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We present a method based on augmenting an exact relation
between a frequency-dependent diffusion constant and the imag-
inary time velocity autocorrelation function, combined with the
maximum entropy numerical analytic continuation approach to
study transport properties in quantum liquids. The method is
applied to the case of liquid para-hydrogen at two thermodynamic
state points: a liquid near the triple point and a high-temperature
liquid. Good agreement for the self-diffusion constant and for the
real-time velocity autocorrelation function is obtained in compar-
ison to experimental measurements and other theoretical predic-
tions. Improvement of the methodology and future applications
are discussed.

One of the major goals of, and perhaps the most challenging
problem in, computational statistical mechanics is the

simulation of quantum dynamics in condensed phases. In prin-
ciple, the density matrix formalism provides all the tools neces-
sary to study equilibrium and time-dependent properties of any
chemical system. In practice, however, the exact solution of the
time-dependent quantum Wigner–Liouville equation is possible
for a very limited class of simple systems, and the numerical
solution for a general many-body system is not possible because
of the well known phase cancellation problem (the sign
problem).

This problem has led to a variety of different techniques to
include the effects of quantum fluctuations on the dynamic
response of the system. One of the viable alternatives to the exact
quantum mechanical solution is the use of techniques that are
‘‘semiclassical’’ in nature; namely, the dynamic response is
obtained with the aid of classical trajectories (1). Although such
techniques appear promising, technical issues have prevented
their use in describing dynamics in realistic quantum liquids.

Another class of methods that has been used with success in
a variety of problems involves sophisticated numerical analytical
continuation of exact imaginary-time path-integral Monte Carlo
(PIMC) data (2, 3). These methods have been applied to a
variety of condensed phase problems, including the dynamics of
an excess electron solvated in water (4), helium and xenon (5),
vibrational relaxation (6, 7), optical spectroscopy (6–8), adia-
batic reaction dynamics (9, 10), dynamics in various quantum
lattice models (11, 12), and density fluctuations in superfluid
helium (13). However, the application of these approaches to
study density fluctuations (13) and transport properties (4) in
quantum liquids has not been completely successful.

In this paper, we show that analytic continuation methods can
be used successfully to study the transport properties of a
‘‘realistic’’ liquid. We express the imaginary time velocity auto-
correlation function, which is obtained from a suitable PIMC
method (14), in terms of a frequency-dependent diffusion
constant and use the maximum entropy method to analytically
continue the imaginary time data to real time and thus obtain the

self-diffusion constant and the velocity autocorrelation function.
We use the method to study transport properties in fluid
para-hydrogen at two thermodynamic state points: a liquid near
the triple point at T � 14K and � � 0.0235Å�3, and a
high-temperature liquid at T � 25K and � � 0.0190Å�3. The
results are compared with experimental observations (15)
and with results obtained from a quantum mode-coupling theory
(16, 17).

The paper is structured as follows: In Section I we express the
velocity autocorrelation function and the self-diffusion constant
in a form suitable for the analytic continuation method. We also
provide a working expression for the imaginary time velocity
autocorrelation function amenable for PIMC simulation tech-
niques. In Section II we describe the maximum entropy
(MaxEnt) method (11, 18) used to perform the analytic contin-
uation. In Section III we apply the method to study the transport
of liquid para-hydrogen. Section IV concludes.

I. Analytic Continuation of the Velocity Autocorrelation
Function
In this section, we outline a convenient approach to obtain the
velocity autocorrelation function and the self-diffusion constant
that is suitable for the analytic continuation method. We start
from the well known Green–Kubo relation:

D �
1
3 �

0

�

dtC��t�, [1]

where the real-time velocity autocorrelation function is given by

C��t� �
1
Z

Tr�e��HeiHtve�iHt�v�, [2]

(from now on, we set � � 1), where Z � Tre��H is the partition
function, � � 1�kbT is the inverse temperature, and v is the
velocity vector of a tagged particle in the liquid.

