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A molecular dynamics study of the depletion of water (drying)
around a single and between two hydrophobic nanoscale oblate
plates in explicit water as a function of the distance of separation
between them, their size, and the strength of the attraction
between the plates and the water molecules is presented. A simple
macroscopic thermodynamic model based on Young’s law success-
fully predicts drying between the stacked plates and accounts for
the free-energy barriers to this drying. However, because drying
around a single plate is not macroscopic, a molecular theory is
required to describe it. The data are consistent with the rate-
determining step in the hydrophobic collapse of the two plates
being a large-scale drying fluctuation, characterized by a free-
energy barrier that grows with particle size.

Hydrophobicity is important in chemistry, biochemistry, and
biology. The self-organization of amphiphiles into micelles

and membranes (1), capillary evaporation (2–5), protein folding
(6–11), and gas solubility are just a few examples of processes
governed by hydrophobic hydration and hydrophobic interac-
tion. It is now recognized that small-scale hydrophobic solutes
hydrate differently than large ones. Small solutes (argon, meth-
ane, etc.) can fit into the hydrogen-bond network of water
without destroying hydrogen bonds (12–17), whereas larger
hydrophobic solutes, starting with molecules as small as neo-
pentane (18), induce reorganization of water such that OH
groups point into the surface, thus producing dangling hydrogen
bonds (19). Simulations have shown that on hydrophobic faces of
proteins, certain hydrophobic residues do not break neighboring
water hydrogen bonds, whereas other residues do (10) such that
protein faces can be heterogeneously ‘‘small’’ or ‘‘large.’’ Also,
as first surmised by Stillinger (15), it is now appreciated that
large, strongly hydrophobic particles should induce a liquid–
vapor-like interface. Recently, experimental evidence (20) of the
existence of this molecular-size vapor layer around large paraf-
fin-like molecules has been reported. This vapor layer is also
predicted by the Lum–Chandler–Weeks theory (21, 22), but, to
the best of our knowledge, no computer simulation involving
explicit solvent has been able to observe thus far this phenom-
enon (i.e., the proximal water density less than the bulk density)
around convex-shaped hydrophobic particles. [It has been ob-
served in simulations of a drop of water confined in a spherical
cavity in paraffin (23).] We report here an observation of this
molecular-size vapor layer around nanosize objects dissolved in
water (24) as obtained from our constant temperature and
pressure molecular dynamics simulations.

In 1995, Wallqvist and Berne (25, 26) showed by simulation
that, when two strongly hydrophobic plates (Gay–Berne ellip-
soids) are brought together to a separation allowing more than
one layer of water to fill the space between them, the water is
expelled instead, a result already anticipated theoretically (27,
28). They also computed the potential of mean force for this
system, which, as a result of the spontaneous drying, displays a
very strong driving force for hydrophobic collapse (or aggrega-
tion). As we shall see, the exact number of water layers that will
be expelled depends on the size of the plates. A sequence of
papers by the Chandler group, using analytical theories and
simulations, have provided an explanation of many of the
important facets of hydrophobicity and drying including the role
of drying in the kinetics of hydrophobic collapse (9, 11, 21, 22,

29–32). Others have addressed related issues (1, 5, 23, 26, 33–38).
There is great interest in this (14) because, if, as has been
suggested, dewetting must precede hydrophobic collapse for
large hydrophobic solutes or for the folding or aggregation of
globular proteins, then the kinetics of folding must account for
this process. Of course it is possible that, when the attractive
dispersion interactions between water and hydrophobes are
included, dewetting might play a greatly reduced role.

We discuss our results in the context of a very simple
macroscopic thermodynamic model based on Young’s equation,
which was shown valid for large hydrophobic particles (21). This
model is found to give useful estimates of barriers to drying and
wetting, to the critical distance for drying, and for the hydro-
phobic driving force for hydrophobic collapse, which becomes
longer-ranged as the size of the hydrophobic plate is increased.
We simulate the kinetics of collapse in our model system and
observe from this trajectory that the rate-determining step is
large-scale cooperative dewetting, a result consistent with earlier
transition-path sampling simulations on lattice gas models (11).
We also show that when solute–water attractive forces are
included, the critical distance for dewetting is considerably
reduced, as expected.

