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On the locat ion of  surface  of  tens ion  in the  planar interface  
b e t w e e n  l iquid and vapour t 

by M. RAO and B. J. B E R N E  

Depar tment  of Chemistry,  Columbia University,  
New York, N.Y. 10027, U.S.A. 

(Received 3 July 1978) 

The structure of the interface of an argon-like fluid in equilibrium with 
its own vapour at 110 K is studied using the Monte Carlo method. The 
two components PN(z) and PT(z) (normal and tangential) of the pressure 
tensor P(r) for the planar interface are determined in the simulation. The 
normal component is a constant along the direction perpendicular to the 
surface (the z-direction) and is equal to the hydrostatic pressure. The 
tangential component varies across the surface. The surface tension ~,, and 
the surface of tension zs are determined. The location of the surface of 
tension is compared with the location of the Gibbs equimolar dividing surface, 
and the results are used to determine the curvature dependence of the surface 
tension for spherical droplets. The results are compared with theory. 

1. INTRODUCTION 

Recent computer  simulations of liquids in equil ibrium with their  own vapour 
have contr ibuted much to our understanding of the s tructure of the interface. 
Both planar [1-8] and spherical interfaces [9, 10] have been studied. T h e  
surface tension of a droplet differs f rom that of a planar interface. I t  is difficult 
if not impossible to determine experimentally how the surface tension 7(r) of a 
droplet  depends on its radius of curvature [11], yet this dependence plays an 
important  role in the theories of nucleation. Computer  simulations can provide 
important  information on this otherwise experimentally inaccessible behaviour.  
I t  is possible to simulate droplets in equi l ibr ium with vapour and thereby to 
determine the surface tension as a funct ion of droplet  size. This  requires the 
simulation of many systems of different sizes. Rather than follow this elaborate 
path, we present  here a s tudy of the planar interface and deduce f rom this an 
estimate of the dependence of 7 on the radius of curvature for droplets. First  
we determine the explicit dependence of the pressure tensor on position and 
f rom this determine the positions of the surface of tension and the Gibbs equi- 
molar dividing surface. Tile relative position, ~, of the former  with respect to the 
latter together with the surface tension of the planar surface can be used to estimate 
7(r) [12-14]. Here  we present the results for an argon-like fluid in equi l ibr ium 
with its own vapour at a temperature  of 110 K.  T h i s  s tudy shows that the 
dependence of 7(r) on r is likely to be too small to be determined by the direct 
simulation of a droplet. 

"I" Research Supported by National Science Foundation under grant #NSF-CHE-76- 
02414 and NIH-RO1-NS-1271-402. 
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456 M. Rao and B. J. Berne 

2. SIMULATION 

We have simulated a plane sheet of liquid in equilibrium with its own vapour 
on both sides at 110 K, using 2048 atoms interacting via a truncated Lennard- 
Jones potential 

where 

~(r) = V ( r ) -  V(ro), r < ro, 

=0, r/> r0, with r 0 = 2.5g. 

The Monte Carlo method is used with a step size of 0.2~ for the Metropolis 
random walk. The details of preparing and ageing the system have been des- 
cribed elsewhere [7]. The size of the periodic box is 14.66cr x 14.6&r x 25.1~. 
At equilibrium the vapour density ng ~#--0"05 and the liquid density nl* =0.65, 
where the star denotes reduced units. The usual density profile n*(z*) is shown 
in figure 2. The origin is chosen to be the Gibbs equimolar dividing surface [14] 
given by 

Lo* n / )  (2) 
zG*= 2 (nl*-n~*)' 

where ~* - N/V*  is the average density. The surface tension, 7, is defined as the 
free energy per unit area of the surface. Since there is no external field acting 
on the plane sheet the pressure is isotropic everywhere except at the surface. 
In the interface, the change in density along the direction normal to the surface 

0 . 4  X x x  PN 

~_ p-7- it') 
0 . 3 -  

o3 

13_ 
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0.1" 

X X X X X X ,x\ x -X. x 
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I I v \ 1 / ~  I I I I I 
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Figure 1. Variation of the normal [PN*(Z*)] and tangential [PT*(z*)] components of the 
pressure tensor as a function of height, z*, in a liquid-vapour interface, z * = 0 
denotes the Gibbs equimolar dividing surface with the liquid phase at z* < 0 and the 
vapour phase at z* > 0. 
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The liquid-vapour interlace 457 

(the z-direction) produces an asymmetry in the pressure tensor P(r). It is easy 
to see from symmetry of the system that the pressure tensor has only two com- 
ponents, PN(Z) and PT(z), which are respectively the normal and the tangential 
components. Hydrostatic equilibrium imposes the condition that P~(z) is 
everywhere a constant (even in the interface) and is equal to the hydrostatic 
pressure. The tangential component differs from the normal component in the 
surface zone and it is this component against which work must be done when the 
surface area of the liquid is changed. 

