 
prediction of our statistical theory. It will be shown that 
this behavior is contrary to observation. 

Even in a system where all the trajectories are irregular, 
RRKM theory becomes a poor approximation if there is 
correlated motion across the barrier or if there are 
short-time recrossings of the barrier. (Even in fully sto- 
chastic models of barrier crossings, there can be substantial 
deviations from RRKM theory.) Then the correlation 
function will not be a single exponential, and the rate 
constant will depend on dynamics and will not be given 
by a statistical theory or our modification of it. 

z 
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COUPLING (energy exchange r a t e )  

Flgwe 2. A schematic diagram of the dependence of the reaction rate 
117, on the coupling strength (or energy exchange rate). The curve 
labeled 1 / T ~  refers to the long time exponential decay rate determined 
from the reactive flux. 1 / ~ ”  refers to the rate prediied from RRKM 
theory. It is not sensitive to coupling strength (see Table I). The term 
“coupling strength” should not be confused with perturbation strength? 
1 / ~ ~  is the rate predicted by the statistical theory (RRKM-like theory) 
applied only to the irregular part of the energy hypersurface. See eq 
A7b. 

A simple model provides much insight into how dy- 
namical effects might influence the rate constant. Let us 
define the rate constant for energy exchange between the 
reactive degree of freedom and the nonreactive degrees of 
freedom as y (should an energy exchange rate exist). We 
expect that y will be an increasing function of the coupling 
strength between modes. Now consider a trajectory that 
crosses the barrier. If y is small, this trajectory will recross 
the barrier many times before losing energy to the 
“nonreactive” degrees of freedom (i.e., to the bath). It will 
then librate in a well until it can regain enough energy to 
recross the barrier. Thus it remains trapped for a time y-l. 
Since the rate constant is inversely proportional to the 
trapping time, 1 / ~ ~ ~ ~  is directly proportional to y. Thus 
1 / ~ ~ ~  should be an increasing function of the coupling as 
shown schematically in Figure 2. Clearly there is a strong 
disagreement between a statistical approach and a dy- 
namical a p p r ~ a c h . ~  It is important to emphasize that 
dynamical effects give rise to rapid recrossings of the 
barrier and to nonexponential decay of the correlation 
function. 

It is worth pointing out here that the absence of rapid 
recrossings of the barrier is a necessary but not sufficient 
condition for the validity of a statistical theory. If the 
times spent trapped in either well are correlated, there will 
be a nonexponential decay, and the initial rate of decay 
of CB(t) will not determine the long time rate of decay. It 
is the long time decay of CB(t) that gives the rate constant. 
An extreme illustration of this is given by a model in which 
the trapping times are long but are identical for each well. 
Then the reactive trajectories will be completely periodic. 
If there is some distribution of periods, C,(t) will exhibit 
an oscillatory decay. In these cases, the relaxation is highly 
inhomogeneous, and the usual chemical kinetic pheno- 
menology will not apply. A necessary and sufficient con- 
dition for the existence of rate constants is that at long 

(7) This model is similar in spirit to the stochastic model studied in 
J. A. Montgomery, Jr., D. Chandler, and B. J. Berne, J. Chem. Phys., 70, 
4056 (1979). 
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Flgwe 3. A schematic diagam indicating how the reactive flux evolves 
in time under two extreme conditions. The dashed curve corresponds 
to the case when the energy conelation time, y-‘, is much shorter than 
7(€), the period for crossing the well. The solid curve corresponds 
to the case where y-’ is long compared to r(€). 

times CB(t) should decay exponentially. 
To proceed with a thorough study of reaction dynamics, 

it is essential that we devise a method for determining 
whether reaction rate constants exist, and for evaluating 
these rate constants. How then can these rate processes 
be studied efficiently? Fortunately, there already exists 
a method of analysis based on the fluctuation dissipation 
theorem.68 To this end we define the quantity 

k ( t )  -dCB(t)/dt = (y(0)6(y(O))B(y(t))) (2.11) 

The quantity on the right contains the step function 6 
which is unity if at time t ,  y ( t )  is to the right of the barrier; 
that is, if the system is on the product side of the well, i.e., 
in the B state. As before, y(O)S(y(O)) is the incident flux 
over the barrier (y(0) = 0). Thus y(0)6(y(O))B(y(t)) rep- 
resents that part of the initial flux over the barrier which 
at time t is in state B. The bracket indicates an ensemble 
average over either a constant Tor  constant E ensemble. 
In the latter case k ( t )  is denoted k(t;E).  This is the 
“reactive flux”. 

Two important features of k(t;E) are- (a) lim,+ k(t;E) 
= ~ / T R R K M  and (b) should rate constants exist, limt4- 
k(t;E) = - e+/%. Thus from the short time behavior, we 
can determine ~ / T R R K M  and from the long time behavior 
of k( t ;E) ,  we can determine the rate constant 
should it exist. 

The dynamical behavior of the microcanonical reactive 
flux is schematically illustrated in Figure 3 for a two well 
problem. The initial value of k(t;E) is 1/7RRKM. In a 
microcanonical ensemble, the shortest time required for 
a trajectory to cross one well and return to cross the barrier 
is denoted 7(E).  Thus the reactive flux is constant for this 
period of time. The dashed curve corresponds to the case 
where the energy exchange rate, y, is sufficiently large that 
most of the trajectories do not have sufficient time to 
recross the barrier before losing energy to the other modes. 
In this case k(t;E) looks exponential. The solid curve 
represents the opposite case where y is sufficiently small 
that the trajectories can recross many times before losing 
energy. This gives rise to a dephasing oscillatory decay 
reminiscent of inhomogeneous relaxation. In this case, rate 
constants do not exist. 

