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In this paper we present a computationally efficient means of performing simulated annealing on atomic 
level protein structures. The method which is based upon a Trotter factorization of the classical Liouville 
propagator is employed in a series of simulated annealing studies of a small protein using a standard molecular 
mechanics type potential as well as a continuum approximation to include the effects of solvation. Preliminary 
results are presented for the performance of the potential using standard force field parametrizations in attempts 
to distinguish native-like structures from those that are distinctly non-native. Low-energy structures with 
large rms deviations from the minimized X-ray structure were found, thereby suggesting the possibility that 
the potentials employed in this work may not be of sufficient accuracy to distinguish the native protein structure. 

1. Introduction 

It is now commonly believed that the native state of a protein 
is given by the state corresponding to the global minimum of 
the molecules free energy, although it has alternatively been 
suggested that there may exist many equivalent accessible 
“native-like’’ states. Assuming, for the moment, that a unique 
native state exists, formally the problem may then be viewed 
as one of global optimization, whereby one attempts to find 
the minimum of a given “cost function”. In the present instance 
this cost function would correspond to the proteins free energy 
or, as is sometimes the case in practice, taken to be its potential 
energy. In attempting to solve this problem from a theoretical 
point of view, one is then faced with two principal difficulties. 
The fiist difficulty concerns the accuracy of the potential energy 
function employed. Often, in the study of biomolecular systems, 
a molecular mechanics type of potential is used. In these models 
one typically treats the atomic nuclei as classical point particles 
moving on an approximate Born-Oppenheimer potential energy 
surface. Although these models have been shown to give 
reasonable results when applied to the case of small molecules, 
it remains to be seen as to what degree they provide a valid 
description for significantly larger systems, such as those of 
proteins. The second principal obstruction in seeking a theoreti- 
cal solution to the global optimization problem pertains to the 
difficulty of efficaciously sampling configuration space in a 
realistic amount of computer time. This is primarily due to the 
fact that standard methods of sampling configuration space 
become inefficient for systems containing multiple minima as 
well as for those that include disparate time and length scales. 
In order to address these concems, in this paper, we investigate 
the application of efficient numerical integration techniques we 
have recently developed for molecular dynamics simulations 
to the problem of simulated annealing of atomic level protein 
structures. This was done in an attempt to reduce the required 
CPU time for these simulations and, thus, to enhance our ability 
to explore the use of slower annealing schedules. The method 
is employed in simulated annealing studies of a small protein 
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using standard molecular mechanics type potentials which 
include a continuum approximation to represent the effects of 
solvation. Preliminary results are presented for the performance 
of the potential using standard force field parametrizations in 
attempts to distinguish native-like structures from those that are 
distinctly non-native. Interestingly, low-energy structures with 
large rms deviations from the minimized X-ray structure were 
found, thereby suggesting the possibility that the potentials 
employed in this work may not be of sufficient accuracy to 
distinguish the native protein structure. 

2. Algorithm for Simulated Annealing by 
Multiple-Time-Step Molecular Dynamics 

The method of simulated annealing was originally introduced 
by Kirkpatrick, Gelatte, and Vecchi’ as a practical approach to 
the problem of global optimization. Essentially, the algorithm 
seeks to minimize an appropriate cost function by solving an 
analogous problem in statistical mechanics. Here the cost 
function may be thought of as a rough potential energy surface 
with numerous barriers and local minima. Since one is seeking 
the global minimum of this surface, one requires an algorithm 
that is able to ergodically explore the configuration space 
without becoming trapped in one of the many local minima. In 
simulated annealing, this is achieved by setting the initial 
temperature to a high value so that potential energy barriers 
are easily crossed and the system is allowed to explore the 
available configuration space. If the temperature is then 
decreased slowly enough, the system should eventually relax 
into the optimal configuration corresponding to the global 
minimum of the potential energy surface. With regards to the 
protein-folding problem, we seek the configuration that is 
associated with the global minimum of the molecules’ free 
energy or, as is commonly used in practice, potential energy 
surface. An obstacle arises, however, if the ultimate goal is to 
find the optimal protein configuration at an atomic level of 
resolution. For a system the size of a protein, the computational 
expense of determining the global minimum of the potential 
energy surface becomes prohibitive for typical atomic level 
molecular mechanics type potentials using standard methods. 

Recently, we have developed efficient numerical integration 
techniques for molecular dynamics simulations of macromo- 
lecular systems based upon the Trotter factorization of the 
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Liouville propagator.2 It was found that th is  method was 
considerably more efficient than that of the standard velocity 
Verlet algorithm when applied to the problem of simulating a 
small protein in the microcanonical ensemble. Here we explore 
the question of whether similar ideas might be beneficial when 
applied to the simulated annealing of a protein as a means to 
determine the configuration corresponding to the global mini- 
mum of its potential energy. In order to do th is ,  we have 
incorporated the algorithm into the MACROMODEL molecular 
modeling p a ~ k a g e . ~  By default this package allows the user.to 
perform simulated annealing by one of two methods, including 
both molecular dynamics and stochastic dynamics, each of 
which is based upon the leap-frog numerical integration 
algorithm. Thus, for the purpose of convenience, we choose 
to implement our RESPA (reference system propagation algo- 
rithm)-based method using a leap-frog integrator, as opposed 
to the previously adopted velocity Verlet form. 