Simulation Methods and Simple Theory
The systems studied consist of one or two oblate ellipsoids in
simple point charge (SPC) (24) water. We chose to use either a
purely repulsive interaction or a full dispersion solute–solvent
interaction that includes attractions. The full interaction is
modeled by using the Gay–Berne potential (25) for the interac-
tion between an ellipsoid and an oxygen atom of water.

Usw
(full) � 4�[(�0�(r � �(�; �) � �0))12

� ��0��r � �(�; �) � �0))6] [1]

The purely repulsive solute–solvent interaction is modeled as the
repulsive part, Usw

(rep), of the Gay–Berne potential (25), which is
given by first term on the right-hand side of Eq. 1, where �(�; �)
is an orientation-dependent Lennard–Jones diameter,

�(�; �) � ����(1 � � cos 2�),

where � � (��
2 � ��

2 )���
2, ��, and �� are the axial ratio and

lengths of the oblate ellipsoid along the major and minor axes,
respectively, � is the angle between the major axes of the ellipsoid
and the unit vector pointing from the center of the ellipsoid to
water’s oxygen atom, and �0 � (��

2 ��)1/3. In the simulations we
take � � 592.5 cal�mol. One of the nice features of using
Gay–Berne ellipsoids (25, 26, 39) for the plates is that one can
increase the surface area of the plate by simply increasing its
axial ratio without increasing their volume. Thus, one can study
larger surface areas without the need to increase the number of
water molecules as would be the case for spheres.

Classical molecular dynamics simulations were performed by
using the RATTLE (40) algorithm to constrain the internal
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geometry of the water molecules and the particle–particle
particle–mesh Ewald method (41, 42) to treat long-range elec-
trostatic interactions. All simulations were performed at con-
stant temperature (298.15 K) and pressure (1 atm [1 atm � 101.3
kPa]) with Nose–Hoover chain thermostats and an Andersen–
Hoover-type barostat (43, 44) by using the program SIM (45),
developed in our group.

To study the phenomenon of hydrophobic interaction, we
simulated pairs of Gay–Berne ellipsoids of fixed �� � 3.1 Å and
of different �� values ranging from 8 up to 13 Å. For each ��,
a series of simulations with different separation D between the
two ellipsoids were performed. For each D two simulations with
different initial conditions were performed. The first type of
initial condition corresponds to the plates separated by water at
bulk density, and the second corresponds to the two plates
separated by vapor. A box with 2,048 water molecules was first
equilibrated for 150 ps, then the ellipsoids were introduced, and
overlapping water molecules were removed. Water molecules in
the intervening region between plates were removed in the
second case. In both cases plates were kept at fixed positions in
the laboratory frame, and production runs were 100 ps long.
These simulations were done with both the full and repulsive
solute–solvent potentials. We also study the role that weak
attractive interactions play in the solvation of single nanosize
hydrophobic objects (see Results).

In an attempt to study the dynamics of collapse, a constant
temperature and pressure simulation was performed in which
the minor axis of each plate was forced to remain parallel to the
X–Y plane. The plates could only move along the z axis. The
constraining potential Vpr(ri) � (1�2)kpr(xi

2 � yi
2) was applied

on two points along the major axis of each ellipsoid. Here, i labels
each of the two points on the major axis of each ellipsoid. The
major axis of the ellipsoids was chosen to be along the laboratory
z axis. kpr was chosen to be 500 kcal�Å2. In addition, to prevent
the plates from diffusing too far apart, a flat restraining potential
was imposed to keep the plates closer than half the length of the box.
The potential form for this restraint is given by

Vdr�r� � �kdr�r � r0�
6

0
for r � r0

for r � r0
. [2]

In this case, kdr � 1 kcal�Å6, r is the interplate distance, and r0
was chosen to be 20 Å. For convenience the mass of each plate
was chosen to be that of two argon atoms. After initial equili-
bration, the fictitious isothermal–isobaric dynamics was followed
during a 30-ps production run before the plates came into close
contact.

