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Variational upper bounds are derived for the escape rate of a particle trapped in a metastable well and
interacting with a dissipative medium. The theory leads to a reduced two-degrees-of-freedom Hamil-
tonian involving the unstable normal mode and a newly defined collective bath mode. Explicit treatment
of strong nonlinearities or low-barrier systems presents no special problem.
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The theory of activated rate processes in condensed
media arises in connection with a large variety of phe-
nomena' extending from tunneling in Josephson junc-
tions® to liquid-state chemical reactions®* to electron-
transfer processes.” Kramers® considered the case of a
particle, moving on a bistable or metastable potential-
energy surface, subjected to both frictional (dissipative)
and random forces exerted on it by a heat bath. He
solved the problem in both the high-friction regime,
where the escape rate is limited by spatial diffusion, and
in the weak-damping limit, where the rate is dominated
by energy diffusion. In both cases, he considered only
the parabolic approximation to the potential at the sta-
tionary points. Much effort has been devoted to extend-
ing Kramers’s solution.” In the limit of large friction,
where one can neglect inertial forces, the problem
simplifies to a one-dimensional Fokker-Planck equation
which may be solved for its lowest (nonzero) eigenval-
ue.® In this limit, variational approaches have been
developed which provide upper bounds for the escape
rate.” However, in other friction regimes such (nontrivi-
al) bounding properties have not been derived.

Implicit in the Kramers model is the assumption of a
large separation of time scales between particle and bath
dynamics. It is now widely appreciated that this separa-
tion is often invalid, so that the original Kramers prob-
lem must be generalized to include memory friction.*’
Attempts to solve this more difficult problem are based
on an estimate of the mean first passage time'’'® or,
perhaps more frequently, a methodology in which the
true potential governing the motion of the particle is re-
placed by a parabolic barrier.> In the latter case, the
generalized Langevin equation®*’ (GLE) which in-
cludes memory friction can be solved exactly. Both ap-
proaches have serious deficiencies (see Ref. 7), although
they do give the exact solution under restrictive condi-
tions such as high-barrier potentials and strong damping.
There is no universal statement as to whether Kramers’s
original result and existing generalizations to include
memory friction are upper bounds or just estimates, valid
only in the high-barrier, large-friction limit.

The purpose of this Letter is to report a new approach
which provides rigorous variational upper bounds to the
classical escape rate for arbitrary potential functions and
arbitrary memory friction. The theory includes the full
nonlinearity of the potential and is not limited to high-
barrier problems. This approach allows us to show that

there is a large class of potential functions for which the
parabolic-barrier-based approximation® yields a larger
estimate for the rate than does the new theory. For this
class of systems we have thus proved that the parabolic
estimate is indeed an upper bound, yet a specific example
demonstrates that it may be significantly higher than the
upper bound given by the new theory.

The methodology used in this new approach is based
on classical transition-state theory.”!" A key element of
the theory is the identification of a dividing surface in
configuration space—the transition state— which has the
property that any reactive trajectory must cross it at
least once. The classical flux across this surface in a
given direction gives a rigorous upper bound to the reac-
tion probability.!?> Since trajectories may recross the
dividing surface, one is at most overcounting the reac-
tive flux. Classical variational transition-state theory
(VTST) results from this upper bound property.'® By
varying the dividing surface one finds the transition state
which leads to the lowest upper bound. Except for some
recent developments,'*!> the theory has been restricted
to systems with a finite number of degrees of freedom.
In this Letter we show that VTST can be extended to the
continuum limit, where it leads to an interesting new re-
sult: Many of the effects of dissipation may be under-
stood from the dynamics of an effective two-degrees-of-
freedom nonlinear Hamiltonian where one coordinate is
a generalized reaction coordinate and the other is a col-
lective bath mode. This Hamiltonian is well defined in
the continuum limit and is a function of both the original
potential and the memory friction.