2.1. Leap-Frog Factorization of the Liouville Propagator. 
Recall that the Liouville operator for a system of N degrees of 
freedom in Cartesian coordinates may be expressed as 
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Consider now inserting an identity operator I of the form 

1 (11) I = e+i(At/2)Lze-i(At/2)Lz = = 

into eq 8, 

r ( W  = {q(At), P(A01 = G(At)I{q(O), P(0)I 
(q(O), P(0)I [ei(At/2)LzeiAtL1 i(At/2)& +i(At/2)b -i(Ar/2)k e le e 

Upon rearranging, we have 

= e  [e e {4(0), P(0)I  (12) 
i(AfI2)h iAtL1 iAtLq e- i(At/2)h 

We may further simplify the expression by defining the state 
{q(At),p(At/2)} such that 

{q(At), P(At/2)1 (13) ei(At/2)L2 {q(At), p(At)I = 

where 

{q(At), p(At/2)} [eiArLleiAtLz]e-i(At/2)Lz{q(0), p(0) )  (14) 

By substituting eq 9 and eq 10 for LI and Lz, and making use 
of the fact that 

eE(a'ax%x> =AX + E )  (15) 
where [..., ...I is the Poisson bracket, and H is the Hamiltonian. 
The state of the system at any time t may then be obtained by 

where U(t) is the classical time evolution operator 

and where 

{ q p }  are the set of generalized coordinates and associated 
conjugate momenta. Expressing the Liouville operator as a sum 
of two terms, 

iL = iL, + iL2 ( 5 )  

allows us to make use of the Trotter theorem," 

where At e t/P. Let us then define a discrete time propagator 
G W ,  

such that 

(7) 

r(At) = G(At) r(0) (8) 

It has been shownS that the choice 

is equivalent to the velocity Verlet 

(9) 

(10) 

integration algorithm. 

upon acting to the right, we have 

p(At/2) = b(0) - (At/2)F(O)] + AtF(0) (16) 

The leap-frog form6 of the Verlet algorithm can be shown to 
generate exactly the same trajectory as that given by the velocity 
Verlet method provided one uses the initial condition7 

p(-At/2) = p(0)  - (At/2)F(x(O)) (17) 

Substituting eq 17 into eq 16 gives 

p(At/2) =p(-At/2) + AtF(0) (18) 

and 

q(At) = q(0) + (At/m)p(At/2) (19) 

where m is the mass of the particle. Equations 18 and 19 are 
easily recognized as being equivalent to the leap-frog form of 
the Verlet algorithm. Having now illustrated how one may 
obtain the leap-frog algorithm from the Trotter factorization of 
the Liouville propagator, let us now tum 
multiple time scales. 

Consider a simple case where the total 
may be expressed as a sum of two terms: 

F(q) = F,(q)  + F2(q) 

One could then decompose the associated 
such that 

a a iL, + F1(q)- 
aP 

a 
aP 

iL2 F2(q)- 

to the problem of 

force on a particle 

(20) 

Liouville operator, 

Applying the Trotter theorem allows us to write 

i(At/2)t, iAtLI i(Atl2)L~ P {q(t),p(t)l = [e e e 1 {q(O),p(O)l (22) 

where t = PAt. We can further factorize the inner propagator 
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Let us now define 

L, = LA + L, (27) 

where 

a iL, = F&)- 
aP 

Interesting an identity operator of the form 

(29) +i(dr/Z)LB - i (dd2)L~  I = e  e 

into eq 26, applying the Trotter factorization, and rearranging 
gives 

- e e ) e  l e  e X 
- ei(Af/2)h i(dd2)L~[(~idrL~ i d d ~  n iAfL1 P -i(dr/2)L~ -i(Af/Z)Lz 

where 

If we now consider propagation of the system from a time t to 
t + At. we note 

(33) 

where we have defined a single-step leap-frog propagator J(6z)  
as 

and initial momentum state p'(t - dd2) such that 

and where 

Thus, we have reduced the multiple-time-scale problem to an 
algorithm whereby the system is propagated from an initial time 
t to a time t + At by integrating with the standard leap-frog 
method for n little time steps dz, starting from the initial 
condition {q(t), p'(t - dz/2)}. Note that the force F2[q(t)] is 
evaluated only once every n time-steps. The generalization to 
N time scales would follow in an analogous manner. 

2.2. Multiple-Time-Step Molecular Dynamics Algorithm 
for a System with Holonomic Constraints Coupled to an 
External Bath. Returning to the problem of simulated anneal- 
ing, we now seek a method of coupling the system to an external 
heat bath. In order to achieve this, we have adopted the 
algorithm introduced by Berendsen et a1.,8 out of convenience, 
as it is one of the methods employed for performing simulated 
annealing in MACROMODEL. In this method, coupling of the 
system to a bath at temperature TO is accomplished by scaling 
the velocities Y at each Gme-step to ilv, where 

dt To 1 + - - -  [ r,(T '11 (37) 

and XT is an associated time constant. Numerical implementa- 
tion of this algorithm was originally accomplished by use of 
the leap-frog integrator through the following prescription. 

(1) Evaluate the temperature T from the kinetic energy at 
time t - 6212. (2) Calculate the scaling factor using 

(3) Compute the new velocities using leap-frog: 

v(t + $) = v(t - 3 + (dz/m)F(t) (39) 

(4) Scale the velocities: 

v'(t + 3 = nv(t + 3 
(5) Compute the new positions via leap-frog: 

x(t + dz) = x( t )  + dzv' t + - (41) ( "23 
This method may also be generalized to the case where the 
system is subjected to internal constraints. One common 
constraint used frequently in molecular dynamics simulations 
is to treat the bond lengths as fixed to their equilibrium values 
using either the SHAKE9 or RATTLE'O algorithms, thereby 
enabling one to use a slightly larger time-step. In order to 
achieve this, the above prescription may be modified slightly 
be adding the following steps. 