The following approximate simple macroscopic thermody-
namic analysis provides a context for understanding the results
of the computer simulations presented here (46–49). The grand
potential of the liquid confined between the two plates is �l �
�PV � 2Aw	wl, whereas the grand potential of the confined
vapor is �v � �PvV�2Aw	wv�A	lv, where V is the volume of the
confined region between the two plates, Aw is the corresponding
contact area between the plates and the fluid, and A is the
liquid–vapor interface area (5). Here we assume, for simplicity,
that the vapor will occupy a cylindrical region instead of the
‘‘hourglass’’ region observed in our previous simulations (25).
For two parallel circular disks of radius Rm separated by a
distance D, V � 
Rm

2 D, Aw � 
Rm2, and A � 2
RmD. The change
in grand potential accompanying the transition from liquid to
vapor is

�� � �v � �l � (P � Pv)V � 2�	Aw � A	lv, [3]

where 	lv, 	wv, and 	wl are the liquid–vapor, wall–vapor, and
wall–liquid surface tensions, respectively, and

�	 � 	wl � 	wv � � 	lv cos �c [4]

is Young’s equation with �c being the contact angle for the liquid
in contact with the wall of the plate. For a hydrophobic surface
the contact angle is obtuse and �	 � 0. From this it can be seen
that �� is a linear function of D. For D smaller than the critical
separation Dc,

Dc � 2�	�((P � Pv) � b	lv�Rm), [5]

vapor between the disks is stable; however, for D � Dc, liquid
between the disks is stable. Here b is a geometric factor that, for
cylindrical disks, is b � 2. It is important to note that for small
plate sizes (small Rm), Dc grows linearly with plate size. For
macroscopic-size plates, drying should occur for very large
separations. Below we will see that the barrier to drying will grow
approximately as D2 such that although the dry state may be the
thermodynamically stable state, it may be difficult to achieve.

The approach discussed above can also be used to compute the
change in free energy accompanying the creation of a cylindrical
bubble of radius R based concentrically on the discs separated
by D:

�� � 2
RD	lv � [2�	 � (P � Pv)D]
R2. [6]

This provides a nucleation-theory approach to the problem. It is
clear from this equation that for D 	 D0 
 2�	�(P � Pv), ��
will rise from 0 to a maximum of ��c � 
	lv

2 D2�((P � Pv)(D0 �
D)) at R � Rc � 	lvD�((P � Pv)(D0 � D)) and then decreases
as a function of R until at R � Rm it starts increasing again. Thus,
even if the vapor is stable, a system starting with liquid between
the plates (R � 0) will have to cross a free-energy barrier to reach
equilibrium in which there is a cylindrical bubble (with R � Rm).
There are three possible regimes: (i) D 	 Dc 	 D0; (ii) Dc 	 D 	
D0; and (iii) Dc 	 D0 	 D. In case i the stable state is a vapor
(��(Rm) 	 ��(R � 0)), in case ii it is a liquid (��(Rm) �
��(R � 0)), and in case iii there is no barrier separating liquid
and vapor. Thus in case i the barrier for the liquid-to-vapor
transition is smaller than the vapor-to-liquid transition, and in
case ii the reverse is true. We can use the above theory to
determine these rates and to rationalize the observations from
the simulation. This ‘‘back-of-the-envelope’’ model also gives a
prediction for the potential of mean force between the plates of
radius Rm:

��(D) � ��
Rm
2 �P � Pv� � 2
Rm	lv��D � Dc�

0
for D � Dc

for D � Dc
.

[7]

From this it follows that once the plates are close enough for
drying to take place, the mean hydrophobic driving force for
collapse will be

F� � �
Rm
2 (P�Pv)�2
Rm	lv� [8]

and will grow with plate size and with surface tension. Moreover,
this driving force will become very long-range, because Dc grows
linearly with plate size.