In the computer simulation the two components of the pressure tensor are 
determined as functions of z. The pressure tensor P(r) can be written as 

P(r) = Pw(z)(%% + %%) + P~(z)%ez, (3) 

where ex, ey, e~ are the three unit vectors along the three mutually perpendicular 
directions. " The usual statistical mechanical expression for the pressure [12-14] 
tensor, depending only on the one- and two-particle densities nl(r ) and n~(rl, r2), 
can be written after considerable algebraic manipulations in terms suitable for a 
numerical evaluation of PT(z) and PN(z). 

Following reference [14], the pressure tensor can be written as 

�89 I i, j ~ 

rijrij , > 
x - -  , (4)  

Ir .I  

where 0@) is the unit step function, Iraqi is the distance between two particles, 
i and j ,  (r o . = r j -  ri) and r is the first derivative of the pair potential with 
respect to r. Equation (4) applies to a surface of any shape. For a planar 
surface this specializes to, 

PT(Z)=n(z)kT-3 < ~ [x~j~+YiJ~] - -  
Ir.I 

and 

1 
iz . l  #([rij[) 

\ z~j y \ zij 7 /  
( s )  

P~(z) =n(z) k T -  E (6) 
i~j ]r.I \ %. / \ z~j / /  

where A is the cross sectional area of the surface. 
In figure 1 we show PN*(Z*) and PT*(z*) as functions of z* obtained from 

the simulation with 3.07 million moves. P~*(z*) is observed to be constant 
within 7 per cent. This picture clearly shows the 'relatively llarger fluctuations 
associated with the determination of the pressure tensor. In figure 2, [Plv*(Z*) 
-PT*(z*)]  is given by the solid line. The surface tension, ~, is given by the 
area under this curve [12] 

L/2 

V = I [PN(z)--PT(z)] zdz" (7) 
- L [ 2  

Evaluation of the integral gives a value of 0.42 reduced units ( =  6.0 dynes/cm in 
argon units). 

M.P. 2 H 
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Figure 2. Dots indicate density profile n*(z*) as a function of z*. The solid line shows 
the difference between the normal and tangential components of the pressure tensor. 
The area under the solid line gives the surface tension. 

Figure 2 shows that the transverse pressure is asymmetric around the Gibbs 
dividing surface. An important measure of this asymmetry is given by the first 
moment [13-16] 

1 L/2 
z s = -  f [PN(z)-PT(z)Jz dz. (8) 

y - L/2 

This defines the position of the surface of tension. This surface can also be 
used to divide the liquid phase from the vapour phase instead of the usual Gibbs 
equimolar surface. In a planar interface the surface tension does not depend on 
any particular choice of the dividing surface, but in spherical droplets the use 
of the dividing surface is essential since precise meaning is given to the concepts 
of area and curvature. The surface of tension defined by equation (8) plays an 
important role in spherical droplets. The location of z s measured from the 
Gibbs dividing surface (8oo=zo-zs )  is called the curvature dependence of 
surface tension in spherical droplets [13-15] 

y(r)7,,7o ~ ( 1 -  28r~176 (9) 

where 7oo is the surface tension of the planar interface and r is the radius curvature 
of the droplet. From our simulation 8~o* is found to be positive and is 0.96 + 
0.12. 

3. DISCUSSION OF THE RESULTS 

Both the surface tension and the location of the surface of tension depend only 
on the one-particle and the two-particle distribution functions of the fluid, 
nl(z ) and n~(zl, z2, ux~ ) where Ul~ = V/(xx2 ~ + y1~2). Most theories of the interface 
attempt to relate these quantities to the bulk fluid correlation functions n 1 and n~(r, 
nl) ; that is to the properties of the homogeneous liquid in which no surfaces are 
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Pair correlation [unction of the uniform fluid at T*=0.922 and n1"=0.65 
averaged over six runs of 100 passest each. 

r* g(r*) r* g(r*) r* g(r*) 