(6) Apply SHAKE to the unconstrained positions n(t + 62) 
from step 5 to obtain the constrained positions x'(t + 6z): 

x'(t + dz) = SHAKE[x(t + dz)] 

(7) Compute the constrained velocities v"(t + dd2): 

[x'(t + dz) - x'(t)] /dt (42) 
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Given that the above approach is based upon the leap-frog 
form of the Verlet integration algorithm, incorporation of the 
leap-frog RESPA method described in the previous section is 
straightforward. In order to generate the state {q(t + At),  p ( t  + At - 62 1 2)}, where At = n62, one need only perform steps 
1-7 for n little time-steps 62, starting from the initial condition 
{q(t),p'(t - 6d2)) given by eq 35. This procedure is then 
repeated N times for a total simulation time of length t = NAt. 

2.3. Computational Implementation. In this section we 
describe the computational implementation of the multiple-time- 
step methodology introduced above into the MACROMODEL3 
molecular modeling package. This was done by adopting a 
typical functional form (e.g. AMBER," 0PLS1*) to represent 
the solute-solute interactions, as well as the generalized Bom 
(GB) continuum solvation mode1I3-l5 to approximate the 
solute-solvent and solvent-solvent interactions. We take the 
potential energy CP of the system to be 

@ = @self + @sol (43) 
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where a s e l f  includes the terms representing the protein-protein 
interactions, 

@self 

@stretch + @bend + 'dihedral + @vdW + @electrostatic 

and %I, an approximate potential of mean force, to represent 
the effects of the solvent, such that 

@sol @cav + *vdW + @pal (45) 

which includes Cpcav, a solvent-solvent cavity term, @vdW a 
solute-solvent van der Waals term, and a solute-solvent 
electrostatic polarization term. The sum of the first two terms 
is given by 

@cav + @vdW E x'kSAk 
k 

where SAk is the total solvent accessible surface area of atoms 
of a given type k, and a k  is an empirical solvation parameter. 
The solute-solvent electrostatic polarization term @'pol is 
approximated by a modified generalized Bom equation of the 
form (in units of kcavmol) 

for a system containing n atoms, where 

and 

(49) 

Here, ai is defined to be the effective Bom radius of atom i 
with charge Qi surrounded by a dielectric medium with a 
dielectric constant E ,  and ro is the radial distance between atom 
i and atom j .  Evaluation of eq 47 requires a method for 
determining the ai, which in some sense, may be thought of as 
the average distance from an atomic charge site to the dielectric 
(solute-solvent) boundary. In the GB model, this is ac 

complished by solving the equation 

for ai, by assuming that all of the other atoms 0' t i) are 
electrically neutral, but serve to displace the dielectric medium. 
Recently, an analytical approximation to was introducedI5 
which is based upon the simple pairwise expression 

The term @$lj is given by 

where R, is the van der Waals radius of atom i, r$ is the dielectric 
offset, and is an empirically determined single-atom scaling 
factor. The second term is included in order to approximate 
the effect of the other atoms 0' f i) displacing the dielectric 
medium. The physical basis for the assumed functional form 
is based upon the loss of a favorable chargehnduced-dipole 
interaction of atom i with the dielectric, due to displacement of 
the medium by an atomj with volume 5, resulting in the overall 
proportionality of 5/rij4. The scaling factors gij are empirically 
determined parameters which have been fit to correspond with 
experiment, according to the particular type of pair interaction, 
such that 

gs if 1-2 (stretch) interaction 
gij = g b  if 1-3 (bend) interaction (53) i gn& if 1, 2 4 (nonbonded) interaction 

where the nonbonded close-contact function Sij is defined to be 

where 6 is a soft cutoff parameter. In the MACROMODEL 
implementation, evaluation of eq 51 is further simplified by 
assuming that the bond lengths and angles will not vary greatly 
between different molecular conformations and are thereby 
treated as constants (set equal to their equilibrium values) within 
the expression. Let us then combine the constant terms by 
defining @O,l,i and such that 

and 

where 
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Substituting the previous equation for @pol.; into eq 50 now 
affords us with an analytical method for determining ai. 

Having now arrived at a complete expression for the potential 
energy of the system, the Liouville operator for a solvated 
protein containing N atoms in Cartesian coordinates is then given 
by 

Humphreys et al. 

terms (in units of kcdmol), such that 

where 

a a  a 
i;- + pi- + 2;- + FxJx)- + 

axi ayi azi apx, 
and 

where the 9th component of the force on an atom i is 
r, being a short-range cutoff radius. This separation may be 
implemented through the use of short- and long-range neighbor 
lists, which can be periodically updated during the course of 
the simulation. We may then define the associated short- and 
long-range nonbonded forces cy(.) and Ffpbg(x) as 

Making the appropriate substitutions for aself and we have 

such that Let us now consider the solute-solvent polarization term 
CDpol. The associated force Fp~,qi(x)  is given explicitly by 

where we have defined 

$g' E -166 ( 1  - '))- QjQk ( 7 1 )  
E J- 

Expanding the right-hand side of eq 70 gives 

where where we have defined 

and 

Seeking to take advantage of the RESPA formalism, let us 
first consider separating the protein-protein nonbonded interac- 
tions into those of a short-range and a long-range contribution. 
One way of achieving this is to express (Pnb as a sum of two The term Fpl,,q,(x) may be partitioned into a short- and long- 
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range contribution, such that 
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into eq 77 gives 

where 

Considering now the term Fpl,,qi(x), we have 

Finally, we may partition the y, into a short- and long-range 
term, 

Substituting eq 57 for ”polj we have and 

Choosing to separate 
components, 

itself into short- and long-range where we have followed the same line of reasoning as in the 
case of The resulting expressions for Fpla,qi(x) and ai 
become 

and 

and substituting into eq 78, we have 
Following the previous, and somewhat arduous, task of 

separating the various components of the total force into short- 
and long-range contributions, let us now define 