The theory discussed above can be modified for the ellipsoidal
disks. In the case of an oblate ellipsoid (two equal minor axes ��

and one major axis ��) as described in Fig. 1 we find

V � 
��
2 D � 4
��

2 ���3;

Aw � 
��
2 �(
����

2����
2 ���

2)ln[(������
2 � ��

2)���]; and

A � 2
��D.
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Substituting these expressions for Aw, A, and V into Eq. 3, setting
�� � 0 for R � Rm, above, and solving for D gives

Dc � ��4�3�
�P����
2 �2	lvAw cos �c) � (2
	lv�� � 
�P��

2 ).

[9]

These simple thermodynamic arguments, based on Young’s
equation, show that macroscopic hydrophobic objects dissolved
in water should expel the solvent trapped between them if
brought closer than a characteristic critical distance Dc that
depends on geometry and thermodynamic properties. Although
thermodynamics clearly predicts the existence of this drying
transition, the free-energy barrier to cross from the wet to the
dry state could be very large, effectively freezing the system in
a metastable state (31, 37). This free-energy barrier is respon-
sible for the phenomenon of cavitation-induced hysteresis, which
has been observed (50, 51) experimentally in surface-force
measurements. Do drying transitions and the predictions of
macroscopic thermodynamics still hold when systems are of
nano- or subnanometer dimensions? This is relevant, for exam-
ple, to assess whether drying-induced collapse is what drives the
process of protein folding.

Results
Molecular dynamics simulations were performed to test the
predictions of the macroscopic theory (Simulation Methods and
Simple Theory) to determine the effect of attractive solute–
solvent interactions on the dewetting around single nanoscale
particles and to study how the fluctuations leading to dewetting
between the plates affect the kinetics of hydrophobic collapse.
To test the validity of Eq. 9, we simulated Gay–Berne ellipsoids
(25) in SPC water (see Fig. 1 for a definition of the parameters
and distances) both for full (Eq. 1) and for the purely repulsive
Gay–Berne solute–solvent potential between SPC (24) water
molecules and the ellipsoids. The length of the ellipsoid along the
C axis is set to be a constant (�� 
 3.1 Å); however, the length
along the minor C2 axes, ��, is varied to scale the lateral size of
the hydrophobic object.

Under the conditions of the simulation, �P � 1 atm, �� � 3.1
Å, and 	lv � 72.1 mJ�m2. Because the contact angle � of SPC
water with these hydrophobic ellipsoids is unique, the critical
distance Dc given by Eq. 9 only depends on ��. To test this
equation, two simulations with different initial conditions were
launched for each given interplate distance: one simulation with
water filling the space in between plates (‘‘wet’’ initial condi-
tions) and a second one where water molecules were removed
from this region (‘‘dry’’ initial conditions).

Results for different interplate distances all with the same
plate size (�� � 13 Å) are displayed in Fig. 2 C, B, and D
with interplate distances D of 14, 16, and 18 Å, respectively.
These observations are very similar to the dewetting observed in
two plates immersed in an Lennard–Jones fluid (32). In the
simulation of D � 14 Å with wet initial conditions given in Fig.
2C, we observed that a layer of vapor developed next to each
plate in 	10 ps. Large capillarity wave fluctuations along the two
liquid–vapor interfaces occurred. After 60 ps, the two vapor
layers coming from each side finally touched, and a vapor tube

formed. Between 60 and 100 ps, the vapor grew to finally fill up
almost the whole region between the two plates taking on the
shape of an hourglass. A very similar hourglass-like pattern for
capillary drying was observed in the umbrella-sampling Monte
Carlo studies of Leung et al. (4) and in the Monte Carlo
simulations of simple lattice gas models (2, 31). When dry initial
conditions were deployed instead, the system remained dry for
the whole duration of our 100-ps simulation, although large
thermal fluctuations due to capillarity waves were observed, and
the vapor once again organized into an hourglass shape. From
these simulations we conclude that, although between two and
three layers of water could fit in the intervening region between
these plates, the dry state is thermodynamically stable and a
phase separation occurs.