~ 

(8) R. 0. Rosenberg, B. J. Beme, and D. Chandler, Chem. Phys. Lett., 
75, 162 (1980). 

To compute the reactive flux, one simply (microcanon- 
id ly )  samples initial phase points such that, in all of them, 
the system is at y(0) = 0. The trajectories corresponding 
to these initial states can then be used to determine the 
reactive flux. (See ref 3 for details.) In addition, since each 
of these trajectories originates a t  y = 0, it is possible to  
determine the first time at  which they recross y = 0. The 
distribution of first passage times, ~ ( 7 1 ,  can then be de- 
termined, and from this distribution the fraction, w ( ~ ) ,  
of trajectories which have not made a first passage between 
0 and 7 can be determined. These distributions give 
further insight into the reaction dynamics. For example, 
from the unimolecular rate law, it is possible to show that 
a molecule will remain trapped in a well for time T with 
probability, e-kr, where k-l is the mean lifetime in the well. 
The rate law therefore implies that the trapping times are 
“randomly” distributed. Any deviation from a random 
distribution indicates a breakdown of RRKM theory and 
possibly unimolecular phenomenology. 

3. The Dynamical Structure of Phase Space for 
an Isomerizing System 

It is the aim of this paper to clarify the conditions under 
which isomerization dynamics in isolated molecules gives 
rise to unimolecular rate laws and rate constants. More- 
over, it is of interest to ascertain when, if ever, statistical 
theories such as the RRKM theory apply. 

To clarify the above questions, we study the dynamical 
behavior of a classical system with the Hamiltonian 

H = 4( i2  + 9 2 )  + 4y2(y2 - 1)e-zh + dO(l - + 1 
(3.1) 

The potentials represents a quartic bistable potential (in 
y) with energy barrier e-zh coupled to a Morse oscillator 
(in x ) .  The coupling arises from the dependence of the 
barrier height4 on x ,  the displacement from equilibrium 
of the Morse oscillator. Energy is measured in units of the 
barrier height corresponding to x = 0. Do is the dissoci- 
ation energy of the Morse oscillator in these units, and X 
is the range parameter of the Morse potential. The quartic 
has two minima (stable points) a t  y = k(1/2)1/2 and a 
maximum (metastable point) a t  y = 0. These extrema1 
points, and therefore the saddle point ( x  EO, y = 0), do 
not depend on x .  In what follows, we fix Do 10. This 
is consistent with our expectation that, in any real mole- 
cule, the dissociation energy will be much larger than the 
barrier to internal rotation. Thus we will study the Ham- 
iltonian flow as a function of the coupling parameter z and 
the Morse parameter X. 

The Hamiltonian of the system, eq 3.1, can be expressed 
as 

(3.2) 

X3 = D0/c2 (3.3a) 

H o b )  = 4y2 + 4y2cy2 - 1) + 1 (3.3b) 

V(x,y)  = 4y2(y2 - l)[exp(-zXx) - 11 (3.3~) 

The classical motion of the unperturbed nonlinear oscil- 
lators Ho(x)  and H o b )  can be solved analytically. It is 
important to note that only H o b )  is independent of the 
parameters X,z. Thus as X,z are varied, most of the 

H = H&) + Hob) + V(x,y)  
where 
Ho(x)  = 4 9  + X 3 ( l  - exp(-hx))2 

(9) This model springs from the expectation that the barrier to in- 
ternal rotation in a real molecule will decrease when the bond connecting 
the rotation groups is stretched. For example, in ethane the barrier to 
rotation of CHB should decrease as the C-C bond is stretched. In butane, 
the barrier in the gauche Q trans isomerization should decrease as the 
C2-C3 bond is stretched or if the C-C-C angles are stretched. 
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equipotential ( E = 1.02 ) 
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Flgure 4. Confgurational surface of section (CSS): This example of 
a configuration surface is (L = 0) at an energy E = 1.026, and A = 
1 .O. TT and TT’ correspond to trapped tori and CT corresponds to a 
crossing torus. 

structural deformation of the potential surface will occur 
along the nonreactive degree of freedom x .  

It is interesting to note that the ratio of the frequency 
of the uncoupled Morse oscillator to that of the uncoupled 
bistable oscillator is 

Taking A3 = 10, E = 1.02, and ago just below the barrier 
give 

R, = 3.5X (3.5) 
This gives a “ballpark” estimate of the number of oscil- 
lations of the Morse oscillator, corresponding to one os- 
cillation of the reactive degree of freedom. As we shall see, 
the qualitative behavior of our system can be correlated 
with R,. 

In discussing Hamiltonian flows in nonlinear dynamics 
it has proved useful to map the trajectories onto particular 
two-dimensional surfaces. These Poincar6 surfaces of 
section, PSS, reveal the underlying dynamical structure 
of the system. In a previous paper3 we define a surface 
of section not previously introduced in the literature. It 
is simply a mapping of the trajectories onto a configuration 
plane rather than onto the usual coordinate-conjugate 
momentum plane. It is constructed as follows: When the 
morse oscillator is a t  a turning point li. = 0, the position 
of the system (x,y) is recorded by a point in configuration 
space. The advantage of this “configurational surface of 
section” (CSS) is that it readily gives a physical picture 
of what parta of configuration space a trajectory may visit. 