Furthermore, if we assume that @$;ti””g does not vary rapidly 
in time, it may be treated approximately as a constant, such 
that 

F4,q,(x) = $n:;8(x) + 2$;qp) + FSA,q,(X) (93) 

In order to impose the addition of holonomic constraints on 
the bond-length degrees of freedom, the above equation for 
FI,&) may be modified, such that 

F1,q,(x) e Fb,q,(x) + cqg(x> (94) 

where Cq,(x) is the associated constraint force, which formally 
may be included through the use of a Lagrange multiplier. In 
practice, however, the bond-length constraints are implemented 
by employing the SHAKE algorithm as described above. 

and 

(83) 
nb long =6 @nb,long 

@pi j plj  (xo) * const 

where xo is a reference state which may be updated with the 
short- and long-range pair lists. Substituting this result 
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Secondly, since it is our supposition that the atomic degrees 
of freedom are coupled more strongly to the rapidly varying 
short-range interactions, let us make the further assumption that 
the interactions given by F4,q,(x) may be adequately described 
by a quadratic approximation to the potential. This is equivalent 
to making a linear approximation to F4,q,(x) such that 

Humphreys et al. 

a numerical integration algorithm for the system. In this case, 
we choose a factorization of the form 

where 

xo being some reference state. Numerically then, evaluation of 
F4,q,(x) is accomplished in an approximate manner by a simple 
and efficient matrix-vector multiplication. The second deriva- 
tive matrix A&) is evaluated infrequently, along with regen- 
eration of the constant long-range terms F4,q,(xO), @ $ ~ ~ g ( X o ) ,  

and y?(xo) defined above and the short- and long-range 
neighbor lists. 

Returning now to the integration of the classical equations 
of motion, consider for the moment the time evolution of a 
single atom i in the microcanonical ensemble. We may define 
the Liouville operator 

a a 
4,  aqi 4,  ap, 

iL qi- + F (x)- (97) 

such that 

where 

G , ( A t )  eiAtLqi (99) 

Using the above definitions for Fn,q,(x), where n E { 1 ,  2 ,  3 ,  4}, 
one may then express iLqz as a sum of four terms, 

iLq, = iLl,q, + iLaq8 + iL,,qt + iL4,q, ( 1 00) 

where 

Having done this, we are now able to make use of the multiple- 
time-step methodology discussed previously in order to generate 

which would follow by induction from the form of eq 32. 
Substituting this into eq 98 gives the final result, 

where it is implicitly understood that the initial state at ( t  = 0) 
is taken to be 

{q1(0), P , ( O )  - (dz1/2)F1,q,(0) - (dz2/W2,, ,(0) - (dn/2)F3,qz(0) 

dz4 = n,n,n3dz (105) 

- ( d ~ q / 2 ) F ~ , ~ , ( O ) }  and where 

dz, E n,n2dz 

dt, = n , d z  

dz, = 6z 

Evolution of the system, within the microcanonical ensemble, 
is then given by the numerical implementation of eq 103. This 
is accomplished by noting that the action of the various operators 
upon a state to the right may be expressed as 

edrnFn"(x)(a'apq~(qi, p ,}  = {qi, pq, + d ~ , , F ~ , ~ ~ ( x ) }  (106) 

and 

In order to make use of our multiple-time-step numerical 
integration technique within the context of simulated annealing, 
the above propagation scheme must be modified to include the 
effect of an external heat bath. This is done to provide us with 
a means of gradually removing energy from the system over 
time, hopefully allowing it to relax into a state at or near the 
global minimum of the potential energy surface. Although there 
exist numerous approaches to this problem, we have adopted 
the method described in section 3.2.2, as it is one of the default 
methods for performing simulated annealing in the MACRO- 
MODEL molecular modeling package, and seemed to be 
adequate for our purposes here. Although the RESPA imple- 
mentation of this method is straightforward, we have included 
a schematic FORTRAN example in the Appendix for the sake 
of clarity. We mention, however, that one could, in principle, 
use any standard method for coupling the system to an extemal 
bath (e.g. Nos6-Hoover thermostat, Langevin dynamics) within 
the multiple-time-step formalism. 

Having coupled the system to an external bath with a 
temperature TO, the system may then be annealed by slowly 
decreasing TO according to some prescribed schedule. In this 
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TABLE 1: Average Final Energies and c*L rmsd values for 
CTF 
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method (a) (Wlmol) (rmsd) (A) 
1 -14 086.55 f 18.58 0.99 f 0.07 
2 -14 089.04 f 25.26 1.24 f 0.19 
3 -14 109.89 f 46.46 1.37 f 0.16 
4 -14 100.20 f 25.75 1.25 f 0.25 

TABLE 2: Comparison of Simulated Annealing CPU 
Times 

method CPU time (s) 
1 71682.3 
2 18345.9 
3 4418.0 
4 3635.3 

work, we have adopted a linear cooling schedule such that 

where 7'p and are the predetermined initial and final 
bath temperatures, and NAt is the total time of the simulation. 

