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Consider a quantum-mechanical lattice theory at finite temperature and fixed volume. We show
that for the energy the standard deviation of the energy (or energy-density) estimator (in the “primi-
tive algorithm”) grows as the number of sites in the system. An estimator based on the virial

theorem is proposed which is well behaved.

The Monte Carlo algorithm!~—3 has become an impor-
tant method for computer simulations. In the particle-
physics sphere, these techniques are often used to probe
lattice gauge theories, particularly their phase struc-
ture*—® and mass content.%”-%1°

The expectation value of an order parameter is often
sought to signal a symmetry breakdown or a change in
phase. However, one is also interested in bulk thermo-
dynamic properties, like the expectation value of the ener-
gy, the specific heat, and the susceptibility; these cannot
be determined from the decay of correlation functions.
Such properties have been explored in computer simula-
tion of free field theories!' and SU@2)?~!7 and
SU(3)1*17-23 1attice gauge theories.

One might expect that increasing the number of lattice
sites (thereby decreasing the lattice spacing) at fixed
volume would increase the accuracy of the simulation by
reducing the statistical error in the quantities averaged.
We consider a quantum lattice theory (the Klein-Gordon
model) at positive temperature and fixed volume. For
(momentum-dependent) thermodynamic quantities like
the energy or the energy density, in the “primitive algo-
rithm,” the error (standard deviation divided by the
square root of the number of statistically independent
passes averaged minus one) grows as the square root of
(number of sites in the system)/(number of passes). Al-
though the system might seem to settle in on an average
value for the energy (density), the fluctuations in that
value may be severe enough to render it inaccurate. This
would then necessitate long running times. In some of the
latent-heat and energy-density studies there are found in-
creasing error bars and worsening of the base values as the
number of sites along the time axis increases. We offer
then one possible explanation and indicate a problem
which will eventually occur, in any event, for sufficiently
large lattices. An energy estimator based on the virial
theorem is offered which is shown to be well behaved.?*

Consider a system with Hamiltonian H at inverse tem-
perature 3. The partition function

Z =Trexp(—BH) : (1)
has an associated position-space density matrix
p(d(x),d(»);B/N,)={¢(x)| exp(—BH /N,) | $(y)) (2)

where the lattice time axis has been divided into N, inter-
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vals with spacing e=f/N, and where locality of the in-
teraction forces p=0 for x and y sufficiently separated;
the fields in the theory are generically indicated by ¢.
The partition function can be written as

Z = [ [d$]1]] p(e(x),6(»);B/N;) (3)

x,y

with the product over interacting points X,y in space-time
(similarly for fields living on links). Since the expectation
value of the energy is given by

)
(E)-——aBInZ, 4)
an estimator for the energy in field configuration {¢} is
fg))=—3 %lnp(tﬁ(x),gb(y);B/N,) . (5)
x’y

We call this the primitive algorithm.

Proceeding to a Monte Carlo simulation, one samples
configurations of the fields weighted by the probability
exp(—fBH) (after equilibration), determines &(i) for a sta-
tistically independent pass i through the lattice, and gets
an average by dividing by the total number, M, of such
configurations averaged:

(By=L %

E)=— >«e(). (6)
M =

The fluctuations in this quantity are given by the standard

deviation
172

’ M
o=(8e2)12= | L 3 [i)—(E)?] )
M i=1
with error
SE)=0/(M —1)!/%, : (8)

For a simple case (at fixed volume) we will compute
8(E) and show it goes as (n/M)!/2, where n is the number
of sites in the lattice, so that increasing the number of lat-
tice points requires a proportional increase in the number
of passes through the lattice to maintain the same error.
Subsequently, another estimator is proposed which does
not suffer from this problem.

Note that the specific heat

» 3’InZ

— 2 2
C=F"3p #B*(8e?) )
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does not diverge with N,. Substitution of (3) in (9) gives
an estimator for C different from the fluctuations in the
energy estimator, hence the inequality in Eq. (9). Howev-
eri/tzhe estimator for C also has error bars which grow as
n

J

Z = [[dn)ldg]exp

where a is the spatial lattice spacing and Nga

3 . 7 ¢(2’t +8)_¢(i,t) _
a e{??m‘(x,t) .
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Consider the Klein-Gordon theory on a hypercubical
lattice. The Hamiltonian density is

H=L(m*+ |V |2+m?), (10)
so that (in the short-time approximation)
3 T 2
% 24 3 ¢(X+“l’2)“¢(x”) +m2¢2H , (a1
I=1

=L for L the length of a spatial edge; n =Ng>N,. The integral is taken

with ¢(X,8) =¢(X,0) because the field is bosonic. Doing the momentum integration yields

Nt n/2
z= [W ] S ldélexp

433

[N,
a3—[?t(A,¢)2+a-——2(A $P+a B m2p

) (12)

