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A simple method is presented for determining the dynamic (frequency-dependent) friction experienced by solute intramolecular 
coordinates due to the solvent molecules. This method is applied to the case of a diatomic molecule dissolved in Lennard-Jonesium. 

1. Introduction 
In many problems in liquid-state chemistry one degree of 

freedom, x ,  plays a special role and is treated by projecting out 
all of the remaining degrees of freedom of the system. The 
simplest case occurs in a liquid solution, where x can be any of 
the three coordinates specifying the position of the molecular center 
of mass. Using projection operator techniques, it is then a simple 
matter to derive a generalized Langevin equation for this coor- 
dinate'+2 

mx(t )  = -Jfdr  {(T) i ( t  - T) + R ( t )  (1.1) 

where m is the mass of the molecule, and x(t),  x(t) ,  { ( t ) ,  and R(t) 
are the velocity, acceleration, dynamic friction, and random force, 
respectively. The second fluctuation dissipation theorem provides 
a relationship between { ( t )  and the fluctuating force3 

(1.2) { ( t )  = - ( FeiQLfF) 

where F is the force acting on the coordinate x, L is the Liouville 
operator, and Q is the projection operator, 1 - ( ... 3)/(x2)x. It 
is worth noting that in Brownian motion theory the friction 
coefficient is given by 

(1.3) 
1 lB(t) = -(FeiLffF) 

kT 
where d@ is the propagator for the total system with the velocity 
of the Brownian particle constrained to be zero. Clearly the true 
friction given by eq 1.2 will generally be different from the 
Brownian friction given by eq 1.3. Deutch and Silbey have shown 
that for a particle linearly coupled to a harmonic bath these two 
friction coefficients will be equalG4 

In the case of the center of mass motion, it is possible to de- 
termine { ( t )  from molecular dynamics. The basic approach is 
to calculate the velocity autocorrelation function 

I 

kT 

(1.4) 

from molecular dynamics trajectories5 
calculated Cv( t )  into the integral equation 

Substitution of the 

(1.5) mCv(t) = - X f d r  {(T) Cv(t - T) 

followed by numerical integration, gives {(t) .  Alternatively, one 
can evaluate the Laplace transform of Cv(t) ,  giving 

which may-be solved for { ( t )  through Laplace inversion. Here 
Cv(s) and {(s) are the Laplace transforms of Cv(t) and { ( t ) ,  
respectively. These procedures have been used to determine { ( t )  
in liquids3q6 and super cooled liquids.' In the latter, { ( t )  consists 
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of a short-time decay, characterizing the duration of strong re- 
pulsive collisions with solvent molecules, followed by a long-time 
decay, characterizing collective or hydrodynamic interactions. It 
is the aim of modern self-consistent mode-mode coupling theories 
to predict this behavior.* 

In the barrier-crossing problems that arise in chemical reaction 
dynamics, the reaction coordinate is assumed to obey a generalized 
Langevin equationg 

dT S;(S) i ( t  - T) + R ( t )  (1.7) 

where the potential of mean force W(x)  has wells and barriers 
and p is the reduced mass. The reaction coordinate usually 
involves the relative motions of different groups in the same 
molecule. Clearly, the dynamic friction cr(t) acting on the reaction 
coordinate can be quite different from the dynamic friction ex- 
perienced by the center of mass of a molecule, since this coordinate 
can be significantly shielded from the solvent atoms.1° It is very 
difficult to determine lr(t) analytically, and only very simple 
hydrodynamic models have been invoked.* 

The generalized Langevin equation, eq 1.7, cannot be derived 
in general from classical or quantum dynamics. It is usually 
assumed to apply without questioning its validity. It is not a t  all 
clear that for nonlinear systems this equation is valid even in simple 
cases. It has been derived for an anharmonic oscillator linearly 
coupled to a harmonic bath." In this case, the dynamical friction 
has the simple form, for a continuum bath 

and for a discrete bath 

(1.9) 