In the following section we apply the above multiple-time- 
step-based simulated annealing algorithm to the minimization 
of the C-terminal fragment of the L7L12 ribosomal protein 
(CTF) in solution. 

3. Simulated Annealing of a Protein in Solution by 
Multiple-Time-Step Molecular Dynamics 

As an initial test of the multiple-time-step methodology 
described above, we wish to compare its performance against 
an algorithm that is based upon the standard leap-frog integration 
scheme, as well as to the default MACROMODEL implementa- 
tion. In order to accomplish this, we consider the relative 
performances of these methods in simulated annealing computer 
simulations of the C-terminal fragment of the L7/L12 ribosomal 
protein (PDB code lCTF), a small mixed alp protein that was 
one of the subjects of a previous study. In comparing these 
methods, we first choose to follow a protocol similar to that 
given in ref 16 and adopt the same united-atom model using 
the AMBER*",'7 and GB continuum solvation approximation. 
It is also noted that both here in this initial comparison and in 
ref 16 there is no explicit term included for hydrogen bonds in 
the potential, using instead the approximation given by ref 18. 
Additionally, we choose to constrain all bond lengths, rather 
than just to hydrogens, and adopt a time-step of 2.0 fs for the 
standard methods. Nonbonded cutoffs were set at 12.0 8, for 
both the van der Waals and electrostatic interactions. The initial 
protein configuration itself was obtained by performing conju- 
gate gradient minimization within the continuum solvent starting 
from the X-ray structure. In order to allow for comparisons 
with the results in ref 16, we adopt the same annealing schedule 
which includes 10 ps of equilibration at 300 K followed by 

linear cooling of the bath temperature from 300 to 50 K over 
the next 40 ps. The structures are then minimized in solution 
by conjugate gradient using infinite nonbonded cutoffs. Five 
simulations were performed for each method using different 
random number seeds. In our first investigation, we compare 
four different methods: (1) the constant temperature method 
of Berendsen et al. discussed in section 2.1.2, which is based 
upon the standard leapfrog integration algorithm, (2) the default 
MACROMODEL implementation of (1) which uses the standard 
leap-frog integrator but updates the long-range forces only every 
10 time-steps, (3) the multiple-time-step method described in 
the previous section, where updating the second-derivative 
matrix is done periodically every 500 time-steps, and (4) the 
same multiple-time-step method but using a variable updating 
scheme for the second-derivative matrix based upon the 
monitoring of atomic displacements. For methods (3) and (4) 
we choose n1 = 2, n2 = 2, n3 = 2, the associated time-steps of 
which are given by eq 105, and a short-range cutoff of r, = 8.0 

In Table 1 the results for the average final total energies and 
average Ca rmsd (root mean square deviation) values from the 
minimized X-ray structure are presented. For the average final 
energies the agreement is generally good, although the standard 
deviation for method (3) is somewhat higher. The differences 
between the average rmsd values is somewhat larger, although 
curiously there does not seem to be a correlation between lower 
rmsd values and lower average energies. In Table 2 the total 
CPU times for a typical simulation are presented. Here it is 
clear that the multiple-time-step methods are considerably more 
efficient, being nearly 20 times faster than that of the leap- 
frog-based method and on the order of 4-5 times faster than 
that of the default implementation. 

Having now established that one may obtain similar results 
more efficiently using the RESPA-based simulated annealing 
method, we now wish to address the question of whether lower 
energies can be found by the use of slower annealing schedules. 
In this case we choose to decrease the cooling schedule by nearly 
an order of magnitude. Again, as a first test, we begin with 
the minimized X-ray structure as our initial configuration. The 
system is then equilibrated for 50 ps at a somewhat higher 
temperature of 350 K, followed by a linear cooling from 350 
to 50 K over the next 500 ps. The final structures were then 
minimized by conjugate gradient as before. The RESPA 
parameter set adopted was the same as above with the exception 
of r,, which was increased to 10 8, due to the higher temperature. 
The results for five such simulations are presented in Table 3. 

The average final total energy for the these simulations is 
- 14269.59 f 35.02 kJ/mol, which is considerably lower than 
for the cases employing the more rapid cooling schedule. 
However, the most striking result of this study is that there does 
not seem to be a correlation between low final energies and 
low rmsd values. In fact, the structure with the lowest energy 
has the highest Ca rmsd deviation from the minimized X-ray 
structure. In order to better understand this result, we first 

A. 

TABLE 3: Simulation Results for RESPA Method Using Slower Annealing Schedule 

~ 

1 2.62 9.89 81.99 - 15 12.66 -1 1 777.58 -3120.82 -14 898.40 -14 228.03 
2 3.63 9.58 77.78 -1539.22 - 1 1 972.85 -2989.26 -14962.11 -14 295.35 
3 2.92 9.81 82.28 -1515.17 -12 038.43 -2929.07 - 14 967.50 -14 235.84 
4 1.68 9.79 78.70 - 1567.17 -12 123.13 -2850.66 - 14 973.79 -14 268.17 

-14 320.58 5 5.04 9.76 85.99 -1486.10 -12 345.58 -2609.28 -14 954.86 

Here ID identifies the structure, rmsd is the @: rmsd from the minimized X-ray structure, RG is the radius of gyration in angstroms, @SA is the 
surface area dependent solvation energy, @vdW is the van der Waals energy, is the electrostatic Coulombic energy, @,,,,, is the electrostatic 
solute-solvent polarization energy, QteS is the total electrostatic energy (including solvation), and @ is the total AMBER*/GB potential energy. All 
energies are in kJ/mol. 
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Figure 1. Ca worms for minimized X-ray structure (dark) and 
minimum energy structure (structure 5) (light). 