Consider the CSS of Figure 4 corresponding to the to- 
tally uncoupled system (z = 0). The outer contour in this 
figure corresponds to the equipotential V = E = 1 . 0 2 ~ ~ .  
The energies in the x and y degrees are separately con- 
served. Each trajectory has a mapping which is a pair of 
approximately parallel lines (dots if the trajectory is fol- 

+--r--- 
- i - r 7 4  X -4 0 X .4 -,-4 X 

-9 0 ,4 -p 0 ,4 -,4 0 4 
X X X 

1 2.2.20 1 Z ~ 2 . 6 0  1 Z = 3.00 

X X X 

Figwe 5. A series of configurational surfaces of section are displayed. 
The various systems are at a total energy of 1.02~,, with the same 
Morse parameter A (= l.O), and varying perturbation strength z .  
Hatched regions correspond to regions of configuratrion space ac- 
cessible to unstable reactive traJectories. The region outside the 
hatched zone is filled with trapped tori, and is thereby inacessible to 
crossing trajectories. One tic mark along the y axis corresponds to 
0.4 dimensionless units. 

X X X 
A = 2.828 A = 1.10 0 -  

Y Y Y -  

0 0- 

X X X 

-- 
-.lo 0 IO -A0 0 A0 -.-oa 

X X X 

Figure 6. A series of configurational surfaces of section are displayed. 
The various systems are at a total energy of 1.02t0, with the same 
value of the -tion strength z (= l.O), but varying A. The hatched 
regions are explained in Figure 5. One tic mark along the y axis 
corresponds to 0.4 dimensionless units. 

lowed for fmite times). The x component of these two lines 
gives the turning points of the Morse oscillator. Such a 
pair of lines corresponds to a two-dimensional invariant 
torus in phase space (defined by two isolating integrals of 
motion). Motion on these tori is periodic or quasiperiodic. 
We note that these tori can be subdivided into two classes: 
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crossing tori (CT) and trapped tori (TI’). On the former, 
y ( t )  periodically moves back and forth across the barrier, 
whereas on the latter y( t )  is trapped forever in either well. 
The trapped tori each consist of a pair of parallel lines that 
are separated by a distance, Ax, greater than the x width 
of the saddle point region, as indicated on Figure 4. 

What happens to the structure of these invariant ma- 
nifolds is shown in Figures 5 and 6. In Figure 5 the energy 
is fixed at  E = 1 . 0 2 ~ ~  (slightly above the barrier), X is fixed 
at  X = 1.0, and z is varied from 0 to 3.0. For z sufficiently 
small (z - 0.10), the system is in the KAM region-”all” 
tori are preserved but those crossing the “transition state” 
are distorted. As z increases, first a narrow band (indicated 
by the thatched region) of CT is destroyed and trajectories 
in this region are irregular. A measurable set of CT and 
all TT are still preserved. For z > 0.60, all the CT are 
destroyed and some TT are preserved. 

In Figure 6, the energy is again fixed at E = 1 . 0 2 ~ ~ ~  z is 
fixed at z = 1.0, and X is varied from 0.10 to 4.70. The 
coupling z = 1 is strong enough that in all of these sections 
there is a stochastic region (indicated by a cross-matched 
region). A quick view of Figure 6 shows that as X is varied 
from 0.1 to 4.7 the region of stochasticity grows, shrinks, 
grows, and then shrinks again. From eq 3.5 it is seen that, 
when X is very small, y varies very rapidly compared to 
x ;  thus y can adiabatically follow n. When A, and corre- 
spondingly R,, is very large, the converse is true, and x can 
adiabatically follow y. In both these extremes an adiabatic 
invariant will exist and the enrgy hypersurface should be 
filled with tori. This is precisely what is found, although 
it is not indicated in the figure. As one moves from the 
adiabatic region corresponding to low R,, the tori near the 
barrier are first deformed and a thin ribbon of stochasticity 
sets in. This region grows as R, is increased further, be- 
coming a substantial fraction of the section around X = 
2.00. We expect that, as R, is further increased, the region 
of stochasticity will decrease until finally for very high R,, 
when adiabadicity sets in, the plane is filled with tori. 
Actually, there is a region around 0.6 < X < 1.0 when the 
stochasticity diminishes and then increases. This behavior 
is rather unexpected and merits further study. It shows 
that the degree of stochasticity is a sensitive function of 
the parameters of the system. 

These observations can be summarized as follows: 
(1) The phase space of an isolated weakly coupled sys- 

tem exhibiting isomerization is decomposable into crossing 
tori (CT) and trapping tori (TT). 

(2) CT are less stable than TT. Thus for intermediate 
coupling only a subset of the CT are destroyed. The TT 
are preserved, and the motion over the barrier, although 
irregular, never exhibits trapping. 

(3) For strongly coupled systems, a measurable set of 
TI’ get destroyed, and crossing trajectories can get trapped. 
In this case, it is important to recognize that these irregular 
trajectories can visit only those regions of phase space not 
occupied by tori. This “excluded volume” effect may in- 
troduce strong correlations in the system. 

(4) Increasing z at  fixed X has a limited effect on the 
system. In Figure 5 varying z over its full range for X = 
1 does not destroy all the TT. 

(5) Frequency variations (X variations) have a much 
more pronounced effect on the dynamical structure than 
do increases in the perturbation strength z. 

(6) If in the uncoupled system one mode is much faster 
than the other mode, then in the coupled system the two 
modes will be adiabatically decoupled. 

(7) We can expect to see linear rate laws in systems in 
which there is a high degree of stochasticity; that is, in 
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Figure 7. Overview of representative systems: A comparison of the 
configurational surface of section, the time evolution of the reactive 
coordinate V(t), the flux, and the disvibution of first passage times W(T) 
is given. Along the ordinate, one tic mark corresponds to 1.2 units 
in columns 1 and 2, 0.4 units in A3 and B3, 0.2 units in C3, D3, and 
E3. In column 4, the units along the ordinate are arbitrary. The upper 
left hand corner of column 1 gives the values of z (top) and X for each 
system. 

systems where the natural periods in the decoupled system 
do not differ too much. 