Here, g, is the coupling constant of the reaction coordinate to the 
bath, m, and u, are the masses and frequencies of the harmonic 
oscillators in the bath, and ga2/m,ua2 is independent of the bath 
or solvent masses, m,, because m,u2 is a mass-independent force 
constant. The only mass dependence arises from the frequency 
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factors w,, in the cosines, which are proportional to Thus 
if the solvent mass is changed, only the time scale will change; 
that is, there should be no change in the overall functional form 
of l1(t) .  Clearly, there is no dependence of l r ( t )  on the reaction 
coordinate itself. Moreover, because the bath is harmonic4 we 
expect that the dynamic friction is identical with that computed 
by using eq 1.3. 

Recently, it has been shown that if {,(t) is known, it is possible 
to calculate the rate constant for barrier crossing in certain lim- 
i t ~ . ~ . ] ~  The rate constants so obtained can be very sensitive to 
the model used for l1(t).l3 In this paper, we introduce a very 
simple method for determining l1( t )  for any given reaction co- 
ordinate. We apply this method to a model of a liquid-state 
reaction. l1(t) for the reaction coordinate is determined and 
compared with the dynamic friction {&t) for the solvent atoms. 
This provides great insight into dynamic interaction between a 
reacting molecule and the solvent. 

In this paper only the dynamic friction is discussed. The 
calculation of the rate constant is left for another paper. 

2. Method for Determining Dynamic Friction 
The potential in eq 1.7 is a nonlinear function of x. It is usually 

assumed that lI ( t )  arises entirely from the fluctuating force on 
x due to the bath, where the bath consists of all coordinates and 
momenta other than x and px. If this assumption is valid, then 
l1(t) should be invariant to the choice of potential U(x) .  It follows 
that a good test of this assumption is to compare l1(t) corre- 
sponding to different potentials. If these differ, then the as- 
sumption is wrong. 

To proceed, we replace the potential function U ( x )  by a har- 
monic potential 

(2.1) 

with frequency w, and equilibrium displacement xo. In this case, 
one can derive the generalized Langevin equation using projection 
operators2 

pq( t )  = pijZq(t) - l ' d 7  11(7) q ( t  - 7) + R(t) (2.2) 

where q(t) = x ( r )  - (x) is the deviation of the bond length x from 
the mean bond length (x) in the bath, and ij is the renormalized 
frequency given by 

u(o)(x;xo,w) = ' / ,mw2(x - xo) 

G2 = [P/.4q2)1-] (2.3) 

Both (x) and ( q2) depend on xo, w,  and the forces exerted by the 
bath on the reaction coordinate x including centrifugal distortion. 

Multiplying eq 2.2 by q ( O ) ,  averaging over a canonical ensemble, 
and remembering that (R( t )  q(0 ) )  = 0, gives an equation for the 
velocity autocorrelation function Cv(t) 

CJt) = - S ' d 7  K ( T )  Cv(t - 7 )  (2.4) 
0 

where the memory function is 

(2.5) 
l-l 

These quantities depend parametrically on x,, and w.  C,(t) is now 
determined by molecular dynamics on the liquid system with U ( x )  
replaced by the harmonic reference potential u(o)(x;xo,o), and 
K ( t )  can be determined by the method of Berne and Harp.3 If, 
furthermore, (x) and ( q 2 )  are determined in the same simulation, 
ij2 can be calculated. 

Substitution of K ( t )  and ij into eq 2.5 yields l r ( t ) .  This can 
be repeated for different values of w for a given xo, and for different 
values of xo. Writing 

l J t )  = lI(cxo,w) (2.6) 

(12) Hanggi, P. J .  Stat. Phys. 1985, 42, 105; 1986, 44, 1003, Addendum 
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1788; 1986, 86, 1079, Addendum and Erratum. 