Fig. 1. Schematic diagram for the two-ellipsoid system in which parameters
D, ��, and �� are defined.

Fig. 2. (A) The relationship between the critical distance Dc and the size of
the plate �� is shown for the purely repulsive (red) and full Gay–Berne (blue)
potentials. For each ��, the error bar perpendicular to the �� axis indicates a
lower and upper bound for the critical distance Dc. The solid black (purely
repulsive case) and dashed (full Gay–Berne potential) lines were obtained by
fitting the simulation data to Eq. 9. Units of D and �� are in ångstroms. (B)
Two-dimensional projection of the two-plate system in SPC water. Red dots
correspond to the position of water oxygen atoms. Water molecules obscuring
the solute (i.e., those water molecules in which the absolute value of the Y
coordinate, which in this case is perpendicular to the projection plane, is �4
Å) have been removed. The size of the plate is �� � 13 Å and �� � 3.1 Å, and
the interplate distance is D � 16 Å. The black line corresponds to the kBT
equipotential surface for the water–solute interactions. Water interacts with
the ellipsoids through the purely repulsive Gay–Berne potential. (Left) System
with wet initial conditions. (Right) System with dry initial conditions. Both axes
span a range of 40 Å. (C) Same as B Left with D � 14 Å. (D) Same as B Right with
D � 18 Å. (E) Same as B Left but using, in this case, the full potential interaction
in Eq. 1 and with interplate distance D � 10 Å.
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The opposite situation arises when the interplate separation D
was increased to 18 Å; in this case, the wet state was thermo-
dynamically stable, as can be appreciated from Fig. 2D. In Fig.
2D the system starts from dry initial conditions, and capillarity
waves at the liquid–vapor interface intrude from opposite sides
and finally join at 60 ps, after which liquid fills up the interplate
volume. When the system starts from wet initial conditions, it
remains wet for the rest of our 100-ps run.

The results for an intermediate separation of 16 Å shown in
Fig. 2B are interesting because they approximately correspond
to a separation of Dc. In this case we observe a hysteresis
phenomenon [see Lum–Chandler–Weeks theory for a discussion
of hysteresis (21)]. Starting from wet initial conditions the system
remains wet at least for 100 ps, whereas starting from dry initial
conditions the system remains dry. Large fluctuations are ob-
served in both simulations as if the initially dry system was about
to become wet and vise versa. The simple theory shown in
Simulation Methods and Simple Theory predicts that the barriers
to go from wet to dry or dry to wet for a separation of D � Dc
are considerably larger than to go from the less stable to the
more stable state for either D � Dc or D 	 Dc, thus explaining
the observed hysteresis.

A series of simulations using the full Gay–Berne potential (Eq.
1) with plates of size �� � 13 Å and different interplate
separation D were performed following the same procedure as
described above. A drying transition is observed in systems with
D � 10 Å, compared with D � 14 Å for the repulsive interaction.
This can be appreciated in Fig. 2E. When D  15 Å, the wet state
becomes thermodynamically stable. As we see from these sim-
ulations, attractive interactions between water and plates do not
eliminate the drying transition, but dewetting only occurs when
the plates are much closer and only a single layer of water
molecules fit in the intervening region. We note from Eqs. 4 and
5 that Dc will decrease if the contact angle �c decreases, which
it surely does when attractive forces are turned on. Thus the less
hydrophobic the particle is, the smaller will be the critical
distance for dewetting. This causes us to wonder whether
attractive electrostatic and dispersion interactions of water with
the protein backbone and side chains will so reduce the critical
distance that dewetting will cease to play an important role in
protein folding and aggregation. The net effect of dewetting will
also depend on the size of the hydrophobic region.