The theory is developed for the GLE extension of
Kramers’s problem®’ for a particle with mass m and
coordinate g:

mq‘+ﬂ(ﬂl+mf,dry(t-r)c'](f)=§(’)- (1
dq 0

The Gaussian random force £(z) is related to the friction
kernel y(¢) (with B=1/kzT) through the second fluctua-
tion dissipation theorem: (£(¢)&(0))=(m/B)y(t). The
system potential ¥ (g) has a barrier height ¥'* and is as-
sumed to have a well at —gq such that Vig)= L mwd
x(g+qo)*—V* To elucidate the role of the anhar-
monicity in the potential we write it without loss of gen-
erality in the form

Vig)=—tmo®q*+v,(g), (2)
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such that V(0) =0. When the coupling to the bath is
turned off [y(z) =0] the canonical escape rate from the
well is™'® To=(wo/2m)exp(—pV*). The equilibrium
rate in the presence of friction, within the parabolic-
barrier appi. imation, is'’

l"=(7\¢/wi)l’r% (3)
The reactive frequen-y of Grote and Hynes,'” A%, is the
solution of the equation

AR=0R/I1+70H 4, 4)

where 7(s) denotes the Laplace transform of the friction
kernel y(¢). Equation (3) is a well-known generalization
of the Kramers spatial diffusion limit® to include
memory effects. It is a steepest-descent estimate, expect-
ed to be valid and relevant for moderate to strong damp-
ing and for large barriers (8V#>> 1), but it has not previ-
ously been shown to have any rigorous bounding proper-
ty.
Instead of trying to deal directly with the GLE, we
study the dynamics of the equivalent Hamiltonian'®

H=p}/l2m+V(q)
+2 1 lpd/my+mi(w,x, — Cg/mw)?],  (3)
J

where the system coordinate g is coupled linearly to a
bath of harmonic oscillators with coordinates x,, masses
m,, and frequencies w;. By solving explicitly for the
time dependence of each of the bath coordinates, it is
found”'® that Hamilton’s equation of motion for the sys-
tem coordinate g reduces to the GLE [Eq. (1)], with the
identification that y(t) =X, (C}/mm,w})cos(w,t). If l

one now ignores the anharmonicity in the potential, then
the Hamiltonian in Eq. (5) is quadratic and may be di-
agonalized using a normal-mode transformation.'> The
normal modes are characterized by one unstable mode p
associated with the negative eigenvalue —A*? and by
stable modes y; with associated frequencies A,. The un-
stable mode frequency A¥ is identical to the reactive fre-
quency given by Eq. (4). Identifying p=0 as the divid-
ing surface, and evaluating the equilibrium flux through
the surface, leads to Eq. (3), demonstrating that the
Grote-Hynes results is the continuum limit of harmonic
transition-state theory. ' !>

To derive a VTST which has a (nontrivial) bounding
property for the reactive flux and includes the full anhar-
monicity of ¥ (g) we rewrite the Hamiltonian in terms of
the normal modes (of the saddle point),

= ;_ [ppz _}‘Izp2+2 (Pyz, +)‘j2yj2)]
J

+V [m'/2

uoop+zu,oy,] ] : (6)
J

where the ujo’s are elements of the orthogonal normal-
mode transformation such that Vmgq =wugop+X;u;0p,.
In the continuum limit the matrix element ug can also
be determined through the Laplace transform of the fric-
tion kernel, "®

udo={1+ S [FQAH/AF+87(s)/0s|, =,:} 7L, (7

The canonical equilibrium flux through a dividing sur-
face,”!" characterized without loss of generality as
p=f(y), is proportional to the integral F defined as

F={" Tldp, dy,dp,dp(p n,)8(p-n)5(p— f(y))
J

21172
1+3 —"’-LJ ] exp(—BH) | ®)
J

ay;

where n; is the unit normal to the surface and p- n, is the component of the multidimensional momentum normal to the
surface. The unit-step function @(p-n,) assures that one is evaluating the flux in the direction from the metastable
state to the products. The Dirac & function limits the integration to the dividing surface. When V,(g) =0 and the di-
viding surface is chosen as p =0, the flux integral reduces to F;; =(1/B)I1; (2n/BA,). For a general dividing surface, re-
taining the anharmonicity, the VTST estimate for the rate constant is? T'yrst =¥/ 0*)(F/Fy)Ty. Thus, it suffices to
study the ratio P=F/Fy.