For the analytic continuation of the velocity autocorrelation
function, it is convenient to define a frequency-dependent
diffusion constant, D(�), which is given in terms of the power
spectrum of C�(t)

D��� � �
��

�

dtei�tC��t�. [3]

Abbreviations: PIMC, path-integral Monte Carlo; MaxEnt, maximum entropy.
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The self-diffusion constant is the zero frequency value of D(�)
divided by 6. The velocity autocorrelation function can be
obtained by inverting the Fourier relation in Eq. 3:

C��t� �
1

2� �
��

�

d�e�i�tD���. [4]

The frequency-dependent diffusion constant is analogous to the
spectral density used in the analytic continuation of spectral line
shapes (4, 5) and to the frequency-dependent rate constant used
in analytic continuation of the flux–f lux correlation function (9).
By performing the replacement t 3 �i� and by using the
detailed balance relation D(��) � e���D(�), we obtain

G���� �
1

2� �
0

�

d��e��� � e�� 	 ����D���, [5]

where t, � 
 0, and

G���� �
1
Z

Tr�e��He�Hve��H�v�. [6]

The reason for introducing the imaginary time velocity auto-
correlation function is that, unlike its real-time counterpart, it is
straightforward to obtain by using an appropriate PIMC simu-
lation technique (19, 20). The approach we adopt here to obtain
G�(�) is based on the method developed in ref. 14. The result
to lowest order in � � ��P, where P is the number of Trotter
slices, is

G���j� � �j1

1
m�

	
1

N�2 �
 � 1

N �dr1 · · · drPP�r1, · · · , rP�

� �r 
j 	 r 

j 	 1���r
2 	 r

1�, [7]

where N is the total number of liquid particles, rj is a shorthand
notation for the position vector of all liquid particles associated
with bead j, r 

j is the position vector of liquid particle  of bead
j, and P(r1, � � � , rP) is the regular sampling function used in the
standard cyclic PIMC method (with r0 � rP).

To obtain the frequency-dependent diffusion constant and the
real-time velocity autocorrelation function, one has to invert the
integral Eq. 5 by using an analytic continuation method. A
specific choice is the MaxEnt method, which is described in the
next section.

II. MaxEnt Numerical Analytic Continuation
The MaxEnt analytic continuation method described below is
identical to the one used in our work on the reactive-f lux analytic
continuation method and is outlined here for completeness. We
seek to analytically continue the imaginary time velocity auto-
correlation function given in Eq. 5. Because G�(�) is analytic for
0 	 � 	 �, the analytic continuation is accomplished by inverting
the integral Eq. 5 to obtain a solution for D(�). The zero mode
value D(0) would then correspond to the experimentally ob-
servable self-diffusion constant. Because of the singular nature
of the integration kernel, the inversion of Eq. 5 is an ill-posed
problem. As a consequence, a direct approach to the inversion
would lead to an uncontrollable amplification of the statistical
noise in the data for G�(�), resulting in an infinite number of
solutions that satisfy Eq. 5. Clearly, in this case, little can be said
about the real-time dynamics and the corresponding diffusion
constants.

Recently, Bayesian ideas have been used to deal with the
ill-posed nature of continuing the noisy imaginary time Monte

Carlo data to real time (2, 3). One of the most widely used
approaches is the MaxEnt method (3, 18). The method requires
only that the transformation that relates the data and the
solution be known. Furthermore, MaxEnt allows the inclusion of
prior knowledge about the solution in a logically consistent
fashion. As such, the method is well suited for solving ill-posed
mathematical problems.

For the purpose of the MaxEnt approach, we rewrite the
integral Eq. 5

G��� � �d�K��, ��A���. [8]

In this notation, G(�) 
 G�(�) is the data (in this case the
imaginary time velocity autocorrelation function), K(�, �) �
e��� � e(���)� is the singular kernel, and A(�) is the solution,
referred to as the map, corresponding to D(�). MaxEnt princi-
ples provide a way to choose the most probable solution con-
sistent with the data through the methods of Bayesian inference.
Typically, the data are known only at a discrete set of points {�j},
and we likewise seek the solution at a discrete set of points {�k}.
The MaxEnt method selects the solution that maximizes the
posterior probability or the probability of the solution A given a
data set G. Using the Bayes theorem, one can show that (11, 18)
the posterior probability is given by

P�A�G� � exp�S 	 �2�2� � eQ. [9]

Here, �2 is the standard mean squared deviation from the data

�2 � �
j,k
�Gj 	 �

l

KjlAl� �C 	 1�jk�Gk 	 �
l

KklAl� ,

[10]

where Cjk is the covariance matrix

Cjk �
1

M�M 	 1�
�

l � 1

M

�Gj� 	 Gj
�l���Gk� 	 Gk

�l��, [11]

with M being the number of measurements.
In Eq. 9, S is the information entropy, the form of which is

axiomatically chosen to be

S � �
k

���Ak 	 mk 	 Akln
Ak

mk
�. [12]

In this formulation, the entropy is measured relative to a default
model m(�), which can contain prior information about the
solution, and  is a positive regularization parameter.