A similar analysis was carried out for a set of plate pairs of
different sizes �� to obtain in each case a lower and upper bound
limit to the critical separation Dc. For the particular plate size
described above in the case of the purely repulsive Gay–Berne
interaction, 14 Å 	 Dc 	 18 Å. Fig. 2 A shows the relation
between the critical distance Dc and the size of the plates ��.
These curves were generated by fitting Eq. 9 to reproduce the
simulation data. The contact angle observed from our simulation
is �180° for the purely repulsive Gay–Berne potential, whereas
results using the full Gay–Berne potential in Eq. 1, which
includes weak attractions between the plates and water, results
in a contact angle of �148°. These results are compatible with
typical hydrocarbon contact angles reported in literature (4). For
example, for water–paraffin, the contact angle is 140°. Our
findings suggest that Eq. 9 derived from macroscopic thermo-
dynamics approximately holds for microscopic systems of the
size of proteins and nanostructures. The dewetting transition can
thus be understood from the perspective of simple macroscopic
arguments based on Young’s equation.

From the discussions above we see that two or three water
layers confined between hydrophobic plates can be expelled due
to hydrophobic interaction. For larger plates, theory predicts
that the number of water layers that can be ejected is propor-
tional to the size of the plates. The loss of hydrogen-bond
partners makes confined water thermodynamically unstable, and
a drying transition occurs. How does attraction between water

and the hydrophobic plates affect these results? Do plate–water
attractive interactions compensate for the loss of hydrogen
bonds? Understanding this is crucial, because even the most
hydrophobic regions in proteins have polarity and dispersion
interactions with the solvent.

The Lum–Chandler–Weeks theory (21, 22) predicts that large
nanosize hydrophobic solutes should display a depletion of
solvent density in contact with their surface if water is close
enough to the liquid–vapor coexistence line. However, in earlier
work (25, 38), no such depletion was observed around fully
repulsive Gay–Berne plates of size �� � 9.3 Å and �� � 3.1 Å.

To investigate whether a density depletion and�or vapor layer
exists around single large hydrophobic objects in water at room
temperature and pressure and verify that results were indepen-
dent of initial conditions, two simulations were performed by
using the purely repulsive solute–solvent form of the Gay–Berne
potential. In the first case, a ‘‘vacuum’’ layer around the plate was
created by removing water molecules adjacent to the plate. The
system then was allowed to equilibrate for 100 ps by using
constant pressure and temperature molecular dynamics with the
algorithms described above. Subsequent 100-ps runs were used
to collect the data displayed in Fig. 3A. Finally a 20-ps production
run was used to compute the plate–oxygen density distribution
function. The minor (��) and major (��) axes of this ellipsoid
were chosen to be 15.3 and 9.1 Å, respectively. In the second
case, the system was first equilibrated by using a smaller ellipsoid
(�� � 9.3 Å and �� � 3.1 Å) for 50 ps. Then, during subsequent
50-ps runs, this small ellipsoid dissolved in water was allowed to

Fig. 3. (A) Two-dimensional projection of 100 snapshots of the system
collected during 100 ps of simulation. The size of the hydrophobic ellipsoid is
�� � 9.1 Å and �� � 15.3 Å. Water interacts with the plate through the purely
repulsive Gay–Berne potential. Water molecules obscuring the solute have
been removed as described for Fig. 2. The black line corresponds the
solute–solvent kBT equipotential energy surface. Both axes span a range of 40
Å. (B) Same as A but using the full Gay–Berne potential in Eq. 1 instead. (C)
Solute–oxygen distribution functions. Ellipsoidal shells are used to compute
the distribution function: r is the distance (in ångstroms) along ��, and r � 0
Å corresponds to the kBT equipotential surface. The black line corresponds to
the system interacting through the full Gay–Berne potential (see Eq. 1). In the
case of the red and the blue lines, only the purely repulsive potential was used.
The red line corresponds to the system being prepared by removing water
molecules adjacent to a plate of size �� � 9.1 Å and �� � 15.3 Å. The blue line
was obtained by equilibrating a smaller ellipsoid of size �� � 3.1 Å and �� �
9.3 Å and gradually allowing it to grow during 50 ps.
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grow gradually to a size of �� � 15.3 Å and �� � 9.1 Å.
Subsequent 100-ps runs were used for equilibration, and finally
a 20-ps production run was used to compute the plate–oxygen
distribution function.

