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Second-Order Reentrant Phase Transition in the Quantum Anisotropic Planar Rotor Model
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The orientational behavior of the quantum anisotropic planar rotor model is studied by means of the
path-integral Monte Carlo method combined with finite size scaling. We compare a system where all
angular momentum states are allowed, and one where the angular momentum is restricted to have even
values. We find that a reentrant phase transition is present in the unrestricted case, where the system
reenters a disordered phase upon cooling. Cumulants that are sensitive to the order of the transition
indicate that the phase transition is second order. In the parameter range investigated in this paper, the
even angular momentum system does not show reentrance.

PACS numbers: 68.35.Rh, 68.45.Da, 82.65.My
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The phase diagram of the quantum anisotropic plan
rotor (QAPR) model has been studied extensively [1
4], in large part due to the possibility of the anomalou
reentrant phase transition. Reentrance refers to a ph
transition of the system into an ordered phase at som
temperature followed by a phase transition of the sam
system into a disordered phase at a lower temperature.

The QAPR model is an ideal minimalistic model tha
was constructed to understand quantum effects on o
entational ordering of homonuclear diatomic molecule
physisorbed onto inert surfaces. Recent reviews of e
periments and simulations relevant to the study present
here can be found in Refs. [5,6]. Even though the fu
parameter space of the QAPR model cannot (yet) be i
vestigated experimentally, it is an interesting model o
statistical mechanics, and there are many systems wh
Hamiltonians are similar to the QAPR Hamiltonian (spec
fied below). Recent NMR studies [7] suggest that there
an ordered herringbone structure of H2 on boron nitride for
temperaturesT , 1.2 K and for ortho-H2 mole fractions
of x , 0.47. However, until now the reentrant phase tran
sition in these types of systems has not been experimenta
investigated.

In the QAPR model, rotors are pinned onto an ideal two
dimensional triangular lattice. Nearest neighbor roto
are coupled through a quadrupolar potential of streng
J. The kinetic energy is treated quantum mechanical
with a finite rotational constantB. In the following we
will express all energies in units ofJ such asB� � B�J,
reduced temperatureT� � kBT�J, andJ� � 1. Thus our
reduced HamiltonianH� can be written as

H� � 2B�
NX

i�1

≠2

≠f
2
i

1 J�
X
�i,j�

cos�2fi 1 2fj 2 4fi,j� ,

(1)

where fi denotes the coordinate of rotori. The phase
anglesfi,j measure the angle of the line connecting neare
neighbors, which in the case of a hexagonal lattice a
given byfi,j [ �0, p�3, 2p�3, p , 4p�3, 5p�3, 2p�.
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Studies of the phase diagram (B� vs T�) of the QAPR
model have led to a controversy as to whether or n
there is a regime of reduced rotational constantsB� where
reentrance is present. In a recent study [3] a me
field treatment showed reentrance, but this result w
not verified by simulation. In another study a critica
rotational constant at zero temperature was found [4]. T
value of the critical rotational constant was such that
conjunction with the finite temperature results of Ref. [
it was concluded that reentrance is present [4].

The mean-field analysis of the QAPR model has be
carried out in the framework of a model of coupled Josep
son junctions consisting of coupled one-dimension
rotors [8,9], as well as in the framework of homonucle
diatomics on an inert surface [3]. In the former ca
mean-field theory has shown that reentrance is presen
the “rotors” are allowed to interconvert between stat
that are symmetric in2p and states that are antisymmetr
in 2p for a potential that is symmetric in2p. States
symmetric (antisymmetric) in2p correspond to states
with even (odd) angular momenta. When the system w
restricted to states that are symmetric in2p, reentrance
was not found. A similar result has been found in th
case of solid hydrogen isotopes [10,11]. In the case
homonuclear diatomics [3], a mean-field analysis fou
reentrance for a system where even and odd ang
momentum states were allowed to interconvert.

Path-integral Monte Carlo (PIMC) simulations of th
QAPR model at finite temperature [2,3] have given stro
evidence that the system does not become ordered for
tational constantsB� . 0.7, independent of temperature
It has been suspected [2] that there is a region of
tational constants forB�

c , B� , 0.7 where reentrance
occurs. Extensive PIMC simulations [3] did not sho
reentrance, although sufficiently low temperatures we
not investigated. Although a decrease in the order param
ter was found with decreasing temperature, no phase tr
sition could be established by means of an analysis of
order parameter distributions.
© 1999 The American Physical Society
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A diffusion Monte Carlo (DMC) simulation [4] found
evidence for a rotational constant B�

c � 0.4 above which
the system is suspected to be disordered at zero tem-
perature. In conjunction with the finite temperature simu-
lation results of Ref. [3], a critical rotational constant of
B�

c � 0.4 at zero temperature provides preliminary evi-
dence for reentrance. This result is in agreement with the
results of previous mean-field treatments [3,8,9]. How-
ever, it is not trivial to obtain information about the order
parameter F defined below and its moments within a zero-
temperature simulation. A finite system tunnels between
equivalent macroscopic ground states at T� � 0, result-
ing in limN!` limT!0 F � 0. Information about the order
was obtained indirectly, and it was not possible to locate
the zero-temperature transition precisely and to determine
the order of the transition.