Obtaining the MaxEnt solution then involves finding a map A
that maximizes the posterior probability and is therefore a
maximization problem in N variables, where N is the number of
points {�k} at which the solution is evaluated. The solution
obtained in this way is still conditional on the arbitrary param-
eter , which can be interpreted as a regularization parameter
controlling the smoothness of the map. Large values of  lead to
a result primarily determined by the entropy function and hence
the default model. Small , in turn, lead to a map determined
mostly by the �2 and thus to a closer fitting of the data. The
principal drawback is that, along with the data, the errors would
be fit as well.

In this study, we use a flat default map [m(�)], which satisfies
a known sum rule, such as the integral over D(�), and  is
selected according to the L-curve method (21). In this context,
we regard  as a regularization parameter controlling the degree
of smoothness of the solution and entropy as the regularizing
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function. The value of  is selected by constructing a plot of
log[�S(A)] vs. log �2. This curve has a characteristic L-shape,
and the corner of the L, or the point of maximum curvature,
corresponds to the value of  that is the best compromise
between fitting the data and obtaining a smooth solution.

We use a maximization algorithm due to Bryan (22), which
reduces the space in which the search for the solution is
performed. The kernel is first factored by using singular value
decomposition K � V�UT. The singular nature of the kernel
ensures only a small number of eigenvalues of � will be non-
singular. Because the space spanned by the rows of K is the same
as that spanned by the columns of U associated with nonsingular
eigenvalues, the search for the solution can be performed in this
singular space of dimensionality Ns, where Ns is the number of
nonsingular eigenvalues. The solution in singular space is ex-
pressed in terms of the vector u, which is related to the N
dimensional map space via

Aj � mjexp� �
l � 1

Ns

Ujlul�. [13]

This exponential transformation is useful, because it ensures the
positivity of the solution.

III. Application to Self-Diffusion of Liquid Para-Hydrogen
In this section, we study the transport of liquid para-hydrogen by
using the above outlined analytic continuation method. Al-
though it is known that liquid para-hydrogen may be treated as
a Boltzmann particle near its triple point (23), it still exhibits
some of the hallmarks of a highly quantum liquid. In fact, recent
neutron scattering experiments of Bermejo et al. (24) have
uncovered the existence of collective excitations that are absent
in the classical f luid. These quantum excitations are a precursor
of some of the collective modes that exist in the superfluid state.
The model potential we use to study liquid para-hydrogen is
based on the Silvera–Goldman potential (25, 26), where the
entire H2 molecule is described as a spherical particle, so the
potential depends only on the radial distance between particles.
This potential has been used to study thermodynamic properties
and phase equilibrium of fluid hydrogen (27, 28) and has also
been used to study transport (17, 29, 30) and density fluctuations
(16, 31, 32) for liquid para-hydrogen. The Silvera–Goldman
potential is given by

V�r� � exp� 	 �r 	 �r2� 	 �C6

r6 �
C8

r8 �
C10

r10 �fc�r� �
C9

r9 fc�r�,

[14]

where the first term on the right-hand side (RHS) accounts for
short-range repulsive interactions, the second set of terms on the
RHS account for long-range attractive dispersion interactions,
and the last term on the RHS is an effective three-body
correction (25). The last two terms are multiplied by a damping
function, which turns off these interactions at short distances and
is given by

fc�r� � e��rc�r 	 1�2
��rc 	 r� � ��r 	 rc�, [15]

where �(r) is the Heaviside function (step function). The pa-
rameters for the potential are given in Table 1.

To obtain the imaginary time velocity autocorrelation func-
tion required for the analytic continuation to real time, we have
performed PIMC simulations at two thermodynamic state
points: a liquid near the triple point at T � 14K and � �
0.0235Å�3, and a high-temperature liquid at T � 25K and � �
0.0190Å�3. The density for both state points was chosen to be the
average density under zero pressure (27). The PIMC simulations

were done by using the Canonical ensemble with N � 108
particles interacting via the Silvera–Goldman potential defined
in Eq. 14. The staging algorithm (33) for Monte Carlo chain
moves was used to compute the imaginary time velocity auto-
correlation function. The number of Trotter slices was P � 50
and P � 28 for the low- and high-temperatures, respectively. This
choice ensures that structural properties are well converged (34).
The Monte Carlo moves (1 � 106) were made, with an accep-
tance ratio of approximately 0.35 for both state points.