TABLE I: Summary of Simulation Runs' 
w Xn 

15.0 1.25 
20.0 1.25 
25.0 1.25 

19.2 1.25 

25.0 0.75 
19.2 1.25 
22.5 1.75 

40.0 1.25 
19.2 1.25 
17.5 1.25 

m J m ,  G~ 
1 .o 143 
I .o 312 
1 .o 542 

1 .o 294 

1 .o 597 
1 .o 294 
1 .o 554 

4.0 1360 
1 .o 294 
0.1 304 

( 9 )  
-0.060 
-0.027 
-0.018 

-0.036 

-0.097 
-0.036 
-0.030 

-0.037 
-0.036 
-0.0029 

r(t=o) ( ( 0 )  
419 21.2 
427 22.2 
433 19.4 

426 21.5 

319 13.1 
426 21.5 
502 28.8 

454 42.2 
426 21.5 
435 8.15 

1 .o 960 38.0 

"The fourth line is the average of the first three lines. The last line 
is for the single particle friction. 

to indicate the parametric dependence of the friction on xo and 
w ,  l r ( t )  will be compared with the dynamical friction j ; ( t )  of a 
single solvent atom. 

3. Molecular Dynamics 

The physical system consists of N solvent atoms A and one 
diatomic molecule A2* where the solvent-solvent interaction is 
given by 

P A A ( r )  = 4 t A A  [ ( ?)Iz - (?)'I (3.1) 

The diatomic molecule interacts with the solvent through a site-site 
Lennard-Jones potential of the same form as the solvent-solvent 
interaction 

pAA*(r) = 4tAA[ ( ? ) I 2  - ( ? ) 6 ]  (3.2) 

The diatomic intramolecular potential 

is a symmetric bistable piecewise continuous potential with par- 
abolic barrier and harmonic wells where y is defined by r = a + 
(4Q/wO2)]/*y, a is the position of the barrier maximum, Q is the 
barrier height, and wo and wB are the harmonic well and barrier 
frequencies, respectively. The well and barrier regions of pAeA+(r) 
are joined continuously at y ,  and the well minima are located at 
y = *yo whereyl2X2[X(1 + X2)] = 1, yo  = y, ( l  + A'), and h = 
wB/w0. The Lennard-Jones reduced units are defined such that 
mA. = u A ~  = tAA = kB = 1 apd (mA.uAA/tAA)1/2 is the unit of 
time. In all our calculations, the barrier Q = 25 is positioned at 
r = a = 1.25, with w B  = wo = 30 placing the positions of the wells 
?t approximately r = 0.75 and 1.75. The reduced temperature 
T = (k,T/t ,)  = 2.5 and the reduced density p = nAuAA3 = 1.05. 

As mentioned in section 2, the dynamic memory function is 
determined from a long molecular dynamics run. The bond 
velocity correlation function for the solute molecule with a har- 
monic reference potential, eq 2.1, is determined in the standard 
way from runs of length 2 X 10' time steps. The method of Berne 
and Harp3 is used to determine the corresponding memory function 
and eq 2.5 gives l1(t). The time step was 2 X and an average 
run required 4 h of CPU time on an FPS 264 attached processor. 
The simulation included 30 solvent atoms and the reacting dia- 
tomic molecule. The small size of our system was dictated by 
the fact that we perform a phase space average for a single im- 
purity, To check for size dependence, we compared our results 
for 62 solvent atoms with a simulation including 106 solvent atoms 
and found good agreement. 
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Figure 1. The friction kernel {,(r) = {,(t;xo,w) shown as a function of 
time for three values of the harmonic frequency for the confining po- 
tential: w = 15 (-), w = 20 (--), and w = 25 (--) for xg = 1.25. 
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Figure 2. The friction kernel 3;(r) = {,(t;x0) shown as a function of time 
for three values of the minimum of the confining potential: xo = 0.75 
(--), xo = 1.25 (--), and xo = 1.75 (---). Also displayed is ls(t) /2,  
which is one-half of the friction for a single solvent atom (-). 