To study the role that weak attractive interactions play in the
solvation of single nanosize hydrophobic objects, we determined
the difference in water-density profile around this plate when the
full Gay–Berne potential was used Eq. 1 as opposed to the purely
repulsive Gay–Berne interaction. A single simulation was carried
out with initial conditions being exactly the same as those
described above for the first case of a single purely repulsive
Gay–Berne plate dissolved in water in the previous paragraph.

We report here the observation of a molecular size vapor layer
for plates of size �� � 15.3 Å and �� � 9.1 Å, as can be observed
in Fig. 3A, a phenomenon predicted by the Lum–Chandler–
Weeks theory (22). In Fig. 3A, 100 snapshots collected during
100 ps of a constant temperature and pressure molecular dy-
namics simulation are overlayed. The width of the vapor layer is
�3 Å, which corresponds to the molecular diameter of a single
water molecule. To test the validity of this result, we carried out
two different protocols described in Simulation Methods and
Simple Theory. In both cases the water-density distribution
functions were, for all practical purposes, identical. We also
investigated the case in which the full Gay–Berne potential was
used. In Fig. 3B, 100 snapshots collected during 100 ps of a
constant temperature and pressure molecular dynamics simula-
tion were overlayed. A comparison between the density distri-
bution functions obtained by using only the repulsive part of the
Gay–Berne potential and that with the full interaction is dis-
played in Fig. 3C. From Fig. 3C it is easy to see that, although
for both cases there seems to be a density depletion in contact
with the plates, this depletion is much more pronounced in the
case of the fully repulsive interaction. These distribution func-
tions are remarkably similar to those obtained next to a liquid–
vapor interface (52). We notice here that in the case of the full
Gay–Berne interaction, g(r) has a first peak with a maximum of
1.2 [similar peak heights have been observed in previous simu-
lations (19)], whereas in the absence of attractions this first peak
disappears and the distribution function grows monotonically
from a value of zero inside of the plates to the corresponding
bulk-density value. Interestingly, Wallqvist and Berne (25, 26)
did not observe a vapor layer around single repulsive plates,
perhaps because their plates were too small or because they used
a different model of water (Reduced Effective Representation
model instead of SPC).

From our foregoing results, we see that, depending on the size
of the hydrophobic plate studied, vapor can be the thermody-
namically stable phase in the intervening region. It is of interest
to address the question of whether water will be collectively
expelled before hydrophobic collapse such that collective drying
becomes the rate-determining step in hydrophobic collapse.
Alternatively, do single water molecules diffuse away as the
plates approach each other? We performed a constant pressure
and temperature molecular dynamics simulation of two
Gay–Berne plates of size �� � 13 Å at an initial separation of
11 Å. Initially, water filled up the intervening region between
plates. Plates were only allowed to move in the Z direction, that
is, along their C axes. Because of the constraints imposed on the
system, which are described in Simulation Methods and Simple
Theory, the planes of the plates remained parallel to the X and
Y laboratory axes. The only interaction potential coupling the
plates was imposed to preclude them from drifting apart to
distances larger than half of the box. Because this potential was
essentially zero for all practical purposes, their motion was only
driven by the solvent. We observed during the first 13 ps of
simulation that the distance between plates consistently de-
creased at the same time as water left the intervening region. At
this point a drying transition occurred even though two or three

layers of water could be accommodated between the plates. As
is to be expected, after this sudden drying transition, the driving
force (see Eq. 8) is very large, and therefore the hydrophobic
plates immediately collapsed. The change in the speed of
approach between the two plates before and after the drying
transition can be appreciated in Fig. 4A from the difference in
slope between the red (before the drying transition) and blue
(after the drying transition) lines. This is consistent with exper-
imental observations by Christenson and Claesson (50). Clearly,
in this particular case, drying preceded collapse. Snapshots
describing the time evolution of the system are shown in Fig. 4B.