It is important to note that because the measure of the 
irregular region of phase space is a very sensitive function 
of the parameters, the statistical rate constant (cf. eq 2.7) 
will be a very sensitive function of the parameters X,z. 

4. Reaction Dynamics in a Two-Dimensional 
System 

The simple Hamiltonian system has a very rich dynam- 
ical structure. It is of considerable interest to relate the 
isomerization dynamics in this system to the structure in 
phase space as indicated in the CSS. The reaction dy- 
namics in a representative set of systems is summarized 
in Figure 7. Column 1 gives a set of CSS at  E = 1.02to, 
corresponding to different parameter choices (X,z). The 
hatched areas indicate stochastic regions. Column 2 gives 
a set of representative crossing trajectories. Column 3 gives 
a set of microcanonical reactive fluxes and column 4 gives 
a set of first passage time distributions. Each row corre- 
sponds to a given system (X,z) in the CSS. As one goes 
from row A to row E, the systems get more stochastic; that 
is, the nonlinear coupling gets stronger. System A is 
weakly coupled; all the trajectories are regular, and the 
phase space (or CSS in A l )  is entirely decomposable into 
crossing tori (CT) and trapping tori (TT). The repre- 
sentative trajectories are quasiperiodic, and a typical 
crossing trajectory (Figure 7A2) has the reactive coordinate 
periodically crossing the barrier. In system B, the coupling 
is strong enough to destroy “all” of the crossing tori; thus 
the crossing trajectories must be irregular; nevertheless, 
the reaction coordinate looks rather periodic (Figure 7B2). 
In neither system A nor B do we observe trapping. In 
system C the coupling is strong enough to destroy some 
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TT. This should be obvious from the fact that the sto- 
chastic strip is now wider than the transitioh zone. Now 
the representative trajectory moves across the barrier and 
gets trapped for many librational periods before recrossing 
the barrier. The librational motion looks coherent. In 
system D, a very large measure of the TT are destroyed, 
the representative trajectory gets trapped for long periods 
of time, but there still seems to be a great deal of coherence 
in the trapped motion. Finally in system E, all the tori 
are destroyed. Now the crossing trajectory gets trapped 
for a very long period of time and, moreover, the librational 
motion looks very chaotic. 

It is clear from column 2 of Figure 7 that in systems C 
and D the crossing trajectories are irregular; but, never- 
theless, portions of the trapped motion look quite coherent. 
These trajectories show a very high degree of correlation. 
For example, when the system crosses the barrier, it seems 
to recross it several times, but when it gets trapped, it 
seems to librate quite coherently. Could this arise because 
these trajectories evolve on some remnants-so to 
speak-of a crossing torus and then switch over to a rem- 
nant of a trapping torus? It is almost as if the irregular 
trajectory is captured for a time by the surviving tori and 
moves under their influence; that is, moves, so to speak, 
on a “vague torus”.1o Should this be the case, then as more 
and more trapped tori are destroyed, the coherence and 
concomitant long correlation times should disappear. In 
Figure 7E2, we see that the reactive trajectory looks very 
random-very much like it would if it was strongly coupled 
to a heat bath. Here no tori survive so the irregular 
crossing tori never fall under the influence of tori and the 
motion is very chaotic. 

To test these ideas, we show in Figure 8 the usual 
Poincar6 surface of section (PSS). Here the trajectories 
are mapped onto the (y,y) plane whenever x = 0, i > 0. 
Closed curves in this plane indicate tori. In Figure 8A1 
we show the mapping of the irregular crossing trajectory 
(cf. Figure 7B) onto the PSS. The irregular behavior oc- 
curs mainly near the saddle point. The motion is never- 
theless quite coherent, and the mapping looks, in fact, very 
similar to a pure crossing torus in the uncoupled system. 
In Figure 8A2 the solid curve indicates the outer trapped 
torus. The dots are the mapping onto the PSS of the 
irregular crossing (reacting) trajectory given in Figure 7C. 
It should be noted that, during this period of time, the 
irregular trajectory follows the trapping torus very closely. 
The motion is quite coherent. In Figure 8B1 the regions 
(indicated by (A), (B)) define two topologically distinct tori. 
The dots about region A and B are formed by the two 
independent trajectories 8 B l l  and 8B22, respectively. 
Only the very regular part of trajectory 8Bl l  (the part 
between the arrows) was used to obtain the dots on the 
PSS. The fact that these two irregular trajectories seem 
to move for very long periods of time, in a very localized 
region of phase space, is surprising. This short time 
structure so closely resembles motion on a surviving torus 
that this can be called a “vague torus”. In fact, the tra- 
jectory labeled 8B22 moves on a “vague torus”10 resembling 
torus A. Though not shown here, other trajectories seem 
to “jump” periodically from the A torus to the B torus. 
Trajectories influenced by tori in A or B execute many 
periods before wandering away and visiting the hatched 
regions in Figure 8B. In the hatched region, the motion 
becomes more chaotic. The amplitude, y(t),  then becomes 
more irregular. Could it be that the hatched areas contain 
regions of negative Riemanian curvature?ll This decom- 

(10) W. Reinhardt, privation communication. (See Reinhardt’s lec- 
ture.) 
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Figure 8. The surface of section in A2,61, and B2 correspond to only 
the reactant “A” side of the potential energy surface. In  B1, A and 
B correspond to distinct trapped tori (A is the inner torus (oval) and 
B corresponds to the outer two ovals). The trajectories B11 and B22 
were used to obtain the “vague” tori A and B in B1, respectively. The 
arrows in B11 indicate where the trajectory was “cut” in order to obtain 
the section. Note the regularity of the amplitudinal motion in both 
cases-even though they are “supposed” to be irregular. One tic 
mark along the ordinate in parts B11 and B22 correspond to 0.4 units. 
All other tic marks along the ordinate are 0.2 dimensionless units. 