Models for granular superconductors mentioned above
have been studied by PIMC [12]. The coupling term
in that study has the form cos�fi 2 fj�, giving rise to
a Kosterlitz-Thouless transition. The lattice is a two-
dimensional simple cubic lattice. Evidence for a first-
order reentrance was found, but no proof of the first-order
nature was given through a size scaling analysis. However,
finite size scaling is extremely important to establish the
bare existence of a reentrance transition. Furthermore, the
differences between the models do not allow conjectures
for the QAPR model.

The purpose of the study presented here is to ascertain
if there is a reentrance transition in the QAPR model. We
do this by combining efficient path-integral Monte Carlo
techniques for one-dimensional rotation with finite size
scaling techniques. We investigate the order of both tran-
sitions: the reentrance transition and the well studied high-
temperature order-disorder transition formerly believed to
be a weakly first-order transition [13].

The Hamiltonian used in this study is defined in Eq. (1).
The equilibrium behavior of the model is investigated with
a version of the PIMC [14,15] method that has been modi-
fied to sample paths for uniaxial rotation efficiently [16].
In the PIMC method a quantum system is represented by
P replicas of the corresponding classical system coupled
by harmonic bonds in a cyclic manner. The version
of PIMC put forth by Cao [16] offers a simple way to
analyze systems of all (even) angular momentum states by
restricting the wave function to be periodic in 2p�p�.

We calculate the averages of powers of the order
parameter for different system sizes and perform finite
size scaling. The forms of the Binder cumulants we use in
finite size scaling [17–19] are suited to rule out the first-
order nature of a transition [20]. We focus on a range
of the rotational constant which is in the region where
reentrance has been suspected to occur.

The ground state of our corresponding classical system
has been determined to have the “herringbone” structure
[21,22]. The order parameter that describes herringbone
ordering is a n � 3 dimensional vector �F whose compo-
nents Fa with a � 1, . . . , n may be written as

Fa �
1

NP

NX
j�1

PX
t�1

sin	2fj�t� 2 2ha
 exp	iQa ? Rj
 ,

(2)

where Q1 � p�0, 2�
p

3 �, h1 � 0, Q2 � p�21, 21�
p

3 �,
h2 � 2p�3, and Q3 � p�1, 21�

p
3 �, h3 � 4p�3.

There are q � 6 possible realizations of the herringbone
structure on a triangular lattice. We calculate moments of
the magnitude of the vector given in Eq. (2) and evaluate
the cumulant given in Ref. [20], which has the form

gN �T�� �
n
2

µ
1 1

2
n

2
�F4�N

�F2�2
N

∂
. (3)

F denotes the magnitude of the order parameter �F. For
reasons of simplicity, we refer to F as the order parameter
in the following.

It has been shown [20] that gN �T��, aside from some
negligible correction terms, has a size independent cross-
ing point at the transition temperature with a universal
value of gN �T�

c � � 1 2 n�2q for a first-order phase tran-
sition, where T�

c is the phase transition temperature, and
q is the number of ordered states of the system. In our
case gN �T�

c � � 3
4 . For a second-order phase transition the

same cumulant has a size independent crossing point at
the critical temperature, but its value is not known.

For our main investigation, a system with a rotational
constant of B� � 0.6364 is chosen for which disordering
at ultralow temperatures has been suspected [2–4]. In
Fig. 1 we show the temperature dependence of the order
parameter for three system sizes (N � 256, 324, and
400). Upon cooling, the order parameter for all system
sizes increases initially. At high temperatures the order
parameter is strongly size dependent. In the ordered
state (around the maximum of the order parameter where
T� � 0.21), the size dependence weakens. Subsequently

FIG. 1. Order parameter as a function of temperature for
systems of rotational constant B� � 0.6364 and sizes N � 256,
324, and 400.
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there is a sharp drop in the order parameter, in which size
dependence for the most part is weak.

Figure 2 shows the temperature dependence of the
cumulant gN �T�� for the B� � 0.6364 system at the
same two system sizes. The cumulants cross twice, at
T� � 0.09 and at T� � 0.3. The two crossing points are
an unmistakable indication of reentrance. The value of
gN at both crossing points is certainly different from 3

4 .
This is a clear sign that the transitions are second order.