Conclusions
We have shown, following up on the work of Wallqvist and Berne
(25), that when two hydrophobic nanoscale oblate plates are
brought closer together than a characteristic critical distance Dc,
spontaneous drying takes place. In the present simulations, we
study oblate ellipsoids of fixed �� but variable ��. From extensive
simulations we show that: (i) The critical distance, Dc, grows
nearly linearly with �� (see Fig. 2 A) as predicted by the
macroscopic theory, but Dc for the full potential lies below that
of the purely repulsive potential, results consistent with macro-
scopic theory based on Young’s equation. (ii) For fixed inter-

Fig. 4. (A) Interplate distance D (the distance between the centers of the two
ellipsoids in ångstroms) as a function of time. The red fitted line corresponds
to initial slope before drying transition, and the blue fitted line corresponds
to final slope after drying transition. (B) Snapshots correspond to the time
evolution of the system. Projections were constructed in the same way as
described for Fig. 2. Plates were constrained such that they could only move
along the direction of ��. The initial interplate distance was D � 11 Å. Both axes
span a range of 40 Å.
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plate separations smaller than the critical distance, dynamics
following the initial preparation of a wet state led to drying (after
bubble nucleation), and dynamics following an initial dry state
stayed dry. No hysteresis was observed. However, near the
critical separation, a dry initial state stayed dry and a wet one
stayed wet, showing marked hysteresis. The macroscopic theory
accounts for these observations by predicting much higher
barriers for the critical separation than for other separations.
Note that Leung et al. (4), using open ensemble Monte Carlo
simulations and umbrella sampling, recently estimated this ac-
tivation barrier for water confined within weakly attractive
infinite walls to be �� � 10kBT � 20kBT. (iii) The dynamics of
plates separated initially (	Dc) is shown in Fig. 4 A and B.
Hydrophobic collapse of the two plates is observed to take place
only after a cooperative large-scale drying fluctuation. Some-
where between 9 and 13 ps, a bubble starts, nucleates, and grows
by 18 ps, thereby dewetting the interplate region. After this, the
strong hydrophobic force leads to a collapse of the plates by 24
ps. It can be seen from Fig. 4A that between 0 and 17 ps the plates
slowly approach each other at a speed of 0.16 Å�ps, whereas
between 18 and 30 ps they approach each other with a speed of
�0.52 Å�ps. It is important to note that constant temperature
and pressure molecular dynamics is ‘‘fictitious dynamics.’’ (iv) In
the case of large oblate plates, surface dewetting is observed
(Fig. 3), but this effect is much smaller when attractive solute–
solvent forces are included. Fig. 3C shows how weak attractive

forces affect the water-density profile around the plates for both
the full and purely Gay–Berne potential. The macroscopic
theory used to describe the interplate-dewetting simulations is
not applicable to depletion around single plates, because this
occurs over molecular distances (21). (v) The potential of mean
force between plates close enough (D 	 Dc) to undergo a drying
transition is expected to be very large. The simple macroscopic
model gives a prediction for this embodied in Eq. 7, with an
accompanying driving force for hydrophobic collapse in Eq. 8.

The very approximate macroscopic theory was found to
qualitatively predict all of our findings with the exception of the
formation of a microscopic vapor layer around single plates. A
microscopic theory is required for this as well as a more
quantitative and detailed treatment of dewetting between the
plates. Because the introduction of attractive forces reduces the
critical separation and the thickness of the vapor layer around
single plates, it is of considerable interest to study dewetting in
the hydrophobic-induced aggregation of domains in multido-
main proteins. Such studies will clarify whether cooperative
hydrophobic dewetting plays an important role in protein ag-
gregation and folding.
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