0.71 0.0 1.31 1.2035 1-91 0.9769 
0.73 0-0 1.33 1.1260 1.93 1.0054 
0.75 0.0 1.35 1.0608 1.95 1.0266 
0.77 0.0 1.37 1.0049 1.97 1.0513 
0.79 0.0 1-39 0.9536 1.99 1.0726 
0.81 0.0 1.41 0.9129 2.01 1.0955 
0.83 0.0 1.43 0.8751 2.03 1.1134 
0.85 0.0 1.45 0.8415 2.05 1.1305 
0.87 0-0 1.47 0.8171 2.07 1.1404 
0.89 0-0005 1.49 0.7947 2.09 1-1506 
0.91 0.0070 1.51 0.7798 2.11 1.1565 
0.93 0-0450 1.53 0.7657 2-13 1.1564 
0.95 0.1702 1-55 0.7572 2.15 1.1559 
0.97 0.4345 1.57 0.7439 2.17 1.1480 
0.99 0.8453 1.59 0.7402 2.19 1.1422 
1.01 1.3091 1.61 0.7422 2.21 1.1304 
1.03 1.7508 1.63 0.7472 2.23 1.1200 
1.05 2.0815 1.65 0-7498 2.25 1.1044 
1.07 2.2956 1-67 0.7568 2.27 1.0925 
1.09 2.3696 1.69 0.7633 2.29 1.0750 
1.11 2.3616 1-71 0-7716 2.31 1.0612 
1.13 2-2875 1.73 0.7929 2.33 1.0435 
1-15 2.1652 1-75 0.8037 2.35 1.0286 
1.17 2-0308 1-77 0.8199 2.37 1.0125 
1.19 1.8862 1.79 0.8372 2.39 1.0000 
1.21 1.7439 1.81 0.8591 2-41 0.9863 
1.23 1.6189 1-83 0.8843 2.43 0.9759 
1.25 1.4985 1.85 0.9103 2.45 0.9667 
1.27 1.3949 1.87 0.9328 2.47 0-9583 
1.29 1.2943 1.89 0.9556 2.49 0.9463 

t 1 pass = N attempted moves where N is the number of particles in the system ( = 216) 

p resen t .  K i r k w o o d  and  Buff  have  d e r i v e d  a set  of f o r m u l a e  r e l a t ing  the  sur face  
t en s ion  a n d  the  loca t ion  of t he  su r face  of t ens ion  to these  bu lk  l i qu id  d i s t r i b u t i o n  
func t i ons  [12, 14, 16] 

7 = 8 :_JoJ ?'(r)g~l(r)r' dr (10) 

and  

4 S g~l(r)c~'(r) r5 dr (11) 
~oo = - zs = -~  ~ g2~(r)c~,(r)r 4 dr" 

w h e r e  g~(r) = g ( r )  is t he  rad ia l  d i s t r i b u t i o n  f u n c t i o n  for  t he  b u l k  f lu id .  
T o  tes t  t he  accu racy  of these  exp re s s ions  we  have  also s i m u l a t e d  a b u l k  f lu id  

( N =  216) wi th  t he  same  dens i t y  as the  i n t e r i o r  of the  f i lm  ( n l * =  0.65)  i n t e r ac t i ng  

2H2 
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460 M. Rao and B. J. Berne 

with the potential given in equation (1). The radial distribution function is 
presented in table 1. Using these data in equations (10) and (11) we obtain 
7" = 0.39 and 8oo* = 0.65. This should be compared with the values of y* = 0.42, 
8oo* = 0.96 + 0.12 determined from the simulation of the surface using the correct 
equations (7) and (8). The close agreement of y* might just be due to its 
insensitivity to the structure of the two-particle distribution. The difference in 
800* is noteworthy. The pressure tensor presented in this paper gives a more 
stringent test of the theory. 

It was shown recently that both Monte Carlo and molecular dynamics 
simulations can be used to study spherical droplets in equilibrium with vapour 
[11]. I t  is possible to measure the pressure tensor in such a droplet and obtain 
both surface tension and the surface of tension satisfying the Kelvin relation 

27(,) 
r 

However, the surface tension can also be estimated from the measurement of the 
location of the surface of tension in the plane interface using equation (9). In 
table 2, these values of y(r*) are presented as a function of r*. The smallness 
of the correction in the case of liquid argon makes the determiiaation of the surface 
tension directly from a simulation of droplets not worthwhile. In other systems 
where the Gibbs dividing surface is far away from the surface of tension, it 
would be straightforward to measure the surface tension as a function of the 
radius of the droplet. 

Table 2. Variation of surface tension with droplet radius. 

~ ' r  8 nl 
Number of 
particles) 

- -  oo 0.42 
21781 20 0.38 
2722 10 0.34 

341 5 0.26 
74 3 0.15 

t In units of r ~. 

One of the authors (M.R.) has benefited from many useful conversations with 
Professors M. H. Kalos and J. K. Percus at New York University. 
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