position is approximate in that eventually a trajectory 
starting in one such region does indeed visit the other 
region. Nevertheless, the long correlation times associated 
with certain kinds of motion arise from this 
“nonhomogeneity” of the irregular part of the energy hy- 
persurface. Lastly, in Figure 8B2 the mapping of the very 
“stochastic” trajectory of Figure 7E is shown. This is the 
typical “shotgun” pattern usually associated with the 
stochastic instability.12 Here no evidence of dynamical 
structure is observed. These observations appear to sug- 
gest the existence of “vague tori” and lead us to conjecture 
the following: 

Systems in which not all the invariant tori are destroyed 
have a measurable set of irregular trajectories that spend 
finite, and relatively long, periods of time executing almost 
regular motion. This quasi-regular motion occurs when 
the trajectories visit irregular regions of phase space 
neighboring existing tori. Approximate invariants may 
exist in these regions-hence they have been called vague 
tori. Trajectories in these regions are quite stable and lead 
to long correlation times and trapping times. 

The reactive flux iz(t;E) (cf. eq 2.11) corresponding to 
Figure 7 were each computed by averaging over microca- 
nonically sampled trajectories. These are presented in 
Figure 7A3-E3. The trajectories were computed by using 
the De integrator based on the Adams Moulton algor- 
ithm.13 Integration accuracy was monitored by conser- 

- ~~~~~~~ 

(11) Yoji Aizawa, J.  Phys. SOC. Jpn., 33,1963 (1972). R. Kosloff and 

(12) M. Henon and C. Heils, Astron. J., 69, 73 (1964). 
S. A. Rice, J. Chen.  Phys., 74, 1947 (1981). 
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vation of total energy with % error = 0.01, and by time 
reversal. The computations were carried out in double 
precision on a VAX 11/780 computer. The sampling 
techniques and other details of the calculation are dis- 
cussed in ref 3. 

Since each of the trajectories originates a t  y = 0, it is 
possible to determine the first time at  which they recross 
y = 0, and thereby the distribution of first passage times, 
p(7) ,  and the corresponding fraction, W(t )  1 - j t d t  p(7),  
of trajectories which do not make their first passage before 
time t .  These are given in Figure 7A4-E4. 

The histograms, p(7),  show that there is a minimum time 
for first passage. This corresponds to the shortest time 
for traversal of a well at the fixed energy E. Moreover, they 
show that there are fairly well-defined narrow short time 
peaks. These represent the trajectories that do not get 
trapped but instead recross the transition state quickly, 
and with a very small dispersion in first crossing times. 
This is expected in systems with weak coupling, where the 
system is not stochastic, but it should be noted that there 
is a remnant of this rapid recrossing even in the systems 
in which all reactive trajectories are “stochastic”. The 
fraction of trajectories that rapidly recross decreases as the 
coupling increases; nevertheless, even in very stochastic 
systems, there is a high degree of coherence typified by 
the narrow peak. In addition, we see that the distribution 
of “long fmt passage times” is quite broad. The probability 
of not making a first passage in time t is also given in 
Figure 7A4-E4. In the fully “stochastic” system, the long 
time behavior of this distribution looks quite 
exponential-a result consistent with a “random” or 
Poisson distribution of fiist passage times-a signature of 
a unimolecular rate law. In the less stochastic systems, 
the long time behavior is consistent with a sum of two or 
more exponentials, so that only at  times much longer than 
given in Figure 7B4-D4 will it be possible to determine 
the rate constant. The reason for this long time behavior 
appears to be that the trajectories seem to get coherently 
trapped for very long times on “vague trapping tori”, Le., 
remnants of the trapping tori. Thus an accurate deter- 
mination of the long time decay might give smaller values 
of 1 / 7 ~ =  than are reported here. 

The reactive flux given in Figure 7A3-E3 are completely 
consistent with the above discussion. When there is weak 
coupling, k(t;E) exhibits a decay due to dephasing. Each 
reactive trajectory is essentially periodic in y ( t ) ,  but there 
is a distribution of periods (given by the sharp peaks of 
~ ( 7 ) ) .  As the coupling gets stronger, the first peak in p(7)  
decreases and the fraction of trajectories giving rise to 
“random” recrossing time grows. Since the former gives 
“heterogeneous oscillatory decay”, and the latter 
”exponential” decay, the flux behaves something like the 
superposition of these two kinds of decays. The behavior 
is of course more complicated than this description would 
imply. Thus in the case of strong coupling, the long time 
decay is “exponential” and a rate constant can be ex- 
tracted. 

The 7TRRKM-1 were computed analytically from eq 2.11. 
It is found that there is agreement between 7Rm-l and 
7--l only from the most stochastic system (Figure 7E) 
where 7 ~ ~ - ~  = (7.5 f 0.5) X 
Clearly, when the measure of trapped tori is nonzero, the 
reactive trajectories are restricted to a subregion of the 
energy hypersurface and the density of states used in 
RRKM overcounts the reactive states. Then RRKM will 
be a very poor approximation. As discussed in section I 

and 7RRKM-l = 7 X 
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and Appendix A, the statistical theory can be modified by 
considering the irregular region of phase space; cf. eq 2.7 
and eq A.7. The modified rate constant 7BD-l satisifes the 
inequality given by eq 2.10. Thus we expect that as the 
coupling (stochastic region) increases, ( T B D ) - ~  decreases 
until it eventually becomes equal to 7--l. This happens 
when the whole energy hypersurface is stochastic. It is 
(7BD)-l which gives an upper bound on the actual rate 
constant 7Rm-1. We have found that rRxi l  increases with 
stochasticity. Thus neither the full nor the modified 