The results for the imaginary time velocity autocorrelation
function are shown in Fig. 1 for the aforementioned two state
points. We find that the statistical error is quite small, indicating
the high precision of the PIMC simulation method used in this
work. The high quality of the imaginary time data is necessary
for the numerical analytic continuation to the real-time axis, as
will be illustrated below. The integral over the imaginary time
velocity autocorrelation function in the range [0:��] divided by
�� yields the Kubo transform (35) of the initial time velocity
autocorrelation function. It can be shown that the Kubo trans-
form of the velocity autocorrelation function at the origin of time
evaluates to kBT�m, i.e., the classical result. We have computed
the Kubo transform of the initial time velocity autocorrelation
function for both state points. Our numerical results are within
0.001% of the exact analytic result, again indicating the high
quality of the imaginary time data.

The imaginary time velocity autocorrelation functions ob-
tained from the PIMC simulation data were then used as input
data for the MaxEnt numerical analytic continuation procedure.
The covariance matrices required by the MaxEnt procedure were
computed by block averaging the Monte Carlo data. Unlike the

Table 1. Parameters of the Silvera–Goldman model potential for
para-hydrogen in atomic units

 1.713
� 1.567
� 0.00993
C6 12.14
C8 215.2
C9 143.1
C10 4,813.9
rc 8.321

Fig. 1. A plot of the imaginary time velocity autocorrelation function for
liquid para-hydrogen at T � 14K, � � 0.0235Å�3 (solid line) and T � 25K, � �
0.0190Å�3 (dashed line).
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case found in analytic continuation of the reactive-f lux (9), the
covariance matrices for the velocity autocorrelation function are
not block diagonal, and thus the proper procedure must be used
to decorrelate the statistical noise of each data point (2). The
MaxEnt procedure was then used to determine the frequency-
dependent diffusion constant corresponding to each state point,
by inverting Eq. 5. As mentioned in Section II, we have used the
L-curve method to determine the regularization parameter, .
Given the high quality of imaginary time data, a plot of
log[�S(A)] vs. log �2 results in a L-shape curve with a very sharp
corner, corresponding to the choice of the regularization pa-
rameter . We note that the results shown below are not sensitive
to the exact choice of  over a relatively wide range.

In Fig. 2, we plot the frequency-dependent diffusion constant
for both state points studied in this work. The results obtained
from the MaxEnt analytic continuation method are compared
with the recent results obtained from a self-consistent quantum
mode-coupling theory (16, 17). The agreement between the
MaxEnt analytic continuation method for the low-temperature
state point is remarkable over a very wide range of frequencies.
In particular, the position and width of the peak in D(�) and the
self-diffusion constant given by the zero value of D(�) are in
excellent agreement at T � 14K, � � 0.0235Å�3. The agreement
between the MaxEnt method and the quantum mode-coupling
theory at the higher temperature point is good, although the
position of the peak obtained from the MaxEnt method is slightly
shifted to higher frequencies. Given that the quantum mode-
coupling theory is best suited for dense liquids, such as those
near the triple point (cf. T � 14K, � � 0.0235Å�3 for liquid
para-hydrogen), the discrepancies between the two methods
might indicate the breakdown of the quantum hydrodynamic
approach at the higher temperature state point.

As mentioned above, the self-diffusion constant of liquid
para-hydrogen can be obtained from the zero frequency value of
D(�). The values of the self-diffusion constants obtained from
the MaxEnt analytic continuation method are 0.28Å2ps�1 and
1.47Å2ps�1 for T � 14K, � � 0.0235Å�3 and T � 25K, � �
0.0190Å�3, respectively. These results are in good agreement
with the experimental results (0.4Å2ps�1 and 1.6Å2ps�1) (15),
with the results obtained from the quantum mode-coupling
theory (0.30Å2ps�1 and 1.69Å2ps�1) (17), and from the full

Constrained Molecular Dynamics (CMD) method (0.32Å2ps�1

and 1.54Å2ps�1) (36). The agreement obtained for the self-
diffusion constant between the different methods suggests that
the observed deviations from the experimental results is mainly
affected by the accuracy of the Silvera–Goldman interaction
potential (Eq. 14) and not by the MaxEnt analytic continuation
method.