TABLE 4: Results Using Numerical Born Radiia 

1 2.62 - 11 777.58 -3222.40 -14 999.98 -14 329.72 
2 3.63 - 1 1 972.85 -3086.99 - 15 059.84 - 14 393.18 
3 2.92 - 12 038.43 -3021.43 - 15 059.86 - 14 328.32 
4 1.68 -12 123.13 -2934.75 -15 057.88 -14 352.38 
5 5.04 -12 345.58 -2692.44 -15 038.02 -14403.86 

ID identifies the structure, rmsd is the Ca rmsd from the minimized 
X-ray structure, is the electrostatic Coulombic energy, @,,,,I is the 
electrostatic solute-solvent polarization energy, @,e, is the total 
electrostatic energy (including solvation), and Q, is the total potential 
energy. All energies are in kJ/mol. 

TABLE 5: Results Using AMBER* Explicit 10-12 
Hydrogen-Bonding Term" 

~ _________ 

ID rmsd Q,HR Q, 

1 2.62 -56.27 -14 281.44 
2 3.63 -73.67 -14 344.17 
3 2.92 -45.12 - 14 264.39 
4 1.68 -64.64 - 14 298.69 
5 5.04 -53.86 - 14 348.63 

a ID identifies the structure, rmsd is the Ca rmsd from the minimized 
X-ray structure, Q,HB is the explicit 10- 12 hydrogen-bonding energy, 
and Q, is the total potential energy. All energies are in kJ/mol. 

recalculate the electrostatic polarization component of the 
solvation energies using a more accurate numerical method for 
determining the Born radii, as opposed to the analytic ap- 
proximation given by eq 5 1. The results are given in Table 4. 

Although the results are somewhat affected, it is still the case 
that the structure with the lowest energy has the highest rmsd. 
In Figure 1 we compare this minimum energy structure with 
that of the minimized X-ray structure. In Figure 2 we include 
the structure with the lowest rmsd for comparison. It is 
interesting to note the distortion in the secondary structure of 
the minimum energy configuration, suggesting perhaps a 
problem with the hydrogen-bonding treatment. In order to 
investigate this further, we recalculated the energies using the 

Figure 2. Ca worms for minimized X-ray structure (dark) and 
minimum rmsd structure (structure 4) (light). 

t - 17800 
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4 -17900 
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Figure 3. Plot of OPLS*/GB energies for structures obtained by 
simulated annealing on AMBER*/GB potential surface vs Ca rmsd from 
the minimized X-ray structure, where Q, is in kJ/mol and rmsd is in 
angstroms. 

AMBER* explicit 10- 12 hydrogen-bonding treatment, as 
opposed to that of ref 18. Table 5 gives the resulting hydrogen- 
bonding energies and total energies. However, upon examining 
the results, we see that here too we find that the structure with 
the highest rmsd has the lowest energy. 

We next consider calculating the energies of the same 
structures using the OPLS*3*12 force field. The results are 
presented in Table 6. It is interesting to see that in this case 
the structure with the lowest energy also has the lowest rmsd 
to the minimized X-ray structure. Additionally, we plot the 
total energy vs rmsd in Figure 3. It would appear that, at least 
for these five structures considered, there does exist a correlation 
between lower energies and lower rmsd values. Finding this a 
somewhat peculiar result, that the structures are ranked so 
differently by the two force fields, in Table 7 we plot the relative 
energy differences, for each term in the potential, between 
structure 4 and structure 5 calculated using both the OPLS* 
and the AMBER* parametrization. In the AMBER* case, the 
implicit hydrogen-bonding potential was used. Numerically 
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TABLE 6: Results Using OPLS*/GB Force Field to Calculate Energies of Structures That Were Obtained by Simulated 
Annealing on AMBER*/GB Potential Surface0 

ID rmsd RG @SA @vdW @ex @'pol @as @ 

1 2.62 9.89 8 1.99 -618.52 - 14 872.55 -361 1.60 -18 484.15 - 17 982.32 
2 3.63 9.58 77.78 -570.44 -15 117.56 -3423.05 -18 540.61 - 17 960.55 
3 2.92 9.8 1 82.28 -603.17 -15 141.53 -3393.87 - 18 535.40 -17 981.03 
4 1.68 9.79 78.70 -62 1.73 -15 300.50 - 3267.60 -18 568.10 -18 015.80 
5 5.04 9.76 85.99 -460.03 - 15 460.00 -3024.81 -18 484.81 -17 773.41 

"ID identifies the structure, rmsd is the Cn rmsd from the minimized X-ray structure, RG is the radius of gyration in angstroms, @SA is the 
surface area dependent solvation energy, @vdW is the van der Waals energy, @ e x  is the electrostatic Coulombic energy, is the electrostatic 
solute-solvent polarization energy, @tes is the total electrostatic energy (including solvation), and Q, is the total potential energy. All energies are 
in kJ/mol. 

Figure 4. Cn worms for minimized X-ray structure (dark) and 
minimum rmsd structure (structure 6) (light). 