RRKM (TST) theory accounts for the ”experimental” 
results when there is not full stochasticity. The situation 
is summarized schematically in Figure 2. Instead, the rate 
constant 7&-l depends on dynamical properties (like the 
energy exchange rate). This bears a close resemblance to 
what happens in stochastic theories where the rate con- 
stant depends on dynamic properties, like the collision rate 
or friction coefficient, and only becomes equal to the 
transition-state value under rather restrictive conditions. 
Another possible explanation is that, in the less stochastic 
systems, motion on “vague tori” give rise to long trapping 
times. 

The above observations can be summarized as follows: 
(i) The measure (in the Lebesque sense) of the irregular 

part of the energy hypersurface must be close to the 
measure, p(E) ,  of the constant energy surface, that is, a 
significant fraction of the TT must be destroyed before 
one can expect to observe linear rate laws. 

(ii) For very strongly coupled systems, that is, systems 
in which all the tori are destroyed, a unimolecular rate law 
pertains, rate constanb exist, and these rate constants are 
moreover very well approximated by RRKM (transition 
state) theory. 

(iii) In less strongly coupled systems, that is, systems in 
which trapping tori still exist, it appears that a unimo- 
lecular rate law describes the behavior of the reactive 
trajectories, but now the rate constants are not approxi- 
mated by the full RRKM theory. A modified RRKM 
theory taking account of the restricted density of states 
corresponding to the stochastic region of phase space gives 
very poor agreement with the dynamics. In fact, we find 
that 1/7Rm increases with stochasticity, whereas 1/TBD 
decreases with stochasticity. 

(iv) At intermediate coupling, there appears to be a high 
degree of correlation in the irregular trajectories. This 
correlation seems to be related to the regions of phase 
space still occupied by tori. When an irregular trajectory 
comes near a region occupied by tori, it behaves coherently; 
when it is in regions free of tori, it behaves chaotically. 
Motion on vague tori can lead to very long trapping times 
and highly correlated motion. 

In the foregoing, it has been shown how the behavior of 
the reactive flux can be correlated with the dynamical 
structure in phase space. All of the systems studied have 
the same total energy E = 1.026. 

In Figure 9, it is shown how the CSS for a given system 
(z  = 1, X = 2.5) varied with total energy E. It should be 
noted that systems A-D in Figure 9 are almost entirely 
stochastic. In Figure 9, we show how the reactive flux 
decays for each of these systems. As one goes down the 
column from system A to system D, the width of the 
transition zone increases dramatically. The corresponding 
reactive fluxes show a significant change in behavior, 
clearly due to the effect of increased width. For system 
A the flux decays exponentially at long times. For systems 
B and C the flux acquires much more dynamical structure 
and oscillatory behavior, and for system D no discernable 
long time decay exists; there is no separate time scale, and 

(13) L. F. Shampine and M. A. Gordon, ’Computer Solution of Or- 
dinary Differential Equations”, W. H. Freeman, San Francisco, 1975. 
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Figure 10. The potential mdei  used to study isomerization dynamics 
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Flgure 9. A sequence of configurational surfaces of section and the 
corresponding reactive fluxes are shown as a function of total energy 
E. The series corresponds to the system discussed in Figure 7. 
Arrows indicate the width of the transition zone. The reactive flux 
changes dramatically as the transition-state zone widens (cf. eq 13) 
with increasing energy. Note that the measure of irregularity is ap- 
proximately constant throughout the energy range of interest. In 
column 1 one tic mark along the y axis corresponds to 0.4 dimen- 
sionless units. One tic mark along the flux axis is 0.2 units in A2, B2, 
and C2 and 0.4 units in D2. 

a linear rate law does not apply, even though the extent 
of stochasticity is more or less constant. Clearly then even 
for a fully stochastic system when the energy is "too high", 
a rate constant will not exist, A detailed analysis of this 
energy dependence shows that, as the total energy is in- 
creased, the trapping time decreases because the width of 
the transition zone increases and the bottleneck effect 
becomes less pronounced. 

Since the canonical reactive flux is r dE Cl ( E )  k ( t 

J 

it follows that the dominant contribution to the rate 
constant stems from energies close to the barrier height. 
This means that one will see a linear rate law, exponen- 
tially decaying flux only for low temperatures. 

5. Isomerization in an Isolated n -Butane 
M o l e c ~ l e ' ~  

To what extent does the information obtained from a 
detailed study of the two-dimensional model apply to real 
molecules? Let us consider for a moment the simple 
isomerization reaction of n-butane8J4 

CH ct! 3 
\3 i"' \ 

CH- H2 7 CHz-CHz -@ 
\ 
\ 

gauche CH3 

trans 

(14) R. 0. Rosenberg and B. J. Berne, manuscript in preparation. 

in which n-butane undergoes a gauche (4 = i2x /3)  to 
trans (4 = 0) isomerization reaction. To simplify the study, 
we ignore the high-frequency C-H stretches, and regard 
n-butane as consisting of four rigid methylene groups. If 
we label the n-butane molecule sequentially, the reaction 
coordinate is the dihedral angle, 4, between the plane 
containing carbons 1, 2, and 3 and the plane containing 
carbons 2,3, and 4. The potential energy for the isolated 
molecule id5 

V =  
3 2 

i= l  i = l  
v~ (4 )  i- 1/&,C(bi+l,i - bo)' + '/&C(cos 0i - cos 

(5.1) 

The first term corresponds to the potential of the reactive 
degree of freedom. This is taken to be the potential fitted 
to experiments by Scott and Scheraga16 and more recently 
by Ryckaert and Bellemans" and shown in Figure 10. The 