The real-time velocity autocorrelation function period can be
obtained directly from the frequency-dependent diffusion con-
stant by using the relation defined in Eq. 4. In Fig. 3, we compare
the normalized velocity autocorrelation function obtained from
the MaxEnt analytic continuation method to the velocity auto-
correlation function obtained from a quantum mode-coupling
theory (17). In view of the above discussion for the frequency-
dependent diffusion constant, it is hardly surprising that the
agreement between the two methods is better at the lower
temperature state point, where we obtain quantitative agree-
ment for the short-time decay, for the position of the first
minimum in C�(t) and for the overall decay rate. The best
agreement between the two methods is obtained at short times,
which is expected because the quantum mode-coupling theory is
exact to order t6, and the statistical errors in the MaxEnt analytic
continuation method are small at short times. The small devia-
tions between the two methods at longer times may result from
increasing statistical errors in the MaxEnt method or from the
approximations introduced in the quantum mode-coupling the-
ory. However, the overall good agreement between the two
methods is a strong indication for the robustness and accuracy
of both methods.

IV. Conclusion
In this paper, we have presented a method to study transport
properties in highly quantum liquids. We expressed the imagi-
nary time velocity autocorrelation function, which was obtained
from a suitable PIMC method (14) in terms of a frequency-
dependent diffusion constant and used the MaxEnt method to
obtain the self-diffusion constant and the velocity autocorrela-
tion function by analytically continuing the imaginary time data
to real time.

The accuracy of the method was tested for liquid para-
hydrogen at two thermodynamic state points. As far as we know,

Fig. 2. A plot of the frequency-dependent diffusion constant for liquid
para-hydrogen at T � 14K, � � 0.0235Å�3 (Left), and T � 25K, � � 0.0190Å�3

(Right). The solid and dashed lines are the results obtained from MaxEnt
analytic continuation method and a quantum mode-coupling theory,
respectively.

Fig. 3. A plot of the normalized real-time velocity autocorrelation function
for liquid para-hydrogen at T � 14K, � � 0.0235Å�3 (Left), and T � 25K, � �
0.0190Å�3 (Right). The solid and dashed lines are the results obtained from
MaxEnt analytic continuation method and a quantum mode-coupling theory,
respectively.
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this is the first successful application of an analytic continuation
method to the study of transport in a realistic liquid. We find that
the self-diffusion constants are in good agreement with the
experimental results for both thermodynamic state points. Fur-
thermore, the agreement with transport coefficients obtained
from the quantum mode-coupling theory (17) is excellent,
indicating that any discrepancy found between the MaxEnt
method and the experiments results from the approximated
pair-potential used and not from the dynamical method itself.
We have also calculated the real-time velocity autocorrelation
function and obtained excellent agreement with the results
obtained from the quantum mode-coupling theory.

Although detailed comparison between the MaxEnt analytic
continuation approach and other methods is not the major goal
of the present work, it should be noted that the approach taken
here has some very attractive advantages. First, the method
presented in this paper is systematic and accurate within the
noise level of the numerical imaginary time input, and uncon-
trolled approximations that are typically made in other methods
on the basis of various semiclassical and mixed quantum�
classical techniques are not necessary here. Second, situations
where the static distribution is not described by Boltzmann
statistics can easily be handled within the present framework,
because the additional complication of proper particle statistics
may be absorbed into the PIMC calculation of the imaginary

time input. Last, there are numerous possible improvements for
our method. On the one hand, more efficient sampling tech-
niques are needed to reduce the noise level in the PIMC
simulations. On the other hand, the numerical analytic contin-
uation method used in this work is a very basic implementation
of the maximum entropy method. We believe that considerable
improvement to the numerical analytic continuation procedure
can be achieved through a better utilization of the MaxEnt
procedure. For example, rather than using a flat default model,
one could use a more informative one. Such a model could be
obtained from approximate methods, such as a quantum mode-
coupling approach (16, 17). Evaluating the sensitivity of the
solution to the default model would lead to an increased
confidence in its validity. In addition, recently it was shown that
combining short real-time dynamical information with the imag-
inary time data can significantly improve the quality of the
analytically continued results (10, 37, 38). All of these issues may
be the subject of future investigation.
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