4. Results 
In Figure 1, lr(t;xo,w) is presented for xo = 1.25, corresponding 

to the barrier position, for three different frequencies w = 15, 20, 
and 25. This figure clearly shows that S;(t;xo,w) is independent 
of the harmonic frequency. 

The data in Table I show that the initial time value of Cr(t) for 
different values of w are within 2% of their mea? while the ap- 
proximate values of the zero frequency friction ((0) are within 
10% of their mean. [Each run indicated in Table I is the average 
of one to three simulation runs. Therefore, in computing averages 
they are not necessarily equally weighted.] 

In Figure 2, the dependence of the dynamic friction {,(f;xo) on 
the equilibrium bond length xo is presented for xo = 0.75, 1.25, 
and 1.75 corresponding to the left well, the barrier, and the right 
well of the bistable potential. The initial value S;(O;xo) increases 
approximately linearly (S;(O;xo) = 209(q) + 172) with the average 
bond length (4) as does the overall dynamic friction Cr(t;xo). For 
comparison the dynamic friction experienced by a single solvent 
atom l S ( t )  in the neat fluid at  the same temperature and pressure 
is also shown. 
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Figure 3. The time-integrated friction kernel {v = f7(x0), eq 4.1, shown 
as a function of the endpoint of integration, T ,  for the four friction kernels 
discussed in Figure 2. 

r 

The xo dependence of the dynamic friction I;(t;xo) is magnified 
by consideration of the integral 

CAXO) = X T d f  tr(t;xo) (4.1) 

as a function of T shown in Figure 3. The static friction constant 
is given by 

Figures 2 and 3 show how sensitive the dynamic and static friction 
constants are to equilibrium bond lengths. The data permit only 
ball park estimates to be made of the static friction cr(x0) because 
the integrals have not reached clear plateau values. Nevertheless, 
we tabulate S;(O;xo) and S;(xo) as a function of xo in Table I. 

A question that often arises in reaction rate theory is: How 
is the rate constant for barrier crossing affected by the correlation 
times of the bath? When the characteristic relaxation times of 
the bath become long compared to the time spent by the reaction 
coordinate in the vicinity of the barrier, as measured by the inverse 
barrier frequency w g ' ,  Hynes and co-workers have persuasively 
argued9 that the effective damping of the reaction coordinate 
should diminish with the consequence that because there will be 
fewer solvent-induced rapid recrossings of the barrier than pre- 
dicted by Kramers' theoryI4 the rate constant should be closer 
to transition-state theory. 

To test these ideas, it is necessary to determine S;(t) for a slow 
solvent. In the foregoing we studied the case when mA. = mq,. 
Although the non-Markovian nature of l r ( t )  in that case is 
manifested by a "hydrodynamic" longtime decay of the dynamic 
friction, the time scales are not so far apart that very large 
non-Markovian effects are found. However, if mA is increased 
for fixed mA. = 1, the solvent modes will become slower and one 
should expect a large separation of time scales in reaction dy- 
namics. 

A series of simulations were undertaken to determine how the 
dynamic friction depends on the solvent mass mA. The dependence 
of l;(t;xo=1.25) and {,(xo=1.25), at the barrier, xo = 1.25, on 
the solvent mass mA is presented in Figures 4 and 5 as a function 
of the time in units of the solute Lennard-Jones time scale 
((mA.u2/tAA))1/2 = 1. It should be clear from these figures that 
the dynamic and static friction acting on the reaction coordinate 

~ ~~ ~~ ~ ~ 

(14) Kramers, H.  A. Physica 1940, 7, 284. 
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Figure 4. The friction kernel lr(t) shown as a function of time for three 
different solvent/solute mass ratios: mA/mkL = 4.0 (-), mA/mA* = 1.0 
(--), and mA/mA.  = 0.1 (--) for xo = 1.25. The units of time are those 
of the solute, i.e., ( ( m A a A A 2 / t A A ) ) 1 / 2  = 1. 
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Figure 5. The time-integrated friction kernel 5;, eq 4.1, shown as a 
function of the endpoint of integration, I, for the three friction kernels 
discussed in Figure 4.  