second and third terms in eq 5.1 specify a harmonic model 
for the stretching of the C-C bonds (with bond lengths 
labeled sequentially by bZ1, b32, ba) and the bending of the 
C-C-C bond angles (labeled B1, &). The harmonic force 
constants are taken to be Kb = 3.5 X lo' J/nm2 mol, and 
KO = 1.8 X lo6 J/mol and the equilibrium bond lengths 
and bond angles are bo = 1.53 A and Bo = 109'28', re- 
spectively. 

In this potential model, there is no coupling between the 
internal coordinates of the molecule. The coupling be- 
tween these modes occurs in the kinetic energy. Of the 
12 degrees of freedom in the system, the three degrees of 
freedom corresponding to the center of mass are not in- 
teresting. The kinetic energy couples the remaining nine 
degrees of freedom giving rise to energy exchange between 
the reactive degree of freedom and the remaining eight 
other "bath" degrees of freedom. 

In Figure 11A is shown the canonical (constant tem- 
perature) reactive flux for the isolated butane molecule. 

(15) E. Helfand, Z. R. Wasserman, and T. A. Weber, J. Chem. Phys., 
70, 2016 (1979). 

(16) R. A. Scott and H. A. Scheraga, J. Chem. Phys., 44,3054 (1966). 
(17) J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett., 30,23 (1975). 
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Figure 12. The conflgurations surface of section of a model of butane 
in which only the symmetric bending mode and the dihedral angle are 
allowed to vary. The thatched area indicates that both CT and some 
?l are destroyed. Two typical reactive trajectories are indicated below. 
Note that these trajectories can get trapped. 

Since the molecular rotations do not provide an ade- 
quate bath, we have removed these rotations and have 
studied the three-dimensional system (4, el, &). This 
system displays the irreversible decay evinced by the full 
system, and rate constants still apply. By choosing either 
the symmetric bend and 4 or the asymmetric bend and 
4 we have been able to study “realistic” two-dimensional 
systems. There are many surprises. These are outlined 
in a manuscript presently in preparation. Suffice it to say 
that the analysis is based on the concept of TT, CT, and 
vague tori. To give some feeling for this, the two config- 
urational surfaces of section are presented in Figures 12 
and 13. In Figure 12, the CSS corresponding to the 
two-dimensional system consisting of the symmetric bend 
and the dihedral angle shows that all the crossing tori and 
a large measure of trapping tori are destroyed. Typical 
reactive trajectories are shown. The motion is sufficiently 
irregular to give rise to rate constants. In Figure 13, the 
CSS corresponding to the two-dimensional system (at the 
same energy as the preceding calculation) consisting of the 
asymmetric bend and the dihedral angle shows that the 
system is integrable; no tori are destroyed. The trajectories 
are quasiperiodic. Rate constants do not exist. Clearly 
care must be taken in reducing a many degree of freedom 
system to a few degree of freedom system. 

6. Discussion 
Even in systems consisting of only two degrees of free- 

dom, it has been shown here that nonlinear coupling can 
give rise to a unimolecular rate law for isomerization and 
correspondingly to well-defined rate constants. It has also 
been shown that calculation of the long time decay of the 
reactive flux allows one to  determine the rate 
constants-should they exist. This has been clearly shown 
for the most stochastic system (E) of Figure 7 and in this 
case the RRKM rate constant ( T ~ ~ ~ ~ - ~ )  is in excellent 
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Figure 13. Similar to 12, but now only asymmetric bendlng mode and 
dihedral angle is consldered. This CSS is at the same energy as in 
Figure 12. Note that no tori are destroyed. 

agreement with the rate constant determined from the 
reactive flux. The less stochastic system, B-D, of Figure 
7, however, exhibits features which cannot be accounted 
for by simple statistical theory. When the coupling is 
strong enough to destroy some trapping tori, reactive 
trajectories do indeed get trapped for long periods of time. 
These trajectories are irregular but nevertheless display 
a great deal of coherence; that is, there are very long 
correlation times. The trapping times appear to be non- 
random and it would take a very long integration time to 
establish whether these systems are described by a uni- 
molecular rate law with well-defined rate constants. It is 
possible that the very long time decay in these systems is 
not exponential-although we suspect it is. There are 
comparable cases in transport theory-such as BrQwnian 
motion in two dimensions-where phenomenological decay 
is not observed.l8 The reason for the long correlation 
times and long trapping times in these moderately coupled 
systems is rather difficult to pin down. What is clear is 
that a substantial fraction of the crossing trajectories in 
these systems, although irregular, spend considerable pe- 
riods of time executing coherent or “regular” motion. The 
trajectories seem to fall under the influence of the trapping 
tori that still exist in the system. One consequence of this 
is that 7Rm seems to be a decreasing function of the cou- 
pling. This behavior is counterintuitive in that we expect 
the trapping time to increase as the stochasticity (measure 
of the iregular region of phase space) increases (cf. dis- 
cussion in section I1 and Figure 2). 

That 7Rm-I increases as the coupling increases is also 
consistent with the following argument. In any coupled 
system energy is exchanged between the x and y oscillators. 
Let denote the correlation time of the ejergy 
fluctuation-should a correlation time exist. 7E- l  plays a 
role in this problem somewhat similar to the collision rate, 

(18) J. H. Dymond and B. J. Alder, J. Chem. Phys., 52, 923 (1970). 

or friction constant, in stochastic dynamic models of 
barrier crossing. In the event that 73 >> T ,  where T is 
the period of oscillation of a peridic crossing orbit, then 