The anharmonicity ¥ couples a/l normal modes in a nontrivial fashion. Interestingly, we note that the anharmonici-

ty may be thought of as a function of only two variables. These are the unstable mode p and a collective bath mode o
which we define as

o=U—ud) "X uov,=0/u) X u0y, . “
J J

With this in mind, we insert the identity

1 =f_2dcf_2dpa6 [0— (l/u.);ujoyj]é [p(,— (l/u,);ujopr,.}]

into the flux integral F [Eq. (8)].

We now introduce the only restrictive assumption of the proposed theory. The dividing surface is taken to be a func-
tion of the unstable mode p and the collective bath mode o only, so that p=/f(c). As a result the unit vector normal to
the surface, ny, is

n, = —;3+(df/do)Z(u,o/ul)f’J]/[l +(df/ds)?]'"
J

(10)

an
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where p,¥, are unit vectors in the direction of the normal modes and use was made of the identity Zj ufo =1—ud It

follows that

p-n,=[—p,+df/do)p,1/[1+(df/do)?]"

and is a function only of p,, p,, and o. It is therefore possible after changing the order of integration in the expanded
flux integral to integrate without loss of generality over the variables y,,p,, of one of the stable modes. One finds that

F={ dpdp,dodp,(p-n,)6(p-n)5(—f(c)) |1+

211/2
o

2 1§22
Py —AYp
9

<

~B +Vil |5 Zoo (12)

2 (P_n% +7kj2}’/2) +

Z,m=fl—I dy, dp,exp [ —‘g

(u lpa—zlujop}‘/)z-}-klz(u 10— 2Z'uj0p,)°
- , 13)
io

where the prime denotes a product or sum over all stable modes j, except for j=1. Diagonalizing the exponent in Eq.
(13) at fixed o,p and integrating leads to the central result of this Letter:

P=1820/271 [ dp,dp,dpdo(p-n)6(p-n,)6(p~ /(o))

H¥ =p2/2+p2/2 =222+ 062+ V (p,0) .
The averaged bath frequency Q is found to be
02 =uf [T WA =utl i/~ 1/w?). (16)
J

The last equality on the right-hand side follows from
properties of the normal-mode transformation; cf. Ref.
19.

This result shows that VTST for dissipative systems is
identical to minimizing the transition-state flux for the
effective two-degrees-of-freedom Hamiltonian Hi, which
is well defined in the continuum limit for arbitrary fric-
tion kernels y(z) [see Egs. (4), (7), and (16)]. The
effective Hamiltonian includes the full anharmonicity of
the system potential and, within the (p,o) configuration
space, there is no restriction on the dividing surface. As
shown by Pechukas,'' the formal solution for the min-
imum flux dividing surface for two-degrees-of-freedom
Hamiltonians is a periodic-orbit dividing surface (known
as a pods). The classical action of the periodic orbit is
the variational upper bound to the microcanonical flux
and the canonical variational flux is obtained from the
optimized microcanonical flux by canonical averaging.
This formal solution can be readily applied (numerical-
ly) to Egs. (14) and (15).

To demonstrate the practical utility of Egs. (14) and
(15) we will consider the simple dividing surface p =0
which, although not fully optimized, allows for analytic
results. In this case P is

Plp=0)=(pa?2x)'?

X f:odaexp{—ﬂ[ﬂzoz/}i- Vim'"u,6)1} .

amn

If V(g) is positive definite, then P < 1. This means that
for the general class of system potentials whose anhar-
monicity as defined in Eq. (2) is positive definite the har-

2711/2
I+ i’f—] ] exp(—BHY) (14)

do

(15)

I monic estimate [Eq. (3)] is in fact an upper bound to the

classical equilibrium rate. In the weak-damping limit
the collective bath frequency Q will be of the order of
the bare barrier frequency while u; will be very small
(proportional to the square root of the damping con-
stant), justifying a steepest-descent estimate of the in-
tegral. However, in the strong-damping limit, the fre-
quency Q may become small, leading to noticeable devi-
ations from the harmonic estimate. In addition, the in-
tegral in Eq. (17) is easily evaluated for any barrier
height. The present VTST will thus give a meaningful
upper bound even when BV ¥ is of the order of 1.