is strongly dependent on the solvent mass. 
An additional check on our method involves examining the 

initial time value 5;(0) as the ratio of solute to solvent mass is 
varied. One expects that the initial value of the memory function 
K( t ) ,  eq 2.5, equal to the mean square force divided by the mean 
square momentum, should vary as the inverse of the reduced mass 
while lr(0) should be mass-independent. Comparing the values 
of 5;(0) in Table I for the three ratios of solute to solvent mass 
we find that the initial value is independent of mass to within 7% 
of the mean. 

The dependence of the static friction on the solvent mass is 
displayed in Table I. In all cases the dynamic friction consists 
of a rapid short-time decay reflecting the duration of collisions 
experienced by the reaction coordinate and a long-time decay that 
has been attributed to the coupling of the reaction coordinate to 

hydrodynamic modes of the solvent. In the case where mA* = 
mA, there is a well-defined separation of time scales for these two 
processes. However, when l)lA = AmA* it appears that the duration 
of the collision becomes long enough that a clear temporal sep- 
aration is not apparent. Nevertheless, there are at least two very 
different time constants characterizing the short- and long-time 
decay. In the opposite case when mA = O.lmA., {,(I) relaxes 
relatively quickly and approaches the Markovian limit. 

5. Conclusion 

In summary, we have presented an accurate method for the 
calculation of time-dependent friction kernels for a reactive degree 
of freedom as a function of the reaction coordinate position. 
Recently, generalized Langevin equation theories for calculating 
the rate of chemical reactions as a function of the dynamic 
properties of the solvent have been developed. This method should 
prove extremely useful in testing the accuracy and applicability 
of these theories. 

The reaction coordinate may be constrained to the well min- 
imum and the resulting lr(t)  may be used to calculate the energy 
activation rate. It has been suggested that energy transfer between 
the reaction coordinate and resonant degrees of freedom in the 
bath could play an important role in accelerating energy activa- 
tion.I5 Our method allows one to investigate how the friction 
on the reaction coordinate depends on the intramolecular fre- 
quencies of the solvent, allowing, potentially, for the examination 
of the detailed coupling of the bath degrees of freedom to the 
reaction coordinate through the intermolecular potential. 

The reaction coordinate may be constrained to the barrier 
maximum for the calculation of lr(t) .  Knowing the frequency 
dependence of the friction at the barrier allows for accurate 
calculation of the Grote-Hynes rate constant for saddle crossing.16 
Our results show a strong dependence of lr ( t )  on both the par- 
ticular value of the reaction coordinate position and the so- 
lute/solvent mass ratio, indicating that the convenient assumption 
that the single particle memory function, lS(t), can be assumed 
a good estimate for the reaction coordinate friction, { , ( t ) ,  may 
be a bad one in some cases. In fact Bergsma et al.” have recently 
used eq 1.3 to approximate the friction experienced by the reaction 
coordinate in an SN2 reaction in rare gas and water. 

An important conclusion that can be drawn from the observed 
dependence of lr(r) on the solvent mass is that the simple harmonic 
bath model of the friction, given by eq 1.9, is not even remotely 
applicable. This model predicts that increasing the solvent mass 
will lead simply to a rescaling in time of l r ( t )  and not a change 
in its functional form. We observe, however, that the functional 
form changes. Furthermore, the simple model does not predict 
the bond length dependence of l r ( t ) .  This can be incorporated 
by building a bond length dependence into the coupling constants, 
g,, but it is highly probable that the friction of the generalized 
Langevin equation of eq 1.7 should be replaced by a friction that 
is nonlocal in space as well as in time.12 In the case of strong bond 
length dependence of cr(t), it can be concluded that the GLE (eq 
1.7) is not valid for the complete description of the dynamics of 
the reaction coordinate. 
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