a trajectory starting at  the transition state will coherently 
or periodically recross the transition state for a time on 
the order of 7 E  before losing enough energy to get trapped. 
It will remain trapped until it gains enough energy to 
recross the barrier. The time of trapping is thus also 7 E  

and 7Rm or 7Rm-1 - 7E- l .  Thus we expect the kinetic 
rate constant 7RxL1 to be an increasing function of 7 E - I .  
Intuitively we expect 7 E  to decrease and 7Rxn-1 to increase 
as the coupling (stochasticity) increases, an expectation 
entirely in agreement with the observation. Of course, no 
evidence is given for the existence of 73. These consid- 
erations raise more questions than can be answered here, 
and further study is required. 

The simple systems presented here have a rather rich 
dynamical structure. The focus of this paper has been to 
clarify the relationship between a reaction dynamics and 
the dynamical structure associated with the KAM theorem. 
In fact we know no other work that dicusses this rela- 
tionship between the topology of phase space and rate 
constants for barrier crossing in bounded systems. Many 
of the conclusions outlined here form the basis for further 
investigations. For example, (a) what happens when there 
are more than two degrees of freedom; (b) what are the 
dynamics in a corresponding quantum system? With re- 
gard to (a), it is important to elucidate the role of Arnold 
diffusion. With regard to (b), it has already been shown 
that there is a transition to chaos in wave packet dynamics. 
Nevertheless, this remains a controversial area. It also 
enables one to pose an exact quantum counterpart to the 
RRKM theory. 

In closing we reiterate that, for very strongly coupled 
systems, that is, systems in which all the tori are destroyed 
and the energy is close to the barrier, a unimolecular rate 
law pertains, rate constants exist, and the rate constants 
are very well approximated by RRKM (transition-state) 
theory. It is interesting to not that this suggests that we 
explore the conditions under which all trapping tori are 
destroyed. By applying linear stability analysis to the 
“most stable” elliptic point, we have recently been able to 
predict when RRKM behavior should be expected.lg 

Appendix A. A Statistical Theory of Rate 
Constants in Nonergodic Systems 

Phase space is decomposable into regular and irregular 
parts. Let us define a quantity I(r) which has the property 
that 

I(r) = 1 r E sI 
= o  r B s I  (AI)  

where SI is the measurable set of irregular points in phase 
space. Let us define the normalized microcanonical density 
on the subspace SI as 

(A21 
1 pI(r.E) = ---w - H(r))i(r) w) 

where 
I ;~~(E)  = J d r  m s ( E  - H(r)) (-43) 

is the density of irregular states at energy E. Let us now 
define the normalized autocorrelation function of the 
fIGctuation in product molecules 

Cdt;E) = (sNB(o)sN~(t) ) E J /  ( ~ N B ~ ) E , I  (A4) 
where subscript E,I indicates an average over PI; that is, 

(+0+N. De Leon and B. J. Berm, J. Chem. Phys., in press. 
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over the irregular part of phase space. The corresponding 
reactive flux is 
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This follows from the uniformity of the propagator and 
the stationarity of pI(r,E). The latter follows from the fact 
that I is a constant of the motion (a regular trajectory 
remains regular, and an irregular trajectory remains ir- 
regular, and never the twain shall meet). It is also easy 
to show that from symmetry (Ob))E,I = XB = 1 - (Ob))1& 
= x k  Every trajectory contributing to kI(t;E) is a crossing 
trajectory. The initial value of this reactive flux is 

Jd r  I(r)a(E - H(r)) j lO@)W - y,) 
(A6b) 

If all the crossing trajectories are irregular then I ( r )  can 
be deleted from the numerator and 

1 1 - = -  
TBD XAXB J d r  z(r)a(E - H(r)) 

A statistical theory of the rate constant is formulated 
as follows: Each trajectory originating at the transition 
state, yo gets trapped for a time (long compared to vi- 
brational periods) in the well toward which it is initially 
moving. Then there are no rapid recrossings. A trapped 
trajectory can only recross after it regains energy from the 
other degrees of freedom (to which the energy was origi- 
nally lost). The distribution of trapping times is assumed 
to be random. Then CI( t ;E)  must decay as a single ex- 
ponential and since its initial decay rate is given by eq A6, 
it follows that 

(A.8) kI(t;E) = - &TED 

Thus the decay rate of kI(tfl is ~ / T B D .  If the whole energy 
hypersurface is irregular 

I 

TBD 

(A.9) 

Now in an experiment, suppose the initial states are 
microcanonically distributed according to p(r) = 6(E - 
H)/O(E). Since 

where aR(E) = N E )  - &(E) is the density of regular states 
and P R ( r 3 )  = (1 - 1)6@ - H)/QR(E). 

The full fluctuation correlation function is 

where the average is over the full energy hypersurface. 
Upon substitution of eq A.lO, this can be expressed as 

regular tiajectories 

Now if all crossing trajectories are irregular, none of the 
trajectories contributing to CR(t;E) can cross the barrier 
so that CR(t;E) is constant in time; that is, CR(t;E) = 
CR(0,E). It follows from eq A.12 that the reactive flux will 
then be 

Substitution of eq A.8 into eq A.14 then gives the reactive 
in the statistical theory 

where the last equality follows from eq A.7b. 
This shows that the exponential decay observed in a 

nonergodic system in which all crossing trajectories are 
irregular is given by decay constant ~ / T B D  defined in eq 
A7b and 2.7. When there are TT, &(E) < Q(E) so that 

~ / T B D  > ~ / T R R K M  (A.16) 

but when the measure of all TT is zero 
~ / T B D  = ~ / T R R K M  (A.17) 

It is important to note that the prefactor of the exponential 
in eq A.15 is ~ / T R R K M .  Thus, in general, the statistical 
decay rate cannot be found from the initial time derivative 
of the full time correlation function. 
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