As a concrete example for the present theory we
consider a symmetric quartic potential (mass m=1)
V(g)=—w*q?/2+(a/4)q*. The integration in Eq.
(17) then yields

Plp=0)=,/n)"Pexp(V/2)K sV /2) , (18)
Ve=pV(x—1)2,

where x =udw /A% and K4 is a modified Bessel func-
tion of the second kind. The result for P is a monotonic
function of V., which goes as 1—3/16V, for V> 1
and as Qx) ~"Ir($ )V} for V., <« 1. For Ohmic dis-
sipation,>”  y(1) =2y5(t), one finds that x—1=y/
(40¥+y2)'2. In this case, corrections to the harmonic
estimate will be small for any value of the damping con-
stant unless the barrier height is very small. However,
for memory friction, one may find that x—1>1.
Specifically, if we choose an exponential friction*
y(t) =w*exp(—w?*1/y*), we find that for strong damp-
ing x~ + y*¥3. This leads to P~ y* ~'/3, so that even if
BV*¥> 1, the actual upper bound to the reactive flux will
be substantially smaller than that predicted by the har-
monic estimate.

The result that the reactive flux may be evaluated
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from an effective two-degrees-of-freedom Hamiltonian
suggests that the dynamics of this Hamiltonian might
have a significance extending beyond the derivation of
variational bounds for the rate. One may write the exact
equation of motion (with m=1) from the full Hamil-
tonian [Eq. (6)] for the jth bath oscillator as ji, +1}y,
= —u,0dV(q)/dq, where as noted above g =ugop+u;o.
This is the equation of motion of a forced harmonic os-
cillator whose formal solution is well known.'” Using the
definition of the collective bath mode [Eq. (9)] one finds
after integration by parts and rearrangement of the fol-
lowing exact equation of motion:

dv
c')‘+.()20+u| dl

d*v(g(1))

+u ) deH (-1 L= 19)

Here, the effective memory function
Q>
1 ——5cos(A,1)
Ay

2
ujo

H) =3
J

2
uj

may be expressed in the continuum limit solely in terms
of the Laplace transform of the time-dependent friction
(cf. Ref. 19). The “noise function” £(z) is dependent on
initial conditions of the stable modes and is thus a
Gaussian random force. From the full Hamiltonian [Eq.
(6)] one also finds the exact equation of motion for the
reaction coordinate,'®?' p—Aa¥p=—ugdV,/dg. To-
gether with Eq. (19), these equations of motion are iden-
tical to the original GLE, Eq. (1). If one ignores the
memory term and random force in Eq. (19), then these
two equations are just Newton’s equations for the dy-
namics of a system governed by H* Since in many
cases u, and the effective memory function H(z) will be
small, this opens the possibility of a new perturbation
theory for dissipative systems. In contrast to previous re-
sults,'>?!" this approach has as a zero-order solution
the dynamics of a nonlinearly coupled two-degrees-of-
freedom system.

The derivation of H?¥ is based on coordinate transfor-
mations; hence its applicability is not limited to classical
mechanics. Because it is not difficult to obtain numerical
solutions for the decay rates of this generic type of Ham-
iltonian, understanding the effect of dissipative media on
quantum systems can be transformed to the problem of
understanding the relation between the quantum reso-
nance states of H¥ and the full dissipative dynamics.
This problem should present an interesting challenge.

In summary, we have shown that VIST can be ex-
tended to dissipative systems described by a GLE. The
variational upper bound to the barrier crossing rate con-
stant can be formulated in terms of an effective two-
degrees-of-freedom dynamical system. This approach al-
lows full inclusion of strong anharmonicities and under
physically realizable circumstances can lead to large
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corrections to current theories. It is not difficult to apply
this approach to systems with cusped or quartic barriers,
and the method is generalizable to two or more degrees
of freedom coupled to a dissipative bath. The major out-
standing problem not addressed here is the case where
the dissipative bath is not harmonic.
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