N,

where A,¢(x)=¢(x +nl) —¢(x) with =€ if u=4 and n=a for p=1,2,3. The appearance of the [3-dependent prefac-

tor is crucial; this normalization constant cannot be avoided in a finite-temperature analysis.?®

in three-space (we tacitly rescale the fields):

Next, Fourier transform

N, |7 B | Gi(E)
1 — —
z=]1 [Bats f[d¢]eXPl—%2 [ B+ Y [—“az +m? ¢(k,t>¢<—k,t)J ] (13)
e t t
—
where We wish to examine the behavior of the expectation
N 3 values of these quantities and their fluctuations. The in-
G, (k )=2h2 2 (1—cosak;) , (14) tegration in time can be done exactly, so we may write the
I=1 partition function as>262
>=>>>, ki=2ap/aN,, p=0,1,...,N,—1. fN,/Z
T Kk ky ks InZ(B,m,h,a)= 3 In ~ , (20)
(15) v f'-1
The energy estimator, Eq. (5), is where
e=—2"§¥r , (16) f=14+3R> 4+ LR(44+ R}, 1)
172
where
B Gh ( k ) 2
=a—A\, 17 =Lt | —=— (22)
Y=a N ( ) Nt aZ
a=7 2; T2 > (A9, (18) As an example, we determine (¥ ) and (8y2). Define
Ba X! the characteristic function of the distribution function of
1 G1(K) l y® |
A= m2 2
2a°N, %; a? ¢ P(s)={(exp(—s8)) . (23)
= 3 V(g(k,1) (19)  Using Eq. (13) allows us to express P(s) in terms of the
T ! partition function with rescaled parameters:
]
n/2 172 172 1/3
B B—s —S B
P(s)= |=— Z|B, = A, al. (24)
(s) [B ] [B [B+s B+s B+s
r
Now we have
(8y%)= aalnf (mg= 55+ (BE) - “;) , @6
(y)= —3dInP =O=E’1___(E)’ (25) k=1
a [} 2B where the exact expectation values of the energies, as the



30 FLUCTUATIONS IN LATTICE MONTE CARLO SIMULATIONS 1793

Monte Carlo simulation would sample, are found from
(20) and

)

(E)=—SEan(B,m,l,a) " 27)
2
(8E2)=T2C=gaé§-ln2(/3,m,l,a) . (28)
Similarly, one may obtain

_n 1

(a)—ZB s{E), (29)
ay_ M igspay_ 3 SE)

(8a )—2B2+4(8E ) i B (30)

(A)=3(E), 31)
ay_ 12y, L E)

(8A*)=7(E >+4 5 (32)

Since (16) gives (8e2) =(8y?), the fluctuations in the
energy estimator are given by (26). These are the same
fluctuations as for y, the energy without the n /28 addend
(n=Ng>N,). (8E?) (the specific heat) and (E) are in-
dependent of n for n— 0, so that the error in the ener-
gy estimator (as for the kinetic energy ¢—A) grows as
(n/M)'2, This is an estimator that becomes less reliable
as the number of lattice sites is increased. Making use of

the virial theorem allows us to write down an energy esti-
mator whose error goes as 1/M /2

Consider [see (19)]
v— e 1 ag v
=3y V(¢(k,t))+7¢(k,t)*&¢— . (33)
T(' t

We show that this is a well-behaved energy estimator.?®
Let U =a+A so that
n/2

N [ [ddlexp(—pBU) . (34)

Z =
Ba*

By performing an integration by parts, one easily finds
8U> ( da > < oA > n
N30 )4 (392 ) =2 . (35)

(gf 26 ) ~\2% 26 | T\ 2954 )= 5

Using Euler’s theorem, the first term in (35) is (2a ), so
o N_[1549Y
(35 “)‘(2%"’64))' 36)

With (16) and (17), we see (€)= (€’) so that €’ is an ener-
gy estimator. In our example £’=2A; but, by (32), (8A?)
is well behaved.? Similarly, a good estimator for the ki-
netic energy is

(37)

Monte Carlo simulations were carried out in Ref. 28 for

the (0 4 1)-dimensional theory (harmonic oscillator), and
agreement with the fluctuations predicted here was ob-
tained.
"~ We have indicated here a possible explanation for fluc-
tuations in the energy and other thermodynamic quanti-
ties which increase with the number of lattice sites (at
fixed volume). There are other effects which may have
been dominant® in studies done so far. However, the ef-
fect we describe here cannot be avoided for sufficiently
large lattices.

In conclusion, the primitive algorithm gives fluctua-
tions in the energy (or energy density) with the error
growing as the number of sites in the system. In the virial
estimator, the error is independent of this as the sites in-
crease in number.
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29While this may be a possible solution, G. Jaccuci (report and yet because running times may have varied with the different
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