Figure 5. Cn worms for minimized X-ray structure (dark) and 
TABLE 7: 
4 and Structure 5 Using Both the OPLS*/GB and AMBER*/ 
GB Force Field9 

Relative Energy Differences between Structure minimum energy structure (structure 7) (light). 

components calculated using the two force fields is in the proper 
torsion term, followed by the van der Waals and electrostatic 

A@,SMBER* terms. energy term A@:;Ls* 
total 
stretch 
bend 
proper torsion 
improper torsion 
electrostatic 
van der Waals 
solvation (surface area) 
solvation (polarization) 

-242.39 
-3.62 

-21.88 
+33.39 
+2.00 

+159.51 
-161.70 

-7.29 
- 242.79 

+5 1.48 
-3.63 

-2 1.93 + 183.86 
+1.41 

+222.45 
-81.08 
-7.29 

-242.30 
A@45 E @d - @S and energies are in k.J/mol. 

determined Born radii were used for both calculations. The 
results indicate that the largest difference between the energy 

Having found such a large discrepancy Uetween the predic- 
tions of the two force fields we decided to perform simulated 
annealing experiments using the OPLS* force field parameters. 
In Table 8 results are presented for the minimum rmsd structure 
(structure 6) and the minimum energy structure (structure 7) 
obtained. Structure 6 (Figure 4) was found using the same 
annealing schedule as above, whereas structure 7 (Figure 5 )  was 
obtained by annealing from an initial temperature of 500 K to 
a final temperature of 50 K over 1000 ps. The results indicate 
that the OPLS*/GB force field also leads to low-energy 
structures with high rmsd values. In Table 9 we compare the 
relative energy differences between structure 6 and structure 7 

TABLE 8: Results Using OPLS*/GB Force Field To Calculate Energies of Structures That Were Obtained by Simulated 
Annealing on OPLS*/GB Potential Surface0 

ID rmsd RG @Pt @SA @vdW @ e x  @Pol @ 

6 1.19 10.04 883.08 81.15 - 1228.60 - 14 948.67 - 3 894.0 1 -18 812.50 
-18 917.23 7 5.19 10.02 8 16.46 93.29 - 107 1.44 -16 017.18 -3095.80 

" ID identifies the structure, rmsd is the @: rmsd from the minimized X-ray structure, RG is the radius of gyration in angstroms, apt is the proper 
torsional energy, @SA is the surface area dependent solvation energy, @vdW is the van der Waals energy, @ e x  is the electrostatic Coulombic energy, 
@p~ is the electrostatic solute-solvent polarization energy, and @ is the total potential energy. All energies are in kJ/mol. 
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CHART 1 
CALL FORCES-F1 
CALL FORCES-F2 
CALL FORCES-F3 
CALL FORCES-F4 
DO M=l,NATOMS 
VX(M) =VX (M) 

$ -0 .5 *  DELTAT*Fl-X(M)/AMASS (M) 
$ -O.S+DBLE(Nl)+ DELTAT*F2_X(M)/AMASS(M) 
$ -0.  S*DBLE(Nl*N2) * DELTAT*FJ-X(M) /AMASS (M) 
$ -0,5*DBLE(Nl*N2*N3) *DELTAT*F4_X(M) /AMASS(M) 

$ -0 .5 *  DELTAT*Fl-Y(M)/AMASS(M) 
$ -0. S*DBLE(Nl) * DELTAT*FZ-Y (M)/AMASS (M) 

VY (M) =VY (M) 

$ -0.S*DBLE(Nl*N2)* DELTAT*F3_Y(M)/AMASS(M) 
$ -0.5*DBLE(Nl*N2*N3) *DELTAT*F4_Y(M)/AMASS (M) 

VZ(M)=VZ(M) 
$ -0 .5 *  DELTAT*Fl-Z(M) /AMASS (M) 
$ -0. StDBLE(N1) * DELTAT*F2_Z(M) /AMASS (M) 
$ -0,S*DBLE(Nl*N2)+ DELTAT*FJ_Z(M)/AMASS(M) 
$ -0,5*DBLE(Nl*N2*N3) *DELTAT*F4_Z(M)/AMASS (M) 

ENDDO 
DO N=l,NSTEPS 
CALL FORCES-F4 
DO M=l,NATOMS 

VX (M) =VX (M) 

VY (M) =VY (M) 

VZ(M)=VZ(M) 

tDBLE(Nl*N2*N3)*DELTAT*F4_X (M) /AMASS (MI 

tDBLE(Nl*N2*N3)*0ELTAT*F4-Y(M)/AMASS(M) 

+DBLE(Nl*N2*N3) *DELTAT*F4-Z (M) /AMASS (M) 
ENDDO 
DO I=l,N3 
CALL FORCES-F3 
DO M=l,NATOMS 
VX (M)=VX (M) 

VY(M)=VY(M) 

VZ(M)=VZ(M) 

tDBLE(Nl*N2) *DELTAT*FB_X(M) /AMASS (M) 

tDBLE(Nl*N2) *DELTAT*F3_Y(M)/AMASS (M) 

+DELE (Nl*N2) *DELTAT*F3_Z(M) /AMASS (M) 
ENDDO 
DO J=l,N2 
CALL FORCES-F2 
DO M=l,NATOMS 
VX(M) =VX (M) 

VY (M) =VY (M) 

VZ (MI =VZ (M) 

tDBLE(N1) *DELTAT*F2_X(M) /AMASS(M) 

+DBLE(Nl)*DELTAT*F2-Y (M)/AMASS(M) 

tDBLE(N1) *OELTAT*F2_Z(M) /AMASS (M) 
ENDDO 
DO K=l,N1 
CALL FORCES-F1 

using both the OPLS* and the AMBER* force fields. In this 
case we again see that the two structures are ranked oppositely 
by the two force field parametrizations. Here the largest 
differences can be found in the electrostatic, solvent polarization, 
and van der Waals terms. 