Reentrance is believed to be driven by a competition
between kinetic and potential energies [4,12]. This com-
petition is particularly apparent if the symmetry of the
first excited states does not correspond to the symmetry
of the Hamiltonian, e.g., the first excited state in a double
well potential has a different symmetry than the ground
state. As the temperature is lowered to the order of the
tunneling splitting, the quantum particle in the double
well potential delocalizes thereby reducing its kinetic en-
ergy and increasing its potential energy. An increasing
potential energy with decreasing temperature is therefore
quantum mechanically possible in contrast to the classi-
cal case. The increasing potential energy is associated
with a decreasing quadrupolar polarization. This picture
can certainly be generalized from a one-particle double
well potential to multiparticle double well potential such
as the QAPR model with rotors in mixed angular mo-
mentum states. Hence, in a mean-field picture, as fewer
and fewer rotors populate the first excited state, the rotors
become more delocalized. This weakens the coupling be-
tween neighboring rotors and may eventually result in a
transition to a disordered phase.

The above mentioned effect of the potential energy
that decreases with temperature can be seen in Fig. 3.
The potential energy has a dip, while the kinetic energy
is a monotonically increasing function of temperature.
The temperature regime where the anomaly takes place
coincides with the reentrance regime. One may therefore

FIG. 2. Cumulant gN �T �� as a function of temperature for
systems of rotational constant B� � 0.6364 and sizes N � 256,
324, and 400.
4608
conjecture that local coherence (each individual rotor
occupies only even angular momentum states even though
odd angular momentum states are accessible) induces
global disorder. Of course, there does not have to be a
transition into a disordered state when the rotors occupy
only even angular momentum. Indeed, DMC finds long
range order for B� , 0.4 [4].

In Fig. 4 PIMC results for the kinetic energy T�
kin are

shown for a QAPR system of B� � 0.6, where the rotors
are constrained to have even angular momenta. The po-
tential energy V �

pot is shown in the inset. Within the error
bars of our simulation, the potential energy is constant and
the kinetic energy is a monotonically increasing function
with temperature, in contrast to the unconstrained system
shown in Fig. 3. This behavior can be understood in a
mean-field picture if the potential is treated as a perturba-
tion to the free rotors. The difference in energy between
m � 0 and m � 2 (m denoting the angular momentum of
a single free rotor) is DE� � 4B�. The coupling to the
potential energy contributes in second-order perturbation
theory only. First and second excited states have similar
kinetic energies (approximately 4B�) but opposite potential
energies. Furthermore, the splitting between the first and
second excited states can be expected to be smaller than
the difference in the ground state and first excited state.
Hence, first and second excited states become populated
nearly simultaneously. As these two states become popu-
lated the kinetic energy increases, but the average potential
energy remains constant. Having constant potential energy
can be associated with an unchanged local order.

Even though there is no apparent competition between
kinetic and potential energies for the B� � 0.6 system
with only even angular momentum states, the behaviors
of the order parameter and the cumulant, both not shown
here, are quite peculiar. Order in the small system �N �
144� at intermediate temperature regimes �T � 0.25� is

FIG. 3. Kinetic energy Tkin, potential energy Vpot, and half of
the total energy �Tkin 1 Vpot��2 as a function of temperature
for rotational constant B� � 0.6364 and system size N � 400.
Vpot is shifted by a constant such that the classical ground state
corresponds to Vpot � 0.
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FIG. 4. Potential and kinetic energies are shown for an
ensemble 324 rotors with B� � 0.6 as a function of temperature
T . All rotors are constrained to even angular momentum.
Potential energy Vpot is shifted by a constant such that the
classical ground state energy is zero.

much stronger than in the large system �N � 324�. This
is due to the periodic image convention that typically
induces a larger order parameter for a smaller system.
At very low temperatures �T # 0.12�, the effect inverts.
The small system becomes much more disordered than
the large system. We suspect that tunneling between the
various metastable states occurs. The tunneling splitting
can be expected to be larger for the small system than
for the large system. Hence, care has to be exercised in
deciding in which order the limits limN!` and limT!0 are
taken. Just looking at one system size might have led us
to the conclusion that the even angular momentum rotors
also show reentrance at a rotational constant B� � 0.6.
From our data, we cannot yet disapprove of the existence
of reentrance for the even system. However, it is apparent
that the phase diagram in this case is strongly distorted
with respect to the regular phase diagram, e.g., there does
not seem to be an ordered state for the even B� � 0.6
system, while there is a temperature regime for the mixed
B� � 0.63 system in which the mixed B� � 0.63 rotors
are ordered.

These findings are similar to the experimental findings
on solid hydrogen [23] and with computer simulation of
three-dimensional hydrogen [24]. Reentrance is observ-
able for solid HD under pressure but not for H2 and D2.
The computer simulations also showed the absence of
reentrance for parahydrogen [24]. Unfortunately an equi-
librium mixture of para-ortho rotors was not considered.

We have presented a study in which the reentrant
phase transition of the QAPR model has been simulated
for the first time. Both the high-temperature disorder-
order and the low-temperature order-disorder transitions
are found to be second-order transitions. If the rotors are
constrained to be of even angular momentum, we cannot
exclude the possibility of reentrance, but the area of the
reentrance regime in a �B�-T�� phase diagram is certainly
reduced.
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