Although the previous results certainly merit further inves- 
tigation, they do draw attention to the importance of developing 
reliable potentials and to how sensitively the results of a given 
simulation may be tied to the particular model employed. 
Furthermore, the results suggest it is possible that the potentials 
used in this study are not of sufficient accuracy to distinguish 
the native protein structure. It should, however, be pointed out 
that the structures obtained are most likely those corresponding 
to local energy minima, and it is possible that the global 

C CALCULATE THE TEMPERATURE FROM CURRENT KINETIC ENERGIES 

C COMPUTE NEW UNCONSTRAINED VELOCITIES 
DO M=l,NATOMS 
VX(M)=VX(M) 

VY(M)=VY(M) 

VZ (M) =VZ (M) 

CALL TEMPERATURE(T) 

$ +OELTAT*Fl-X(M) /AMASS (M) 

8 +DELTAT*Fl-Y (M) /AMASS (M) 

$ tDELTAT*Fl_Z(M) /AMASS (M) 
ENDDO 

C CALCULATE VELOCITY SCALING FACTOR 
LAMBDA=SQRT(l .O t (DELTAT/TAU-BATH)* 

$ ( (TBATH/T)-l) 

C SCALE THE VELOCITIES 
DO M=l,NATOMS 
VX(M) =LAMBDA*VX(M) 
VY(M)=LAMBDA*VY(M) 
VZ(M)=LAMBOA*VZ(M) 

ENDDO 
DO M=l,NATOMS 
X-OLD(M)=X(M) 
Y-OLD(M)=Y(M) 
Z-OLD(M)=Z(M) 

ENDDO 

DO M=l,NATOMS 
X(M)=X(M) 

Y (M)=Y (M) 

Z(M)=Z(M) 

C COMPUTE NEW UNCONSTRAINED POSITIONS 

$ +DELTAT*VX (M) 

$ +DELTAT*VY (M) 

$ +DELTAT*VZ (M) 
ENDDO 

CALL SHAKE(X-PRIME ,Y-PRIME ,Z-PRIME ,X ,Y, 2) 

DO M=l,NATOMS 

C ITERATE TO SATISFY BOND LENGTH CONSTRAINTS USING SHAKE 

C COMPUTE CONSTRAINED VELOCITIES 

VX-PRIME(M) =(XPRIME(M) -X-OLD(M) )/DELTAT 
VY-PRIME(M)-(YPRIME(M) -Y_OLD(M) )/DELTAT 
VZ-PRIME(M) =(ZPRIME(M) -Z-OLD(M) ) /DELTAT 

ENDDO 
DO M=l,NATOMS 
X(M)=X-PRIME(M) 
Y (M)=Y-PRIME(M) 
Z(M) =Z_PRIME(M) 
VX (M) =VX-PRIME(M) 
VY(M)=VY-PRIME(M) 
VZ(M)=VZ-PRIME(M) 

ENDDO 
ENDDO 

ENDDO 
ENDDO 

ENDDO 

minimum structure is indeed more native-like. It is also noted 
that, ideally, comparisons between structures should be done 
on the basis of free energy differences as opposed to potential 
energy differences, and it is not yet known how this would affect 
the results in this work. Lastly, we mention that although the 
generalized Born solvation model was used in these studies, in 
future work we plan to use a potentially more accurate Poisson- 
Boltzman-based continuum model. This should enable us to 
determine the accuracy of the generalized Born model and to 
explore the question of whether the ranking of the structures 
changes upon the use of the more accurate solvation model. 

Given that our main objective in these studies was simply to 
test the multiple-time-step algorithm’s performance against those 
of other stafidard methods and to determine whether it might 
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TABLE 9: Relative Energy Difterences between Structure 
6 and Structure 7 Using Both the OPLS*/GB and AMBER*/ 
GB Force Fields” 

energy term Aa):;LS* Aa)?BER’ 

total + 104.72 -126.81 
stretch -10.21 -9.99 
bend -5 1.70 -51.71 
proper torsion +66.62 $35.72 
improper torsion -0.99 -8.62 
electrostatic +1068.51 +802.57 
van der Waals -157.16 -213.07 
solvation (surface area) -12.14 -12.14 
solvation (polarization) -798.21 - 669.5 8 

a A% = (P6 - (P, and energies are in k.J/mol. 
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all important terms imply that at least one of these potentials 
(and quite possibly both) must be quantitatively incorrect. In 
future work, we intend to study additional potentials (e.g. 
CHARMm), solvation models, and proteins to examine the 
generality of the preliminary results described above. Ulti- 
mately, this type of calculation may be used to validate a new 
generation of protein force fields. 
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Appendix 
FORTRAN Example of a Multiple-Time-Step Molecular 

Dynamics Algorithm for a System with Holonomic Con- 
straints Coupled to an External Bath. Chart 1 is a schematic 
FORTRAN implementation of the molecular dynamics algo- 
rithm discussed in section 3 using the propagator given by eq 
102 and the heat bath coupling scheme described in section 
3.2.2. The Cartesian positions and velocities of an atom I, with 
mass AMASS(I), are given by X(I), Y(I), Z(I), and VX(I), 
VY(I), VZ(1). X-PRIME(I), Y-PRIME(I), Z-PRIME(1) and 
VX PRIME(I), VY-PRIME(I), VZ-PRIME(1) are the con- 
strained positions and velocities. The atomic forces are 
contained in the arrays Fl-X(I) - F4_Z(I). Here DELTAT 
corresponds to &I, T is the temperature calculated from the 
kinetic energies, TBATH is the temperature of the extemal bath, 
LAMBDA is the velocity scaling factor, and TAU-BATH is 
the bath time constant. 
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